

Received February 1, 2018, accepted April 5, 2018, date of publication April 9, 2018, date of current version May 9, 2018. *Digital Object Identifier* 10.1109/ACCESS.2018.2824833

A Formal Approach of Construction Fuzzy XML Data Model Based on OWL 2 Ontologies

WEIJUN LI^{®1}, LI YAN², FU ZHANG¹, AND XU CHEN^{®3}

¹School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
²College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

³Internet Information Technology Center, North Minzu University, Yinchuan 750021, China

Corresponding author: Li Yan (yanli@nuaa.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61370075 and Grant 61672139.

ABSTRACT With the rapid development of the Web, a large number of electronic resources have been generated. Currently, XML has been an important tool for data representation and exchange over the Web. The incompleteness of information in the real-world is inherent. To deal with imprecise and uncertain data, fuzzy XML and fuzzy ontology modeling recently receive more attention. In order to represent the fuzzy information, we concentrate on fuzzy information modeling in a fuzzy XML model and fuzzy OWL 2 ontology in this paper. Furthermore, we propose an approach of transforming fuzzy OWL 2 ontologies (including structures and instances) into fuzzy XML models. Then we prove that the sementics of this transformation approach are preserved and propose a transforming example to explain the transforming process. This paper provides a new approach for the fuzzy XML modeling and fuzzy XML mapping based on the fuzzy OWL 2 ontologies.

INDEX TERMS Fuzzy XML model, fuzzy DTD, fuzzy OWL 2 ontology, constructing, transforming, mapping.

I. INTRODUCTION

With the rapid development and the comprehensive utilization of the Internet, XML (eXtensible Markup Language) has been an important tool for data representation and exchange over the Web mainly because it is a selfdescriptive format that supports a flexible representation of data, and it is an open and free pattern [24]. The reasoning and decision system based on XML has been widely used in artificial intelligence and knowledge engineering. In order to share, exchange, reuse, and integrate information between different systems and users, it is necessary to transform the XML model to other data models [3]. The mapping from data models into XML can benefit database interoperability over the Web. Various data models, including relational databases [10], nested relational databases [11], object-oriented databases [17], [18], [24], object-relational databases [7], EER models [30] and UML models [6], [15], have been mapped to XML document.

In the real-world information is inherently imprecise and uncertain since it values is subjective. To represent and handle imperfect information with XML, Abiteboul *et al.* [1] provided a system using XML and DTD processing incomplete information. They utilize probability theory to deal with ambiguous data in XML has received widespread attention, such as [19], [25], and [27]. Gaurav and Alhajj [8] proposed an approach to incorporate fuzzy and inaccurate data into an XML document. This approach utilizes the possibility theory and the similarity relationship to present fuzzy data and maps the fuzzy data from the fuzzy relational database to a fuzzy XML document with the corresponding XML schema. Oliboni and Pozzani [20] proposed a definition of general XML Schema for representing fuzzy information. Ma and Yan [15] represented a fuzzy XML data model based on possibility distribution theory, and proposed a conceptual structure and database storage methods of this model. Then they presented two mappings from fuzzy UML model to the fuzzy XML model and from the fuzzy XML model to the fuzzy relational database, respectively. Yan et al. [29] presented a definition of multiple granularity of data fuzziness based on elements and attribute values of the elements in the XML. They developed this fuzzy XML data model for dealing with all fuzziness based on the XML model. A new fuzzy XML model based on XML Schema and algebraic operations in this model was proposed in [13]. Ma and Yan [16] provide an up-to-date overview of fuzzy XML data modeling in fuzzy data management and the main approaches of modeling fuzzy XML data.

In addition, in order to express and reasoning fuzzy knowledge, fuzzy ontology definitions [12], [28] have been proposed by incorporating fuzzy description logic and fuzzy set theory [31], [32]. In the context of the Semantic Web [12], the Web ontology language (OWL) 2 [21]–[23] becomes the latest standard ontology description language recommended by W3C Web Ontology Working Group. Bobillo and Straccia [4] presented a concrere approach to represent fuzzy ontologies based on OWL 2 annotation properties and a prototypical tool to implement. Our work mainly focus on the fuzzy OWL 2, which is an extension of the OWL 2 based on the Zadehą́rs fuzzy set theory [31], [32]. The logical foundation of fuzzy OWL 2 is the fuzzy DL called *f-SROIQ(D)* [5].

To deal with XML with ontologies, some research has been made to map XML into ontologies. This work in [33] and [36] pay attention to represent and reason about fuzzy XML models with fuzzy ontologies. Hacherouf et al. [9] summed up a survey on the different approaches of conversion XML documents to OWL ontologies and presented two main processes of ontology enrichment (Abox) and ontology population (Tbox). In addition, Zhang et al. [35] proposed a formal definition of fuzzy XML model and gave an approach and automated tool for constructing fuzzy ontologies from fuzzy XML model. Actually, it is needed to reengine ontologies into other data models. Benslimane et al. [2], for example, propose a reverse engineering approach of extracting domain ontology schema to construct conceptual data model so that ontologies can be reused at a conceptual level. Similarly, to reuse and exchange ontologies on the Web, it is useful to map ontologies into XML. This just likes the mapping from databases into XML [7], [10], [17], [18], [24]. Unfortunately, few work investigate the mapping of ontologies into XML. It is especially true to map fuzzy ontologies into fuzzy XML.

Based on Zadeh's fuzzy set theory, we extend a fuzzy XML data model to deal with all types of fuzzy. Then we propose a formal approach of transforming fuzzy OWL 2 ontologies (including structure and instance levels) into fuzzy XML models. The correctness of this approach is proved, and a transformation example is provided to illustrate the proposed approach.

The remainder of this paper is organized as follows. The fuzzy XML data models and fuzzy OWL 2 ontologies are introduced in Section II. In Section III, the approaches to transform fuzzy OWL 2 ontologies (including structure and instance levels) into fuzzy XML models are proposed. Section IV concludes the paper.

II. FUZZY XML MODEL AND FUZZY OWL 2 ONTOLOGY

A. THE REPRESENTATION OF FUZZY XML MODEL

To deal with fuzzy information, we extend XML documents based on fuzzy sets and probability distribution theory. We utilize membership degrees to indicate the fuzziness in elements and possibility distribution to indicate the fuzziness in attribute values of elements. In [13], we propose some concepts about fuzzy XML model.

Definition 1: Let V be a finite set of vertices, $E \in V \times V$ be a set of edges and $\ell : E \to \Gamma$ be a mapping from edges to a set Γ of strings called labels. The triple $G = (V, E, \ell)$ is an edge labeled directed graph.

Definition 2: A fuzzy XML tree τ can be a 6-tuple $\tau = (V, \sigma, \lambda, \eta, \rho, \gamma)$ where

• $V = V_1, \ldots, V_n$ is a set of vertices.

• $\sigma \subset \{(V_i, V_j) | V_i, V_j \in V\}, (V, \sigma)$ is a directed tree.

• $\lambda : V \to (L \cup \{NULL\})$, where *L* a set of strings called labels. For $v \in V$ and $l \in L$, $\lambda(v, l)$ specifies the set of objects that may be children of *v* with label *l*.

• $\eta \rightarrow T$, where *T* is a set of fuzzy XML types [20].

• ρ is a possibility function. It defines the possibility of a set of children nodes given belonging to the parent node.

• γ is a mapping relationship. It defines the number of child nodes that pass through a label *l* as parent node *v*, where $v \in V$, $l \in L$. $\gamma(v, l) = [min, max]$, where $min \geq 0$, $max \geq min$, γ is used to represent the lower and upper bounds.

Definition 3 (Fuzzy DTDs): A fuzzy DTD D is a pair (**P**, r), where **P** is a set of *element type definitions*, and $r \in E$ is the *root element type*, which uniquely identifies a fuzzy DTD. Each element type definition has the form $E \rightarrow (\alpha, A)$, constructed according to the following syntax:

$$\alpha ::= S | empty|(\alpha_1 | \alpha_2)|(\alpha_1, \alpha_2)|\alpha^2|\alpha^*|\alpha^+|any|$$

$$A ::= empty|(AN; AT; VT)$$

Here:

• **S** = **T** \cup **E**; **T** denotes the atomic types of elements and attributes; **E** denotes a set of elements including the basic elements and special elements **Val** and **Dist**; *'empty'* denotes the empty string; *'*|*'* denotes *union*, and *'*, *'* denotes *concatenation*; α can be extended with cardinality operators *'*?*'*, *'***'*, and *'*+*'*, where *'*?*'* denotes 0 or 1 time, *'***'* denotes 0 or *n* times, and *'*+*'* denotes 1 or *n* times; the construct *any* stands for any sequence of element types defined in the fuzzy DTD.

• $AN \in \mathbf{A}$ denotes the attribute names of the element **E**; AT denotes the attribute types; and VT is the value types of attributes which can be #REQUIRED, #IMPLIED, #FIXED *value*, value, and *disjunctive/conjunctive* possibility distribution.

Definition 4 (Fuzzy XML Documents): A fuzzy XML document d over a fuzzy DTD *D* is a tuple $d = (N, <, \lambda, \eta, \gamma)$, where:

• N: is a set of nodes in a fuzzy XML document tree.

• <: denotes the parent-child relationship between nodes, i.e., for two nodes $v_i, v_j \in N$, if $v_i < v_j$, then v_i is the parent node of v_j .

• $\lambda: N \to \mathbf{E} \cup \mathbf{A}$ is a labeling function for distinguishing elements and attributes.

• $\eta: N \times N \to \mathbf{dom}$ is a function for mapping attributes to values such that for each pair nodes $v_i, v_j \in N$ with $v_i < v_j$, if $\lambda(v_i) = @a_i \in \mathbf{A}$, then $\eta(v_i, v_j) = d_j \in \mathbf{dom}$. In particular,

if $\lambda(v_j) = e \in N$ is a leaf element node **E** (such as the element *sname* in *Figure 1*), then $g(v_i, v_j) = d_j \in \text{dom}$.

• γ is the root node of a fuzzy XML document tree.

A fuzzy XML document is intuitionally deemed a syntax tree, and conforms to a fuzzy DTD that consists of elements and their associated attributes. A fuzzy XML document [15] has several fuzzy constructs for fuzzy data modeling. A possibility attribute "**Poss**" with a value of [0, 1] together a fuzzy constructor called "**Val**" specifies the possibility of a given element in the XML document. Pair **<Val Poss>** and **</Val>**indicates possibility distribution of an element. The fuzzy construct "**Dist**" has multiple elements "**Val**" as children, each of element has an associated possibility. A construct "**Dist**" indicates two types of possibility distribution *disjunctive* and *conjunctive*.

<customer></customer>
<name> Lucky Vitamin</name>
<val poss="0.78"></val>
<corporate-customer></corporate-customer>
<contactname>Lucy<!-- contactName --></contactname>
< creditRating >
<dist type="disjunctive"></dist>
<val poss="0.94"></val>
<creditrating_value>Level II </creditrating_value>
creditRating
corporate-customer

FIGURE 1. A fragment of the fuzzy XML document.

Figure 1 gives a fragment of an XML document with fuzzy information [35]. In the example, assuming that it is the possibility that "LuckyVitamin" is included in the *customer*. In addition, the *corporate-customer* has fuzzy values in the attributes age, which are represented by a *disjunctive* possibility distribution. *Figure 2* gives a tree representation of the fuzzy XML document in *Figure 1*.

FIGURE 2. The tree representation of Figure.1.

B. FUZZY OWL ONTOLOGY

To define fuzzy OWL 2 ontology, it is necessary to introduce fuzzy OWL language [34], which is based on the Zadeh's fuzzy set theory [31]. The semantics for fuzzy OWL 2 are equivalent to the expressive description logics f-SHID(D) and f-SHONF(D) [26]. After summarizing the fuzzy OWL in [34] and [35], we present Table 1 to show the fuzzy OWL 2 abstract syntax, the corresponding description logics syntax, and the semantics.

In *Table 1*, *FC* indicates a fuzzy class; *FCE* indicates a fuzzy class expression; *FDT* indicates a fuzzy datatype; *FDR* indicates a fuzzy data range; *FDP* indicates a fuzzy data property; *FDPE* indicates a fuzzy data property; *FDPE* indicates a fuzzy ObjectProperty; *FOPE*

Definition 5 (Semantics of Fuzzy OWL 2 Language): FI is provided by a fuzzy interpretation of the semantics. A datatype map FD and a vocabulary FV over FD, FI = $(\Delta^{FI}, \Delta^{FD}, \bullet^{FC}, \bullet^{FOP}, \bullet^{FDP}, \bullet^{FI}, \bullet^{FDT}, \bullet^{LT}, \bullet^{FA}, NAMED)$ for FD and FV is a 10-tuple with the following structure [21]: 1) Δ^{FI} is a nonempty fuzzy set called the *fuzzy object domain*

domain. 2) Δ^{FD} is a nonempty set disjoint with Δ^{FI} called the data domain such that $(DT)^{FDT} \subseteq \Delta^{FD}$ for each datatype $FDT \in FV^{FDT}$.

3) \bullet^{FC} is the *fuzzy class interpretation function* that assigns to each class $FC \in FV^{FC}$ a subset $(FC)^{FC} \subseteq \Delta^{FI}$ such that $(owl : Thing)^{FC} = \Delta^{FI}$ and $(owl : Nothing)^{FC} = \emptyset$.

4) • FOP is the fuzzy object property interpretation function that assigns to each object property $FOP \in FV^{FOP}$ a subset $(FOP)^{FOP} \subseteq \Delta^{FI} \times \Delta^{FI}$ such that $(owl : topObjectProperty)^{FOP} = \Delta^{FI} \times \Delta^{FI}$ and $(owl : bottomObjectProperty)^{FOP} = \varnothing$.

5) \bullet^{FDP} is the fuzzy data property interpretation function that assigns to each data property $FDP \in FV^{FDP}$ a subset $(FDP)^{FDP} \subseteq \Delta^{FI} \times \Delta^{FD}$ such that $(owl : topDataProperty)^{FDP} = \Delta^{FI} \times \Delta^{FD}$ and $(owl : bottomDataProperty)^{FDP} = \emptyset$.

6) •^{*FI*} is the *fuzzy individual interpretation function* that assigns to each individual $\alpha \in FV^{FI}$ an element $(\alpha)^{FI} \in \Delta^{FI}$.

7) \bullet^{FDT} is the datatype interpretation function that assigns to each datatype $FDT \in FV^{FDT}$ a subset $(FDT)^{FDT} \in \Delta^{FD}$ such that \bullet^{FDT} is the same as in FD for each datatype $FDT \in FV^{FDT}$, and $(rdfs : Literal)^{FDT} = \Delta^{FD}$.

8) \bullet^{LT} is the *literal interpretation function* that is defined as $(lt)^{LT} = (LV, FDT)^{LS}$ for each $lt \in FV^{LT}$, where LV is the lexical form of lt and FDT is the datatype of lt.

9) \bullet^{FA} is the facet interpretation function that is defined as $(F, lt)^{FA} = (F, (lt)^{LT})^{FS}$ for each $(F, lt) \in FV^{FA}$.

10) *NAMED* is a subset of \triangle^{FI} such that $\alpha^{FI} \in NAMED$ for each named individual $\alpha \in FV^{FI}$.

TABLE 1. Fuzzy OWL abstract syntax, description logic (DL) syntax and interpretation.

Fuzzy OWL abstract syntax Fuzzy Class description	Fuzzy DL syntax	Interpretation
· · ·	PC	$FC^{FI} \subset \triangle^{FI}$
Class(FC)	FC T	$\frac{FC^{I I} \subseteq \Delta^{I I}}{(owl : Thing)^{FC} = \Delta^{FI}}$
owl: Thing		
owl: Nothing		$(owl: Nothing)^{FC} = \emptyset$
$ObjectIntersectionOf(FCE_1FCE_n)$	$FCE_1 \sqcap \ldots \sqcap FCE_n$	$(FCE_1)^{FC} \cap \dots \cap (FCE_n)^{FC}$
$ObjectUnionOf(FCE_1FCE_n)$	$FCE_1 \sqcup \ldots \sqcup FCE_n$	$\frac{(FCE_1)^{FC} \cup \ldots \cup (FCE_n)^{FC}}{FL}$
ObjectComplementOf(FCE)	$\rightarrow FCE$	$\Delta^{FI} \setminus (FCE)^{FC}$
$ObjectOneOf(a_1a_n)$	$\{a_1\}\sqcup\ldots\sqcup\{a_n\}$	$\{(a_1)^{FI},, (a_n)^{FI}\}$
ObjectSomeValuesFrom(FOPE FCE)	$\exists FOPE \cdot FCE$	$\{x \mid \exists y : (x, y) \in (FOPE)^{FOP} \text{ and } y \in (FCE)^{FC} \}$
ObjectAllValuesFrom(FOPEFCE)	$\forall \neq FOPE \cdot FCE$	$ \{x \mid \forall y : (x, y) \in (FOPE)^{FOP} \text{ implies } y \in (FCE)^{FC} \} $
ObjectHasValue(FOPE a)	$\exists FOPE \cdot \{a\}$	$\{x \mid (x, (a)^I) \in (FOPE)^{FOP}\}$
ObjectHasSelf(FOPE)	$FOPE \equiv (FOPE)^{-}$	$\{x \mid (x, x) \in (FOPE)^{FOP}\}$
ObjectMinCardinality(n FOPE)	$\geq nFOPE$	$\{x \mid \sharp\{y \mid (x, y) \in (FOPE)^{FOP}\} \ge n\}$
ObjectMaxCardinality(n FOPE)	$\leq nFOPE$	$\{x \mid \sharp\{y \mid (x, y) \in (FOPE)^{FOP}\} \leq n\}$
$DbjectExactCardinality(n\ FOPE)$	$\equiv nFOPE$	$ \begin{array}{cccc} \{x \mid \sharp\{y \mid (x, y) \in (FOPE)^{FOP} \text{ and } y \\ (FOPE)^{FOP} \} = n \} \end{array} $
$DataSomeValuesFrom(FDPE_1 \dots FDPE_n \ FDR)$	$\exists FDR \cdot \{FDPE_1 \dots FDPE_n\}$	$ \begin{array}{l} \{x \mid \exists y_1,, y_n : (x, y_k) \in (FDPE_k)^{FDP} \text{ for each } 1 \\ k \leq n \text{ and } (y_1,, y_n) \in (FDR)^{FDT} \end{array} $
$DataAllValuesFrom(FDPE_1FDPE_n FDR)$	$\forall FDR \cdot \{FDPE_1 \dots FDPE_n\}$	$ \begin{array}{l} \{x \mid \forall y_1, \ldots, y_n : (x, y_k) \in (FDPE_k)^{FDP} \text{ for each } 1 \\ k \leq n \operatorname{imply}(y_1, \ldots, y_n) \in (FDR)^{FDT} \end{array} $
DataHasValue(FDPE lt)	$\exists FDPE \cdot \{lt\}$	$\{x \mid (x, (lt)^{LT}) \in (FDPE)^{FDP}\}$
DataMinCardinality(n FDPE)	> nFDPE	$\{x \mid \sharp\{u \mid (x, u) \in (FDPE)^{FDP}\} \ge n\}$
DataMaxCardinality(n FDPE)	< nFDPE	$\frac{\{x \mid \#\{y \mid (x, y) \in (FDPE)^{FDP}\} \leq n\}}{\{x \mid \#\{y \mid (x, y) \in (FDPE)^{FDP}\} \leq n\}}$
DataExactCardinality(nFDPE)	$\equiv nFDPE$	$\frac{\{x \mid \#\{y \mid (x, y) \in (FDPE)^{FDP}\} = n\}}{\{x \mid \#\{y \mid (x, y) \in (FDPE)^{FDP}\} = n\}}$
DataMinCardinality(n FDF E)	$\geq nFDFE$ $\geq nFDR \cdot FDPE$	$\frac{\left\{x \mid \sharp\left\{y \mid (x, y) \in (FDFE)\right\}}{\left\{x \mid \sharp\left\{y \mid (x, y) \in (FDPE)\right\}^{FDP} \text{ and } y \in (FDR)^{FDT}\right\}}$
		$ \frac{\{x \mid y \mid (x, y) \in (FDFE) \\ n\}}{\{x \mid \sharp\{y \mid (x, y) \in (FDPE)^{FDP} \text{ and } y \in (FDR)^{FDT}\}} $
DataMaxCardinality(n FDPE FDR)	$\leq nFDR \cdot FDPE$	n }
DataExactCardinality(n FDPE FDR)	$\equiv nFDR \cdot FDPE$	$ \begin{array}{l} \{x \mid \sharp\{y \mid (x, y) \in (FDPE)^{FDP} \text{ and } y \in (FDR)^{FDT} \} \\ n \end{array} $
Juzzy Data Ranges		(PDD)FDT = ODDE FDT
$DataIntersectionOf(FDR_1FDR_n)$	$FDR_1 \sqcap \ldots \sqcap FDR_n$	$(FDR_1)^{FDT} \cap \dots \cap FDR_n)^{FDT}$
$DataUnionOf(FDR_1FDR_n)$	$FDR_1 \sqcup \ldots \sqcup FDR_n$	$(FDR_1)^{FDT} \cup \ldots \cup FDR_n)^{FDT}$
DataComplementOf(FDR)	$\rightarrow FDR$	$(\triangle_n) \setminus (FDR)^{FDT}$ where n is the arity of FDR
$DataOneOf(lt_1lt_n)$	$\{lt_1\}\sqcup\ldots\sqcup\{lt_n\}$	$\{(lt_1)^{LT}, \dots, (lt_n)^{LT}\}$
$DatatypeRestriction(FDT F_1 lt_1F_n lt_n)$ uzzy Class axioms		$(FDR)^{FDT} \cap (F_1, lt_1)^{FA} \cap \ldots \cap (F_n, lt_n)^{FA}$
$Class(FC partial FCE_1 \dots FCE_n)$	$FC \sqsubseteq FCE_1 \sqcap \ldots \sqcap FCE_n$	$(FC)^{FC} \subseteq (FCE_1)^{FC} \cap \dots \cap (FCE_n)^{FC}$
$SubClassOf(FCE_1 FCE_2)$	$FCE_1 \sqsubseteq FCE_2$	$(FCE_1)^{F\overline{C}} \subset (FCE_2)^{FC}$
$EquivalentClasses(FCE_1FCE_n)$	$FCE_1 \equiv \dots \equiv FCE_n$	$(FCE_i)^{FC} = (FCE_k)^{FC}$ for each $1 \le j \le k \le n$
$DisjointClasses(FCE_1FCE_n)$	$\frac{1}{FCE_{j} \neq FCE_{k} 1 \leq j < k \leq n}$	$\frac{(FCE_j)^{FC}}{(FCE_k)^{FC}} = \emptyset \text{ for each } 1 \le j < k \le n$
$DisjointUnion(FC FCE_1 FCE_n)$	$ \begin{array}{c} FC \equiv (FCE_1 \sqcup \ldots \sqcup FCE_n), FCE_j \neq \\ FCE_k, 1 \leq j < k \leq n \end{array} $	$\frac{(FC)^{FC}}{(FCE_j)^{FC}} = \frac{(FCE_1)^{FC}}{(FCE_j)^{FC}} \cup \dots \cup (FCE_n)^{FC}} \\ \frac{(FC)^{FC}}{(FCE_j)^{FC}} \cap (FCE_k)^{FC} = \emptyset \text{ for each } 1 \le j < k \le n$
Fuzzy Object property axioms		j' k' k' j' k'
$SubObjectPropertyOf(FOPE_1 FOPE_2)$	$FOPE_1 \sqsubseteq FOPE_2$	$(FOPE_1)^{FOP} \subseteq (FOPE_2)^{FOP}$
	$FOPE_1 \sqsubseteq FOPE_2$ $FOPE_1 \equiv \dots \equiv FOPE_n$	
$EquivalentObjectProperties(FOPE_1FOPE_n)$		$(FOPE_j)^{FOP} = (FOPE_k)^{FOP}$ for each $1 \le j < k \le r$
$\label{eq:constraint} \begin{split} & \mathbb{E}quivalentObjectProperties(FOPE_1FOPE_n) \\ & \text{DisjointObjectProperties}(FOPE_1FOPE_n) \end{split}$	$FOPE_1 \equiv \dots \equiv FOPE_n$	$ \begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq n \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \end{array} $
$\label{eq:cquivalentObjectProperties} (FOPE_1FOPE_n) \\ DisjointObjectProperties (FOPE_1FOPE_n) \\ DijectPropertyDomain(FOPE FCE) \\ \end{array}$	$\begin{array}{l} FOPE_1 \equiv \ldots \equiv FOPE_n \\ FOPE_j \neq FOPE_k, 1 \leq j < k \leq n \end{array}$	$ \begin{array}{c} (FOPE_{j})^{FOP} = (FOPE_{k})^{FOP} \text{ for each } 1 \leq j < k \leq r \\ (FOPE_{j})^{FOP} \cap (FOPE_{k})^{FOP} = \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \end{array} $
$EquivalentObjectProperties(FOPE_1FOPE_n) \\ DisjointObjectProperties(FOPE_1FOPE_n) \\ ObjectPropertyDomain(FOPE FCE) \\ ObjectPropertyRange(FOPE FCE) \\ \hline$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \\ \exists FOPE \cdot FCE \\ \top \sqsubseteq \forall FOPE \cdot FCE \\ \end{split}$	$\begin{array}{l} (FOPE_{j})^{FOP} = (FOPE_{k})^{FOP} \text{ for each } 1 \leq j < k \leq r\\ (FOPE_{j})^{FOP} \cap (FOPE_{k})^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \end{array}$
$\label{eq:constraint} \begin{split} & \mathbb{E}quivalentObjectProperties(FOPE_1FOPE_n) \\ & DisjointObjectProperties(FOPE_1FOPE_n) \\ & DijectPropertyDomain(FOPE FCE) \\ & DijectPropertyRange(FOPE FCE) \\ & nverseObjectProperties(FOPE_1 FOPE_2) \\ \end{split}$	$\begin{array}{l} FOPE_1 \equiv \ldots \equiv FOPE_n \\ FOPE_j \neq FOPE_k, 1 \leq j < k \leq n \\ \exists FOPE \cdot FCE \end{array}$	$ \begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE_2)^{FOP} \} \\ \forall x, y_1, y_2 : (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ implies } y_1 = y_2 \end{array} $
$\label{eq:constraint} \begin{split} & EquivalentObjectProperties(FOPE_1FOPE_n) \\ & DisjointObjectPropertyDomain(FOPE FCE) \\ & ObjectPropertyRange(FOPE FCE) \\ & nverseObjectProperties(FOPE_1 FOPE_2) \\ & FunctionalObjectProperty(FOPE) \end{split}$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \\ \exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ FOPE_1 &\equiv (FOPE_2)^- \end{split}$	$ \begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE_2)^{FOP} \} \\ \forall x, y_1, y_2 : (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ implies } y_1 = y_2 \end{array} $
$\label{eq:cquivalentObjectProperties}(FOPE_1FOPE_n) \\ DisjointObjectProperties(FOPE_1FOPE_n) \\ DbjectPropertyDomain(FOPE FCE) \\ DbjectPropertyRange(FOPE FCE) \\ nverseObjectProperties(FOPE_1 FOPE_2) \\ FunctionalObjectProperty(FOPE) \\ nverseFunctionalObjectProperty(FOPE) \\ \end{array}$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \\ \hline \exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ FOPE_1 &\equiv (FOPE_2)^- \\ &\top \sqsubseteq \leq 1FOPE \\ \\ \hline \top \sqsubseteq \leq 1(FOPE)^- \end{split}$	$\begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE_2)^{FOP} \\ \forall x, y_1, y_2 : (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y : (x_1, y) \in (FOPE)^{FOP} \text{ and } (x_2, y)\\ (FOPE)^{FOP} \text{ imply } y_1 = x_2 \end{array}$
$\label{eq:constraint} \begin{split} & \mbox{EquivalentObjectProperties}(FOPE_1FOPE_n) \\ & \mbox{DisjointObjectProperties}(FOPE_1FOPE_n) \\ & \mbox{DijectPropertyDomain}(FOPEFCE) \\ & \mbox{DijectProperties}(FOPE_1FOPE_2) \\ & \mbox{FunctionalObjectProperty}(FOPE) \\ & \mbox{nverseFunctionalObjectProperty}(FOPE) \\ & \mbox{ReflexiveObjectProperty}(FOPE) \\ \end{split}$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \\ \exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ FOPE_1 &\equiv (FOPE_2)^- \\ &\top \sqsubseteq \leq 1FOPE \\ \\ &\top \sqsubseteq \leq 1(FOPE)^- \\ \\ FOPE &\equiv (FOPE)^- \end{split}$	$\begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE_2)^{FOP}\}\\ \forall x, y_1, y_2 : (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y : (x_1, y) \in (FOPE)^{FOP} \text{ and } (x_2, y)\\ (FOPE)^{FOP} \text{ imply } x_1 = x_2\\ \forall x : x \in \Delta^{FI} \text{ implies}(x, x) \in (FOPE)^{FOP} \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \\ \hline \exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ FOPE_1 &\equiv (FOPE_2)^- \\ &\top \sqsubseteq \leq 1FOPE \\ \\ \hline \top \sqsubseteq \leq 1(FOPE)^- \end{split}$	$\begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ (FOPE_1)^{FOP} = (x, y) \mid (y, x) \in (FOPE_2)^{FOP}\\ \forall x, y_1, y_2: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE_3)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP} \text{ and } (x_2, y)\\ (FOPE)^{FOP} \text{ imply } y_1 = x_2\\ \forall x: x \in \Delta^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x: x \in \Delta^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP} \end{array}$
$\label{eq:constraint} \begin{split} & \mathcal{E} quivalent Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} is joint Object Property Domain (FOPE FCE) \\ & \mathcal{D} bject Property Range (FOPE FCE) \\ & \mathcal{D} bject Property Range (FOPE FCE) \\ & \mathcal{D} rverse Object Property (FOPE_1 FOPE_2) \\ & \mathcal{F} unctional Object Property (FOPE) \\ & \mathcal{R} eflexive Object Property (FOPE) \\ & \mathcal{R} eflexive Object Property (FOPE) \\ & \mathcal{S} ymmetric Obj$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \\ \exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ FOPE_1 &\equiv (FOPE_2)^- \\ &\top \sqsubseteq \leq 1FOPE \\ \\ &\top \sqsubseteq \leq 1(FOPE)^- \\ \\ FOPE &\equiv (FOPE)^- \\ FOPE &\neq (FOPE)^- \end{split}$	$ \begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE_2)^{FOP} \\ \forall x, y_1, y_2 : (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ imply } y_1 = y_2 \\ \forall x_1, x_2, y : (x_1, y) \in (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \text{implies } (y, x) \in (FOPE)^{FOP} \\ \end{array}$
$\begin{split} & \mbox{$\mathbb{Z}$ quivalent Object Properties (FOPE_1FOPE_n)$} \\ & \mbox{$\mathbb{D}$ is joint Object Property Domain (FOPE FCE)$} \\ & \mbox{$\mathbb{D}$ bject Property Range (FOPE FCE)$} \\ & \mbox{$\mathbb{D}$ is ct Properties (FOPE_1 FOPE_2)$} \\ & \mbox{$\mathbb{F}$ unctional Object Property (FOPE)$} \\ & \mbox{$\mathbb{T}$ unctional Object Property (FOPE)$} \\ & \mbox{$\mathbb{T}$ reflexive Object Property (FOPE)$} \\ & \mbox{$\mathbb{T}$ symmetric Object Property (FOPE)$} \\ & \mbox{$\mathbb{Z}$ symmetric Object Property (FOPE)$} \\ & \mbox{$\mathbb{Z}$ symmetric Object Property (FOPE)$} \\ & \mbox{$\mathbb{Z}$ symmetric Object Property (FOPE)$} \\ & \mbox{$\mathbb{T}$ symmetric Object Property (FO$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \exists FOPE \cdot FCE \\ \top & \sqsubseteq \forall FOPE \cdot FCE \\ \hline FOPE_1 &\equiv (FOPE_2)^- \\ \top & \sqsubseteq \leq 1FOPE \\ \hline \top & \sqsubseteq \leq 1(FOPE)^- \\ \hline FOPE &\equiv (FOPE)^- \\ FOPE &\neq (FOPE)^- \\ \hline FOPE &\equiv (FOPE)^- \\ \hline FOPE &\equiv (FOPE)^- \\ \hline \end{split}$	$ \begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ imply } y_1 = y_2 \\ \forall x, y_1, y_2 : (x, y_1) \in (FOPE)^{FOP} \text{ and } (x_2, y) \\ (FOPE)^{FOP} \text{ implies } (x, x) \in (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FT} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FT} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (FOPE)^{FOP} \\ \forall x : y : (x, y) \in (x, y) \in (x, y) \in (x, y) \in (x, y) \\ \forall$
$\label{eq:constraint} \begin{split} & \mathcal{E} quivalent Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} is joint Object Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} is ct Property (FOPE) \\$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \\ \hline \exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ \hline FOPE_1 &\equiv (FOPE_2)^- \\ &\top \sqsubseteq \leq 1FOPE \\ \hline &\top \sqsubseteq \leq 1(FOPE)^- \\ \hline FOPE &\equiv (FOPE)^- \\ \hline \end{split}$	$ \begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE_2)^{FOP} \\ \forall x, y_1, y_2 : (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ imply } y_1 = y_2 \\ \forall x_1, x_2, y : (x_1, y) \in (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \forall x, y : (x, y) \in (FOPE)^{FOP} \\ \text{implies } (y, x) \in (FOPE)^{FOP} \\ \end{array}$
$\label{eq:constraint} \begin{split} & \mathcal{C} quivalent Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} is joint Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} b ject Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} roverse Object Properties (FOPE_1 FOPE_2) \\ & \mathcal{C} runctional Object Property (FOPE) \\ & \mathcal{C} runctional Object Property (FOPE) \\ & \mathcal{C} reflexive Object Property (FOPE) \\ & \mathcal{C} symmetric Object Property (FOPE) \\ & \mathcal{C} sy$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ \hline FOPE_1 &\equiv (FOPE_2)^- \\ &\top \sqsubseteq \leq 1FOPE \\ \hline &\top \sqsubseteq \leq 1(FOPE)^- \\ \hline FOPE &\equiv (FOPE)^- \\ \hline FOPE &\equiv (FOPE)^- \\ \hline FOPE &\equiv (FOPE)^FT \\ \hline FOPE &\neq (FOPE)^FT \\ \hline (FOPE)^2 &\sqsubseteq FOPE \\ \end{split}$	$\begin{array}{l} (FOPE_j)FOP &= (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r, \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} &= \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ imply } y_1 &= y_2 \\ \forall x, x_2, y: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x_2, y) \\ (FOPE)^{FOP} \text{ imply } y_1 &= x_2 \\ \forall x: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \\ \forall x, y, z: (x, y) \in (FOPE)^{FOP} \\ \forall x, y, z: (x, y) \in (FOPE)^{FOP} \\ \forall x, y, z: (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ \end{array}$
$\label{eq:constraint} \begin{split} & \mathcal{E} quivalent Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} is joint Object Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} verse Object Property (FOPE) \\ & \mathcal{D} verse Functional Object Property (FOPE) \\ & \mathcal{R} f lexive Obje$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \exists FOPE \cdot FCE \\ \top & \sqsubseteq \forall FOPE \cdot FCE \\ \hline FOPE_1 &\equiv (FOPE_2)^- \\ \top & \sqsubseteq \leq 1FOPE \\ \hline & \top & \sqsubseteq \leq 1(FOPE)^- \\ \hline & FOPE &\equiv (FOPE)^- \\ \hline & FOPE &\neq (FOPE)^- \\ \hline & FOPE &\equiv (FOPE)^- \\ \hline & FOPE &\equiv (FOPE)^- \\ \hline & FOPE &\equiv FOPE \\ \hline & FDPE_1 &\sqsubseteq FDPE_2 \\ \end{split}$	$\begin{array}{l} (FOPE_j)FOP &= (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r, \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} &= \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ imply } y_1 &= y_2 \\ \forall x, x_2, y: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x_2, y) \\ (FOPE)^{FOP} \text{ imply } y_1 &= x_2 \\ \forall x: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \\ \forall x, y, z: (x, y) \in (FOPE)^{FOP} \\ \forall x, y, z: (x, y) \in (FOPE)^{FOP} \\ \forall x, y, z: (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ \end{array}$
$\label{eq:constraint} \begin{split} & \mbox{CquivalentObjectProperties}(FOPE_1FOPE_n) \\ & \mbox{DisjointObjectPropertyDomain}(FOPE FCE) \\ & \mbox{DbjectPropertyRange}(FOPE FCE) \\ & \mbox{DobjectProperty}(FOPE) \\ & \mbox{DisjointObjectProperty}(FOPE) \\ & \mbox{DisjointObjectProperty}(FOPE_1 FDPE_2) \\ & \mbox{DisjointObjectProperties}(FDPE_1FDPE_n) \\ \end{array}$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \\ &\exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ \hline \\ &\top \sqsubseteq \forall FOPE_1 \equiv (FOPE_2)^- \\ \hline \\ &\top \sqsubseteq \leq 1(FOPE)^- \\ \hline \\ &FOPE \equiv (FOPE)^- \\ \hline \\ &FOPE \equiv (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^FT \\ \hline \\ &FOPE = FOPE \\ \hline \\ &FDPE_1 \sqsubseteq FDPE_2 \\ \hline \\ &FDPE_1 \equiv \dots \equiv FDPE_n \\ \end{split}$	$\begin{array}{l} (FOPE_j)FOP &= (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r, \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} &= \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ imply } y_1 &= y_2 \\ \forall x, x_2, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x_2, y) \\ (FOPE)^{FOP} \text{ imply } y_1 &= x_2 \\ \forall x: x \in \Delta^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \\ \forall x, y, z: (x, y) \in (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FDPE)^{FOP} = (FDPE_2)^{FDP} \\ (FDPE_1)^{FDP} \subseteq (FDPE_2)^{FDP} \\ (FDPE_1)^{FDP} \\ (FDPE_1)^{FDP} \\ (FOPE)^{FOP} \\ \end{array}$
$\label{eq:constraint} \begin{split} & \mathcal{E} quivalent Object Properties (FOPE_1 FOPE_n) \\ & \mathcal{D} is joint Object Properties (FOPE_1 FOPE_n) \\ & \mathcal{D} b ject Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} t ject Property ange (FOPE_1 FOPE_2) \\ & \mathcal{F} unctional Object Property (FOPE) \\ & \mathcal{F} uncti$	$\begin{split} FOPE_1 &\equiv \dots &\equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline &\exists FOPE \cdot FCE \\ &\top & \sqsubseteq \forall FOPE \cdot FCE \\ \hline &T & \sqsubseteq \forall FOPE \cdot FCE \\ \hline &FOPE_1 &\equiv (FOPE_2)^- \\ \hline &\top & \sqsubseteq \leq 1FOPE \\ \hline &\top & \sqsubseteq \leq 1(FOPE)^- \\ \hline &FOPE &\neq (FOPE)^- \\ \hline &FOPE &\equiv (FOPE)^- \\ \hline &FOPE_1 &\sqsubseteq FDPE_2 \\ \hline &FDPE_1 &\equiv \dots &\equiv FDPE_n \\ \hline &FDPE_j &\neq FDPE_k, 1 \leq j < k \leq n \\ \end{split}$	$\begin{array}{l} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq m\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x, y)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP} \text{ and } (x_2, y)\\ (FOPE)^{FOP} \text{ imply } y_1 = x_2\\ \forall x_1 \in \Delta^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ \forall x, y, z: (x, y) \in (FOPE)^{FOP}\\ \forall x, y, z: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ \forall x, y, z: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FDPE_1)^{FDP} \subseteq (FDPE_2)^{FDP}\\ (FDPE_1)^{FDP} = (FDPE_2)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq m\\ (FOPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \end{cases} $
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \\ &\exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE_1 \equiv (FOPE_2)^- \\ &\top \sqsubseteq \leq 1FOPE \\ \hline \\ &\top \sqsubseteq \leq 1(FOPE)^- \\ \hline \\ &FOPE \equiv (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^FT \\ \hline \\ \hline \\ &FOPE \neq (FOPE)^FT \\ \hline \\ \hline \\ &FOPE \neq FOPE \\ \hline \\ \hline \\ &FOPE_1 \sqsubseteq FOPE_2 \\ \hline \\ \\ &FDPE_1 \equiv \dots \equiv FDPE_n \\ \hline \\ \\ &FDPE_j \neq FDPE_k, 1 \leq j < k \leq n \\ \hline \\ \\ &\exists FDPE.T \sqsubseteq FCE \\ \end{split}$	$\begin{array}{c} (FOPE_j)FOP = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FO}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x, y: (x, y) \in (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = x_2\\ \forall x: x \in \Delta^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (y, x)\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} = (FOPE)^{FOP}\\ (FOPE)^{FOP} = (FDPE_2)^{FDP}\\ (FDPE_4)^{FDP} \cap (FDPE_2)^{FDP} \text{ for each } 1 \leq j < k \leq r\\ (FDPE_4)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j\\ k \leq n\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \end{array}$
$\label{eq:constraint} \begin{split} & \mathcal{C} quivalent Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} is joint Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} b ject Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} s joint Object Property (FOPE) \\ & \mathcal{C} unctional Object Properties (FOPE_1 FDPE_2) \\ & \mathcal{C} unctional Object Properties (FOPE_1FDPE_n) \\ & \mathcal{O} uta Property Domain (FDPE FCE) \\ & \mathcal{O} uta Property Range (FDPE FDR) \\ \end{array}$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \\ \exists FOPE \cdot FCE \\ \hline \\ \\ \top \subseteq \forall FOPE \cdot FCE \\ \hline \\ FOPE_1 &\equiv (FOPE_2)^- \\ \hline \\ \top \\ \\ \\ \top \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE)^{FOP}\\ \forall x, y_1, v_2: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP}\\ \forall x: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP}\\ (FOPE)^{FOP} = (FDPE_2)^{FOP}\\ (FOPE)^{FOP} = (FDPE_2)^{FOP}\\ (FDPE_1)^{FDP} \subseteq (FDPE_2)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq r\\ (FOPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ k \leq n\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ (FOPE)^{FDP} = (FDPE_j)^{FDP} = (FCE)^{FDP}\\ (FDPE_1)^{FDP} = (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ k \leq n\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{ implies } \in (FDPE)^{FDP}\\ \end{bmatrix}$
$\label{eq:constraint} \begin{split} & \mathcal{E} quivalent Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} is joint Object Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} b ject Property (FOPE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE FDR) \\ & \mathcal{D} t is cons$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \\ &\exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE_1 \equiv (FOPE_2)^- \\ &\top \sqsubseteq \leq 1FOPE \\ \hline \\ &\top \sqsubseteq \leq 1(FOPE)^- \\ \hline \\ &FOPE \equiv (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^FT \\ \hline \\ \hline \\ &FOPE \neq (FOPE)^FT \\ \hline \\ \hline \\ &FOPE \neq FOPE \\ \hline \\ \hline \\ &FOPE_1 \sqsubseteq FOPE_2 \\ \hline \\ \\ &FDPE_1 \equiv \dots \equiv FDPE_n \\ \hline \\ \\ &FDPE_j \neq FDPE_k, 1 \leq j < k \leq n \\ \hline \\ \\ &\exists FDPE.T \sqsubseteq FCE \\ \end{split}$	$\begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE)^{FOP}\\ \forall x, y_1, v_2: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP}\\ \forall x: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP}\\ (FOPE)^{FOP} = (FDPE_2)^{FOP}\\ (FOPE)^{FOP} = (FDPE_2)^{FOP}\\ (FDPE_1)^{FDP} \subseteq (FDPE_2)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq r\\ (FOPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ k \leq n\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ (FOPE)^{FDP} = (FDPE_j)^{FDP} = (FCE)^{FDP}\\ (FDPE_1)^{FDP} = (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ k \leq n\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{ implies } \in (FDPE)^{FDP}\\ \end{bmatrix}$
$\label{eq:constraint} \begin{split} & \mathcal{E} quivalent Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} is joint Object Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} b ject Property (FOPE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE FCE) \\ & \mathcal{D} t is constraint (FOPE FDR) \\ & \mathcal{D} t is cons$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \\ \exists FOPE \cdot FCE \\ \hline \\ \\ \top \subseteq \forall FOPE \cdot FCE \\ \hline \\ FOPE_1 &\equiv (FOPE_2)^- \\ \hline \\ \top \\ \\ \\ \top \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FO}\\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE)^{FOP}\\ \forall x, y_1, y_2: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP}\\ \forall x: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP}\\ (FOPE)^{FOP} = (FDE_2)^{FOP}\\ (FOPE)^{FOP} = (FDE_2)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq r\\ (FOPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ (x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ (x, y) \in (FDPE)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{ implies } (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{ implies } (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{ implies } (FDPE)^{FDP}\\ \text{ implies } (x, y) \in (FDPE)^{FDP}\\ \text{ implies } y_1 = y_2\\ \end{array}$
$\label{eq:constraint} \begin{split} & \mathcal{C} quivalent Object Properties (FOPE_1FOPE_n) \\ & \mathcal{D} is joint Object Properties (FOPE_fFOPE_n) \\ & \mathcal{D} b ject Property Domain (FOPE FCE) \\ & \mathcal{D} b ject Property Range (FOPE FCE) \\ & \mathcal{D} s joint Object Properties (FOPE_f FOPE_2) \\ & \mathcal{C} unctional Object Property (FOPE) \\ & \mathcal{C} unctional Data Property (FOPE_1 FDPE_2) \\ & \mathcal{C} unctional Data Properties (FDPE_1FDPE_n) \\ & \mathcal{D} ata Property Domain (FDPE FCE) \\ & \mathcal{D} ata Property Range (FDPE FDR) \\ & \mathcal{C} unctional Data Property (FDPE) \\ & \mathcal{C} unctional$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \\ \exists FOPE \cdot FCE \\ \hline \\ \\ \top \subseteq \forall FOPE \cdot FCE \\ \hline \\ FOPE_1 &\equiv (FOPE_2)^- \\ \hline \\ \top \\ \\ \\ \top \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} (FOPE_j)FOP = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq m\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x, x_2, y: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x_2, y)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} = (FDPE_2)^{FDP}\\ (FDPE_1)^{FDP} \subseteq (FDPE_2)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq m\\ (FOPE)^{FDP} \cap (FDPE)^{FDP} \text{ implies } x \in (FCE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ k \leq n\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDPE)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDE)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDP)^{FDP} \text{ of } x \in x \\ \end{pmatrix}$
$\begin{split} & \label{eq:spectral_set_optimises} (FOPE_1FOPE_n) \\ & \end{tabular} DisjointObjectProperties(FOPE_1FOPE_n) \\ & \end{tabular} DisjointObjectProperties(FOPE_FCE) \\ & \end{tabular} DisjointObjectProperty(FOPE) \\ & \end{tabular} The the term of the term of the term of the term of term o$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \\ \exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ \hline \\ FOPE_1 &\equiv (FOPE_2)^- \\ \hline \\ \top &\sqsubseteq (FOPE)^- \\ \hline \\ FOPE &\equiv (FOPE)^- \\ \hline \\ FOPE_j &\equiv FDPE_2 \\ \hline \\ FDPE_1 &\equiv \dots \equiv FDPE_n \\ \hline \\ FDPE_j &\neq FDPE_k, 1 \leq j < k \leq n \\ \hline \\ \exists FDPE. \top &\sqsubseteq FCE \\ \top &\sqsubseteq \forall FDPE. FCE \\ \hline \\ \top &\sqsubseteq \leq 1FDPE \\ \end{split}$	$\begin{array}{c} (FOPE_j)^{FOP} = (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq r.\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} = \varnothing \text{ for each } 1 \leq j < k \\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ (FOPE_1)^{FOP} = \{(x, y) \mid (y, x) \in (FOPE)^{FOP} \\ \forall x, y_1, v_2: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 = y_2\\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP} \\ \forall x. x \in \Delta^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x: x \in \Delta^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ \forall x, y, z: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP}\\ (FOPE)^{FOP} = (FDE_2)^{FDP}\\ (FDPE_1)^{FDP} \subseteq (FDPE_2)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } (x, (x, y)) \\ (FOPE)^{FDP} = (FDPE_j)^{FDP} = (FCE)^{FDP}\\ (FDPE_1)^{FDP} = (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k \leq r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k \leq r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} \text{ for each } 1 \leq j < k < r.\\ (FDPE_1)^{FDP} for eac$
$ \begin{split} & eq:sphere$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \exists FOPE \cdot FCE \\ \hline \top \sqsubseteq \forall FOPE_1 \equiv (FOPE_2)^- \\ \hline \top \sqsubseteq \leq 1(FOPE)^- \\ \hline T \sqsubseteq \leq 1(FOPE)^- \\ FOPE &\equiv (FOPE)^- \\ FOPE &\neq (FOPE)^- \\ \hline FOPE &\neq (FOPE)^FT \\ \hline FOPE &\neq (FOPE)^FT \\ \hline FOPE_1 &\sqsubseteq FDPE_2 \\ \hline FDPE_1 &\sqsubseteq FDPE_n \\ \hline FDPE_1 &\equiv FDPE_n \\ \hline FDPE_j &\neq FDPE_k, 1 \leq j < k \leq n \\ \hline \exists FDPE.T &\sqsubseteq FCE \\ \hline \top &\sqsubseteq \forall FDPE.FCE \\ \hline \top &\sqsubseteq \leq 1FDPE \\ \hline \{a_j\} &\equiv \dots \equiv \{a_k\} \\ \{a_j\} &\equiv (a_k) \\ \{a_k\} &\leq j < k \leq n \\ \end{split}$	$\begin{array}{l} (FOPE_j)FOP &= (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq m\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} &= \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x, y_2)\\ (FOPE)^{FOP} \text{ imply } y_1 &= y_2\\ \forall x, x_2, y: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x_2, y)\\ (FOPE)^{FOP} \text{ imply } y_1 &= y_2\\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} = (FDPE_2)^{FDP}\\ (FOPE_1)^{FDP} \subseteq (FDPE_2)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq m\\ \forall x, y: (x, y) \in (FOPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j \\ k \leq n\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{implies } x \in (FCE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \text{implies } y = (FDR)^{FDP}\\ \text{implies } y = y \\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{split} FOPE_1 &\equiv \dots &\equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline & \exists FOPE \cdot FCE \\ & \top \subseteq \forall FOPE_1 \equiv (FOPE_2)^- \\ \hline & \top \subseteq (FOPE_2)^- \\ \hline & \top \subseteq (FOPE)^- \\ \hline & FOPE \equiv FOPE_2 \\ \hline & FDPE_1 \subseteq FDPE_2 \\ \hline & FDPE_1 \equiv \dots \equiv FDPE_n \\ \hline & FDPE_1 \equiv FDPE_n \\ \hline & FDPE_1 \subseteq FCE \\ \hline & \top \subseteq \forall FDPE.FCE \\ \hline & \top \subseteq \langle FDPE \\ \hline & a_i \rangle \neq \{a_k\} \\ \hline & \{a_j\} \equiv \dots \equiv \{a_k\} \\ \hline & \{a_j\} \neq \{a_k\} \} \leq j < k \leq n \\ \hline & \exists FCE \cdot \{a\} \end{split}$	$\begin{array}{l} (FOPE_j)FOP &= (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq m\\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} &= \varnothing \text{ for each } 1 \leq j < k\\ n\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC}\\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ and } (x, y)\\ (FOPE)^{FOP} \text{ imply } y_1 &= y_2\\ \forall x, x_2, y: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x_2, y)\\ (FOPE)^{FOP} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ \forall x, x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP}\\ \forall x, y: (x, y) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FOPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FDPE)^{FOP} \text{ implies } (x, z) \in (FOPE)^{FOP}\\ (FDPE)^{FOP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq m\\ (FOPE)^{FDP} \cap (FDPE)^{FDP} \text{ implies } x \in (FCE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } x \in (FCE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } x \in (FCE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } x \in (FCE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } x \in (FCE)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP} \text{ implies } y \in (FDR)^{FDP}\\ \forall x, y: (x, y) \in (FDPE)^{FDP}\\ \forall x$
$ \begin{split} \hline & \label{eq:spectral_set_optimes} \\ \hline & \ & \ & \ & \ & \ & \ & \ & \ & \ &$	$\begin{split} FOPE_1 &\equiv \dots \equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline \\ &\exists FOPE \cdot FCE \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ \hline \\ &\top \sqsubseteq \forall FOPE \cdot FCE \\ \hline \\ &T \sqsubseteq \leq 1FOPE \\ \hline \\ &T \sqsubseteq \leq 1FOPE \\ \hline \\ &T \sqsubseteq \leq 1(FOPE)^- \\ \hline \\ &FOPE \equiv (FOPE)^- \\ \hline \\ &FOPE \equiv (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^- \\ \hline \\ &FOPE \neq (FOPE)^- \\ \hline \\ &FOPE \downarrow (FOPE)^- \\ \hline \\ &FOPE \downarrow (FOPE)^- \\ \hline \\ &FOPE \downarrow E FOPE_2 \\ \hline \\ &FDPE_1 \equiv \dots \equiv FDPE_n \\ \hline \\ &FDPE_j \neq FDPE_k, 1 \leq j < k \leq n \\ \hline \\ &\exists FDPE. \top \sqsubseteq FCE \\ \top \sqsubseteq \forall FDPE. FCE \\ \hline \\ &\top \sqsubseteq \leq 1FDPE \\ \hline \\ &\{a_j\} \equiv \dots \equiv \{a_k\} \\ \{a_j\} \neq \{a_k\} 1 \leq j < k \leq n \\ \exists FOPE \cdot \{a\} \\ \\ &\exists FOPE \cdot \{a_1, a_2\} \\ \end{split}$	$\begin{array}{c} (FOPE_j)FOP &= (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq n \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} &= \varnothing \text{ for each } 1 \leq j < k \\ n \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FO} \\ \forall x, y_1, y_2: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ imply } y_1 = y_2 \\ \forall x_1, x_2, y: (x_1, y) \in (FOPE)^{FOP} \\ \forall x, y: x \in \triangle^{FI} \text{ implies } (x, x) \in (FOPE)^{FOP} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} = (FDPE_2)^{FDP} \\ (FDPE_1)^{FDP} \subseteq (FDPE_2)^{FDP} \\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq n \\ (FOPE)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \\ (FDPE_1)^{FDP} \\ (FDPE_1)^{FDP} \cap (FDPE_j)^{FDP} \\ (FDPE_1)^{FDP} \\ (FDE_1)^{FD} \\ (FDE_1)^{FD} \\ (FDE_1)^{FD} \\ (FDP$
$\begin{split} & SubObjectPropertyOf(FOPE_1 FOPE_2) \\ & EquivalentObjectProperties(FOPE_1FOPE_n) \\ & DisjointObjectProperties(FOPE_1FOPE_n) \\ & ObjectPropertyDomain(FOPE FCE) \\ & DispointObjectProperties(FOPE_1 FOPE_2) \\ & FunctionalObjectProperty(FOPE) \\ & FunctionalDataProperties(FDPE_1FDPE_n) \\ & DisjointDataProperties(FDPE_1FDPE_n) \\ & DataPropertyDomain(FDPE FCE) \\ & DataPropertyRange(FDPE FDR) \\ & FunctionalDataProperty(FDPE) \\ & FunctionalDataProperty(FDPE) \\ & FunctionalDataProperty(FDPE S) \\$	$\begin{split} FOPE_1 &\equiv \dots &\equiv FOPE_n \\ FOPE_j &\neq FOPE_k, 1 \leq j < k \leq n \\ \hline & \exists FOPE \cdot FCE \\ & \top \subseteq \forall FOPE_1 \equiv (FOPE_2)^- \\ \hline & \top \subseteq (FOPE_2)^- \\ \hline & \top \subseteq (FOPE)^- \\ \hline & FOPE \equiv FOPE_2 \\ \hline & FDPE_1 \subseteq FDPE_2 \\ \hline & FDPE_1 \equiv \dots \equiv FDPE_n \\ \hline & FDPE_1 \equiv FDPE_n \\ \hline & FDPE_1 \subseteq FCE \\ \hline & \top \subseteq \forall FDPE.FCE \\ \hline & \top \subseteq \langle FDPE \\ \hline & a_i \rangle \neq \{a_k\} \\ \hline & \{a_j\} \equiv \dots \equiv \{a_k\} \\ \hline & \{a_j\} \neq \{a_k\} \} \leq j < k \leq n \\ \hline & \exists FCE \cdot \{a\} \end{split}$	$\begin{array}{l} (FOPE_j)FOP &= (FOPE_k)^{FOP} \text{ for each } 1 \leq j < k \leq n \\ (FOPE_j)^{FOP} \cap (FOPE_k)^{FOP} &= \varnothing \text{ for each } 1 \leq j < k \\ n \\ \hline \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \text{ implies } x \in (FCE)^{FC} \\ (FOPE_1)^{FOP} &= \{(x, y) \mid (y, x) \in (FOPE_2)^{FOP} \\ \forall x, y_1, y_2: (x, y_1) \in (FOPE)^{FOP} \text{ and } (x, y_2) \\ (FOPE)^{FOP} \text{ imply } y_1 &= y_2 \\ \forall x_1, x_2, y: (x, y_1) \in (FOPE)^{FOP} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \\ \forall x, x \in \triangle^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x : x \in \triangle^{FI} \text{ implies } (x, x) \notin (FOPE)^{FOP} \\ \forall x, y: (x, y) \in (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \\ (FOPE)^{FOP} \cap (FDPE_2)^{FOP} \\ (FDPE_1)^{FDP} \subseteq (FDPE_2)^{FDP} \\ (FDPE_1)^{FDP} \cap (FDPE_1)^{FDP} = \varnothing, \text{ for each } 1 \leq j < k \leq n \\ (FOPE)^{FOP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \\ (FDPE)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \\ (FDPE)^{FDP} \\ (FDPE_1)^{FDP} = (FDPE_1)^{FDP} \\ (FDPE)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \\ (FDPE)^{FDP} \\ \forall x, y: (x, y) \in (FDPE)^{FDP} \\ \forall x,$

The abstract domain Δ^{FI} is a set of objects, the datatype domain \triangle^{FD} is the domain of interpretation of all datatypes (*disjoint* from Δ^{FI}) consisting of data values, and \bullet^{FI} and \bullet^{FD} are two fuzzy interpretation functions. These two functions can map:

- An abstract individual o to an element $o^{FI} \in \Delta^{FI}$,

- In abstract matricular *o* to an element $o^{FI} \in \Delta^{FI}$, - For individuals o_1 and o_2 , if $o_1 \neq o_2$, $o_1^{FI} \neq o_2^{FI}$, - A concrete individual *v* to an element $v^{FD} \in \Delta^{FD}$, - A concept name *FA* to a membership degree function $FA^{FI} : \Delta^{FI} \rightarrow [0, 1]$,

- An abstract role name *R* to a membership degree function $R^{FI} : \Delta^{FI} \times \Delta^{FI} \to [0, 1]$,

- A concrete datatype *FD* to a membership degree function $FD^{FD} : \Delta^{FD} \to [0, 1]$,

- A concrete role name *FT* to a membership degree function $FT^{FI} : \Delta^{FI} \times \Delta^{FD} \to [0, 1]$.

A fuzzy ontology formulated in fuzzy OWL 2 language is called fuzzy OWL 2 ontology. Several definitions of fuzzy ontologies are proposed based on the language fuzzy OWL (e.g. [34], [35]). In order to represent both the structure and instance information of fuzzy OWL 2 ontologies, we present a formal definition of fuzzy OWL 2 ontologies in the following, which considers both the structure and instance information of fuzzy ontologies.

Definition 6 (Fuzzy OWL 2 Ontology): A fuzzy OWL ontology is formally represented as 8-tuple $FO = (FOP_0, FDP_0, FC_0, FDT_0, FDR_0, FI_0, Flt_0, FO_{Axiom})$, consisting of the following elements [21]:

1) FOP_O is a set of object properties identifiers linking individuals to individuals, and each property may have its characters and its restrictions;

2) FDP_O is a set of data properties linking individuals to data values;

3) FC_O is a set of fuzzy class defined in the OWL 2. Each class can be an *AbstractClass* or a *ConcreteClass*;

4) FDT_O is a set datatype, containing the datatype rdfs:Literal and possibly other datatypes;

5) FDR_O is a set containing all data range;

6) FI_O is a collection of fuzzy individuals (*named* and *anonymous*);

7) Flt_O is a literal containing each datatype FDT_O and each lexical form of Flt_O ;

8) FO_{Axiom} is a set of finite fuzzy OWL 2 axioms.

In summary, a fuzzy OWL 2 ontology *FO* includes two parts: the structure and the instance. Now we illustrate a fuzzy OWL 2 ontology of *E-commerce* in an abstract syntax in *Figure 3*. There are several kinds of fuzziness in the *E-commerce* fuzzy ontology.

The element *Corporate-Customer* may be fuzzy since we cannot precisely describe the element. In this case, we provide an attribute $\mu \in [0, 1]$ in the axiom of the element *Corporate-Customer*.

A fuzzy keyword *FUZZY* indicates an attribute to be fuzzy values. For example, the attribute *FUZZY-creditRating* of the element *Corporate-Customer* may be fuzzy. Moreover, there may be other fuzzy elements and attributes in the fuzzy ontology *E-commerce*.

III. TRANSFORMING FUZZY OWL 2 ONTOLOGIES TO FUZZY XML MODEL

A. TRANSFORMING FUZZY OWL 2 ONTOLOGY INTO FUZZY XML DTD AT STRUCTURE LEVEL

In the following, *Definition* 7 firstly propose the formal approach for converting a fuzzy OWL 2 ontology into a fuzzy XML DTD. Then, *Theorem 1* proves the correctness of

A fuzzy OWL 2 ontology structure of customers of Ecommerce:

*FO*_{Axiom} = { Class (Corporate-Customer partial Customer); Class (Personal-Customer partial Customer); EquivalentClasses(Customer, unionOf (Corporate-Customer, Personal-Customer)); DisjointClasses (Corporate-Customer, Personal-Customer); Class(Customer complete intersectionOf partial(Name Address µ)); ObjectProperty (CustomerhasopName domain (Customer) range (Name) [Functional]); ObjectProperty (CustomerhasopAddress domain (Customer) range (Address)); Class (Customer partial restriction (CustomerhasopName allValuesFrom Name) Cardinality (1)) restriction (CustomerhasopAddress allValuesFrom (Address) minCardinality (1))); Class (Name partial restriction (NamehasdpPCDATA) allValuesFrom (xsd:String) cardinality (1))); DatatypeProperty (NamehasdpPCDATA) domain (Name) range (xsd:String) [Functional]); Class (Address partial restriction (AddresshasdpPCDATA) allValuesFrom (xsd:String) cardinality (1))); DatatypeProperty (AddresshasdpPCDATA) domain (Address) range (xsd:String) [Functional]); Class (Personal-Customer partial restriction (Personal-CustomerhasopCardNo) allValuesFrom (CardNo) minCardinality (1))); ObjectProperty (Personal-CustomerhasopCardNo domain (Personal-Customer) range (CardNo)); Class (CardNo partial restriction (CardNohasdpPCDATA) allValuesFrom (xsd:String) cardinality (1))); DatatypeProperty (CardNodpPCDATA) domain (CardNor) range (xsd:String) [Functional]); Class (Corporate-Customer complete intersectionOf (FUZZY-CreditRating FUZZY-Discount μ)); Class (Corporate-Customer partial restriction (Corporate-*Customer*hasopFUZZY-*CreditRating*) allValuesFrom (FUZZY-CreditRating) maxCardinality (1)) restriction (Corporate-Customerhasop FUZZY-Discount) allValuesFrom (FUZZY-Discount) maxCardinality (1))); ObjectProperty (Corporate-CustomerhasopFUZZY-CreditRating domain (Corporate-Customer) range (FUZZY-CreditRating)); ObjectProperty (Corporate-Customer hasopFUZZY-Discount domain (Corporate-Customer) range (FUZZY-Discount)); Class (FUZZY-CreditRating partial restriction (*FUZZY-CreditRating* hasdp*PCDATA*) allValuesFrom (xsd:single) cardinality (1))); DatatypeProperty (*FUZZY-CreditRating*dp*PCDATA*) domain (FUZZY-CreditRating) range (xsd:single) [Functional]); Class (FUZZY-Discount partial restriction (FUZZY-*Discount*hasdp*PCDATA*) allValuesFrom (xsd:String) cardinality (1))); DatatypeProperty (FUZZY-DiscounthasdpPCDATA) domain (FUZZY-Discount) range (xsd:String) [Functional]); SubClassOf(Corporate-customer, Customer); SubClassOf(Personal-customer, Customer);

FIGURE 3. A fuzzy OWL ontology in the abstract syntax.

the approach. Finally, we provide a transformation example. All of these will help to understand how to transform fuzzy OWL 2 ontologies to fuzzy XML DTD.

Giving a fuzzy OWL 2 Ontology model $FO = (FOP_O, FDP_O, FC_O, FDT_O, FDR_O, FI_O, Flt_O, FO_{Axiom}),$ Definition 7 transforms the fuzzy OWL 2 ontology FO to fuzzy XML DTD elements and attributes.

Definition 7 (Structure Transformation): Given a fuzzy OWL 2 ontology $FO = (FOP_O, FDP_O, FC_O, FDT_O, FDR_O, FI_O, FI_O, FO_{Axiom})$. The fuzzy XML DTD $D = (\mathbf{P}, r)$

TABLE 2. Transforming rules from a fuzzy OWL 2 ontology to fuzzy XML DTD structure.

Fuzzy OWL 2 ontology FO	Fuzzy XML DTD structure
Each fuzzy individual identifier FI_O	A fuzzy DTD identifier $\varphi(FI_O) \in D = (\mathbf{P}, \mathbf{r})$
Each fuzzy datatype property identifier FDP_O	An attribute $\varphi(FDP_O) \in \mathbf{A}$,
Each fuzzy class identifier FC_O	An element symbol identifier $\varphi(FC_O) \in \mathbf{E}$
Each datatype identifier FDT_O	FDT_O are analogous the set of XML Schema Datatypes
Each date range identifier FDR_O	Types of attribute or element $\varphi(FDR_O) \in \mathbf{T}$
Each literal Flt_O	Representation data value $\varphi(Flt_O) \in \mathbf{S}$
Annotation properties	Annotation information such as documentation
Fuzzy OWL 2 axiom set FO _{Axiom}	Fuzzy XML DTD contents
Class(FC partialrestriction(FDR_i allValuesFrom(FDT_i) Cardinali-	Creating an element type definition $\varphi(FC) \rightarrow \varphi(FDR), \varphi(FC) \in E$,
ty(1))); DatatypeProperty (FDR _i domain (FC) range (FDT _i) [Func-	$\varphi(FDR) \in \mathbf{T}$, where $FDR \in FDR_1 \cup \cup FDR_n$, $FDT \in FDT_1 \cup [$
tional]).	$\dots \cup FDT_n.$
Class(FC partial restriction (FDP_1 allValuesFrom(FDR_1)	
minCardinality (m_1) maxCardinality (n_1))restriction FDP_k	
allValuesFrom $(FDR_k minCardinality(m_k) maxCardinality(n_k));$	VT , where $FDP \in FDP_1 \cup \cup FDP_k$, $FDR \in FDR_1 \cup \cup FDR_k$,
DatatypeProperty $(FDP_1 \text{ domain } (FC) \text{ range}(FDR_1))$	if $VT = $ ' #IMPLIED', then $m_i = 0$ or 1; if $VT = $ ' #REQUIRED', then $m_i = $
DatatypeProperty (FDP_k domain (FC) range(FDR_k)).	1; if $VT = '$ #Fixed value' or 'value', then FDR_i is the 'value'.
Class (FC partial restriction (FOP_i allValuesFrom (FDR_i) Cardinality	Creating an attribute type definition $\varphi(FC) \rightarrow \varphi(FOP_i), \varphi(FC) \in \mathbf{E}$,
(1))); ObjectProperty (FOP_i domain (FC) range (FDR_i) [Functional]).	$\varphi(FDR_i) \in \mathbf{T}, \varphi(FOP_i) \in \alpha.$
Class(<i>FC</i> partial restriction (FOP_i allValuesFrom (FDP_i) maxCardinality	Creating an attribute type definition $\varphi(FC) \rightarrow \varphi(FOP_i)^2, \varphi(FC) \in \mathbf{E},$
(1))); ObjectProperty (FOP_i domain(FC) range (FDP_i)).	$\varphi(FDP_i) \in \mathbf{A}, \varphi(FOP_i) \in \alpha$, where '?' denotes 0 or 1 time.
Class (FC partial restriction (FOP_i allValuesFrom (FDP_i))); ObjectProp-	Creating an attribute type definition $\varphi(FC) \rightarrow \varphi(FOP_i)^*, \varphi(FC) \in \mathbf{E}$,
erty $(FOP_i \text{ domain } (FC) \text{ range } (FDP_i)).$	$\varphi(FDP_i) \in \mathbf{A}, \varphi(FOP_i) \in \alpha$, where '*' denotes 0 or n times.
Class (FC partial restriction (FOP_i allValuesFrom (FDP_i) minCardinality	Creating an attribute type definition $\varphi(FC) \rightarrow \varphi(FOP_i)^+, \varphi(FC) \in \mathbf{E}$,
(1))); ObjectProperty (FOP_i domain (FC) range (FDP_i)).	$\varphi(FDP_i) \in \mathbf{A}, \varphi(FOP_i) \in \alpha$, where '+' denotes 1 or n times.
Class (FC partial owl: Nothing).	Creating an attribute type definition $\varphi(FC) \rightarrow$ empty.
Class(FC complete unionOf (intersectionOf (FDP_1 complementOf	An attribute type definition $\varphi(FC) \rightarrow \varphi(FOP_1 \varphi(FOP_2))$, where
(FDP_2)) intersectionOf (complementOf $(FDP_1 FDP_2)$; Class (FC par-	$ \varphi(FC) \in \mathbf{E}, \varphi(FDP_1), \varphi(FDP_2) \in \mathbf{A}, \varphi(FOP_1) \in \alpha_1, \varphi(FOP_2) \in $
tial restriction $(FOP_1 \text{ allValuesFrom } (FDP_1))$ restriction $(FOP_2 \text{ allVal-})$	$\alpha_2, \alpha_1 \cap \alpha_2 = \emptyset.$
uesFrom (FDP_2)); ObjectProperty $(FOP_1 \text{ domain } (FC) \text{ range } (FDP_1))$;	
ObjectProperty $(FOP_2 \text{ domain } (FC) \text{ range } (FDP_2)).$	
Class(FC complete intersectionOf (FDP_1 , FDP_2));Class (FC partial re-	An attribute type definition $\varphi(FC) \rightarrow \varphi(FOP_1, \varphi(FOP_2))$, where
striction $(FOP_1 \text{ allValuesFrom } (FDP_1))$ restriction $(FOP_2 \text{ allValues-} (FDP_1))$	$\varphi(FC) \in \mathbf{E}, \varphi(FDP_1), \varphi(FDP_2) \in \mathbf{A}, \varphi(FOP_1) \in \alpha_1, \varphi(FOP_i) \in \mathbf{A}$
From (FDP_2)); ObjectProperty $(FOP_1 \text{ domain } (FC) \text{ range } (FDP_1))$;	$\alpha_2, \alpha_1 \cap \alpha_2 = \varnothing.$
ObjectProperty (FOP_2 domain (FC) range (FDP_2)).	

can be derived by transformation function $\varphi()$ as shown in *Table 2*.

Applying the rules in *Table 2*, we can finally obtain the fuzzy DTD correspond to the fuzzy OWL 2 ontology structure in *Figure 3*. The corresponding fuzzy XML DTD model shown in *Figure 4*.

B. TRANSFORMATION FUZZY OWL 2 ONTOLOGY TO FUZZY XML DOCUMENT AT INSTANCE LEVEL

In this section, we propose some rules in *Table 3* to transform a fuzzy OWL 2 ontology instance into fuzzy XML document based on the constructed DTD in *Section A*. Given a fuzzy OWL 2 ontology instance *o*, the corresponding fuzzy XML document $\varphi(o) = (N, <, \lambda, \eta, \gamma)$ can be derived from the following rules in *Table 3*.

C. THE CORRECTNESS OF THE TRANSFORMATION APPROACH

The *Sections A* and *B* specify some mapping rules that can transform fuzzy OWL 2 ontology structure and instance to fuzzy XML DTD and document. In this section, we discuss the correctness of the approach. Then we establish mapping instance of fuzzy OWL 2 ontology and fuzzy XML document and DTD.

Theorem 1: For every fuzzy OWL 2 ontology *FO* and its transformed fuzzy DTD $\varphi(FO)$, there is two mappings δ from fuzzy OWL 2 ontologies structure to models $\varphi(FO)$, and ζ from models $\varphi(FO)$ to fuzzy OWL 2 ontology structure, such that:

• For each fuzzy OWL 2 ontology instance *FI* conforming to *FO*, $\delta(FI)$ is a model of fuzzy $\varphi(FO)$.

• For each model d of $\varphi(FO)$, $\zeta(d)$ is a fuzzy OWL 2 ontology instance.

Proof: Between start tags and end tags, a fuzzy XML document contains several elements which are associated with their attribute values. There is two alphabet **T** and **E**, they are basic types and element types. A fuzzy XML document instances $d_{T,E}$ builts over **T** and **E** as follows: (i) If *d* is a terminal in **T**, then $d_i \in d_{T,E}$; (ii) If *d* is sequence of the form $\langle E \rangle d_1, \ldots, d_k \langle E \rangle$, where $E \in \mathbf{E}$ is an element type and $d_1, \ldots, d_k \in d_{T,E}$, then $d \in d_{T,E}$.

Then the following first proves the first part of *Theorem 1*. Let $FI = (\Delta^{FI}, \bullet^{FI})$ be a fuzzy interpretation of fuzzy OWL 2 ontology *FO*, and $o \in \Delta^{FI}$ be an ontology instance, then we can obtain an fuzzy DTD instance model $\delta(o)$, as follow:

(a) If $o \in T^{FI}$ for some terminal $T \in \mathbf{T}$, then $\delta(o) = T$;

(b) If for some $E \in \mathbf{E}$, there are some integer $n \ge 0$, and objects o_s, o_i, o'_i , and o_e , such as $o_s \in StartE^{FI}$,

TABLE 3. Transforming rules from a Fuzzy OWL 2 ontology instance to fuzzy xml document.

Fuzzy OWL 2 ontology instance	Fuzzy XML document
Each fuzzy individual instance axioms: Individual (o type(FC) [\bowtie m_i]),	Creating a node of fuzzy XML document tree $\varphi(o) \in \mathbf{N}, \lambda(\varphi(o)) \in \mathbf{E}$. If
here: o is a fuzzy ontology instance, FC is a fuzzy class identifier, the part	there is $[\bowtie m_i]$ in fuzzy OWL 2 ontology individual instance, we create a
[$\bowtie m_i$] in the fuzzy individual axiom is omitted in case of m_i =1.0.	tag $\langle Val Poss = m_i \rangle \dots \langle Val \rangle$.
Fuzzy individual instance axioms:	Creating nodes of fuzzy XML document tree $\varphi(o_i), \varphi(o_j) \in N$, element
Individual $(o_i \text{ type } (FC_i))$ and Individual $(o_i \text{ type } (FC_i))$ value (FOP_{ii}) ,	symbol $\lambda(\varphi(o_i)), \lambda(\varphi(o_i)), \varphi(FC_i), \varphi(FC_i) \in \mathbf{E}, \varphi(o_i)$ is the parent
individual $(o_i \text{ type } (I \cup i_j))$ and individual $(o_j \text{ type } (I \cup j_j))$ value $(I \cup I_{j_i})$, (o_i)), here o_i, o_j are fuzzy ontology instance, FC_i, FC_j are a fuzzy class	node of $\varphi(o_i)$, i.e. $\varphi(o_j) < \varphi(o_i)$. According of the condition Case 1-4,
identifier, FOP_{ii} identifies that instance o_i has object property instance o_i .	we create the following elements:
Furthermore if there are following instance σ_j has object property instance σ_i .	Case 1: $\lambda(\varphi(o_i))$ is a leaf node.
Case 1: Individual (o_i type (FC_i) value (FDP_i , FDT_i)), here FDP_i	Case 2: If $\lambda(\varphi(o_i))$ is a leaf node, and $\lambda(\varphi(o_i)) = Val_i$ and $\lambda(\varphi(o_i)) = Val_i$
identifies the datatype property of instance o_i , FDT_i identifies a set of	
datatype.	Case 3: If there are $\lambda(\varphi(o_i)) = Val_i$ and $\lambda(\varphi(o_i)) \neq Dist_i$, then
Case 2: Individual (o_i type (FC_i) value (FDP_i , FDT_i) [$\bowtie m_i$]), here	$\varphi(o_h)$ is children node of $\varphi(o_j)$, i.e. $\varphi(o_h) < \varphi(o_j) < \varphi(o_i), m_i =$
FDP_i identifies the datatype property of instance o_i , FDT_i identifies a set	$\eta(\varphi(o_i), @Poss_i).$
of datatype.	Case 4: If there are $\lambda(\varphi(o_i)) = Val_i$ and $\lambda(\varphi(o_i)) = Dist_i$, then
Case 3: Individual (o_h type (FC_h) value (FOP_{hi}, o_i) [$\bowtie m_i$]), here oh is	$\varphi(o_k)$ is parent node of $\varphi(o_j)$, i.e. $\varphi(o_j) < \varphi(o_i) < \varphi(o_k), m_i =$
a fuzzy ontology instance, FC_h is a fuzzy class identifier, FOP_{hj} identifies	$\eta(\varphi(o_i), @Poss_i).$
that instance o_h has property instance o_i .	Here $\varphi(o_h), \varphi(o_k) \in N, \varphi(FOP_{ii}) \in \varphi(o_i)$ has $\varphi(o_i)$, same as
Case 4: Individual $(o_i \text{ type } (FC_i) \text{ value } (FOP_{ik}, o_k) [\bowtie m_i])$, here o_k is	$\varphi(FOP_{hi})), \varphi(FOP_{ik}).$
a fuzzy ontology instance, FOP_{ik} identifies that instance o_i has property	$\varphi(FDP_i) \in \varphi(o_i)$ hasdpPCDATA, $\varphi(FDT_i) \in \eta(\varphi(o_i)), \varphi(o_j) =$
instance o_k .	$d_i \in \mathbf{dom}$ is content of the element $\lambda(\varphi(o_i))$.
Fuzzy individual instance axioms:	Creating nodes of fuzzy XML document tree $\varphi(o_i), \varphi(o_j) \in N$, element
Individual (o_i type(FC_i) value (FOP_{ij} , FDT_{ij})), here FOP_{ij} identifies	symbol $\varphi(FC_i) \in \mathbf{E}$, and $\varphi(o_j)$ is the parent node of $\varphi(o_i)$, i.e. $\varphi(o_j) < \varphi(o_j) < \varphi(o_j)$
that instance o_i has FOP_i , FDT_{ij} identifies a set of datatype.	$\varphi(o_i), \varphi(FOP_{ij}) \in \varphi(o_i)$ hasop $\alpha_j, \varphi(FDT_i) \in \eta(\varphi(o_i), \varphi(o_j)) =$
	$d_i \in \mathbf{dom}$ is a value of the property.

<pre><!--ELEMENT Customer (Dist)--> <!--ATTLIST Customer CID ID #REQUIRED--> <!--ATTLIST Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (Name?, Address?, Vla+)--> <!--ELEMENT Val (Name?, Address?, Vla+)--> <!--ELEMENT Val (Corporate-Customer*, Versonal- Customer*)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Corporate-Customer*, Personal- Customer*)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Corporate-Customer*, Personal- Customer*)--> <!--ATTLIST Corporate-Customer fID IDREF #REQUIRED--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Discount?, CreditRating?)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Discount?, CreditRating?)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount (Dist)--> <!--ELEMENT Discount (Dist)--> <!--ELEMENT Discount (Dist)--> <!--ELEMENT Val (Discount_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount (Dist)--> <!--ELEMENT Discount_value (#PCDATA)--> <!--ELEMENT Discount_value (#PCDATA)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Personal-Customer FID IDREF #REQUIRED--> <!--ATTLIST Personal-Customer FID IDREF #REQUIRED--> <!--ELEMENT Val (CardNo*)--> <!--ELEMENT Val (CardNo*)--></pre>	
<pre><!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (Name?, Address?, Vla+)--> <!--ELEMENT Name (#PCDATA)--> <!--ELEMENT Address (#PCDATA)--> <!--ELEMENT Val Poss CDATA "1.0"--> <!--ELEMENT Val Poss CDATA "1.0"--> <!--ELEMENT Val (Corporate-Customer*, Personal- Customer*)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Corporate-Customer (Dist)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (Discount?, CreditRating?)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Discount (Dist)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount (Dist)--> <!--ATTLIST Dist type (disjunctive)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ATTLIST Dist type (disjunctive)--> <!--ATTLIST Dist type (disjunctive)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount (Dist)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount (Dist)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount (Dist)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount value (#PCDATA)--> <!--ELEMENT Discount value (#PCDATA)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Dist type (d</th--><th><!--ELEMENT Customer (Dist)--></th></pre>	ELEMENT Customer (Dist)
ATTLIST Dist type (disjunctive) ELEMENT Val (Name?, Address?, Vla+) ELEMENT Name (#PCDATA) ELEMENT Address (#PCDATA) ELEMENT Val Poss CDATA "1.0" ELEMENT Val Poss CDATA "1.0" ELEMENT Val (Corporate-Customer*, Personal-<br Customer*)> ATTLIST Val Poss CDATA "1.0" ELEMENT Corporate-Customer (Dist) ATTLIST Corporate-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Dist (Val+) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ELEMENT Discount_value (#PCDATA) ELEMENT CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Personal-Customer (Dist) ELEMENT Personal-Customer (Dist) ELEMENT Dist type (disjunctive) ELEMENT Dist type (disjunctive) ELEMENT Val (CardNo*)	
<pre><!--ELEMENT Val (Name?, Address?, Vla+)--> <!--ELEMENT Name (#PCDATA)--> <!--ELEMENT Address (#PCDATA)--> <!--ELEMENT Val Poss CDATA "1.0"--> <!--ELEMENT Val (Corporate-Customer*, Personal- Customer*)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Corporate-Customer (Dist)--> <!--ATTLIST Corporate-Customer (Dist)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ELEMENT Dist (Val+)--> <!--ELEMENT Dist or (Dist)--> <!--ELEMENT Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ELEMENT Val (Discount_value)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (Discount_value)--> <!--ELEMENT Dist (Val+)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Discount_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ELEMENT CreditRating_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ELEMENT Val (CreditRating_value)--> <!--ELEMENT Personal-Customer (Dist)--> <!--ELEMENT Dist type (disjunctive)--> <!--ELEMENT Dist type (disjunctive)--> <!--ELEMENT Dist type (disjunctive)--> <!--ELEMENT Val (CardNo*)--> <!--ELEMENT Val (CardNo*</th--><th></th></pre>	
<pre><!--ELEMENT Name (#PCDATA)--> <!--ELEMENT Address (#PCDATA)--> <!--ELEMENT Address (#PCDATA)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Corporate-Customer*, Personal- Customer*)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Corporate-Customer (Dist)--> <!--IATTLIST Corporate-Customer FID IDREF #REQUIRED--> <!--ELEMENT Dist (Val+)--> <!--IATTLIST Dist type (disjunctive)--> <!--IELEMENT Val (Discount?, CreditRating?)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT Val (Discount?, CreditRating?)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT Dist (Val+)--> <!--IELEMENT Dist (Val+)--> <!--IELEMENT Dist (Val+)--> <!--IELEMENT Dist (Val+)--> <!--IELEMENT Val (Discount_value)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT Dist (Val+)--> <!--IELEMENT Dist (Val+)--> <!--IELEMENT Discount_value (#PCDATA)--> <!--IELEMENT CreditRating (Dist)--> <!--IELEMENT CreditRating_value)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT Dist (Val+)--> <!--IELEMENT Discount_value (#PCDATA)--> <!--IELEMENT CreditRating_value)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT Discount_value (#PCDATA)--> <!--IELEMENT CreditRating (Dist)--> <!--IELEMENT CreditRating_value)--> <!--IATTLIST Dist type (conjunctive)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT CreditRating_value)--> <!--IATTLIST Dist type (conjunctive)--> <!--IATTLIST Dist type (conjunctive)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT CreditRating_value)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT CreditRating_value)--> <!--IATTLIST Dist type (conjunctive)--> <!--IATTLIST Dist type (conjunctive)--> <!--IATTLIST Val Poss CDATA "1.0"--> <!--IELEMENT CreditRating_value)--> <!--IELEMENT CreditRating_value(#PCDATA)--> <!--IELEMENT CreditRating_value</th--><th></th></pre>	
ELEMENT Addres's (#PCDATA) <\ATTLIST Val Poss CDATA "1.0"> ELEMENT Val (Corporate-Customer*, Personal-<br Customer*)> ATTLIST Val Poss CDATA "1.0" ELEMENT Corporate-Customer (Dist) ATTLIST Corporate-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ELEMENT Dist (Val+) ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ELEMENT Discount (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Dist (Val+) ELEMENT Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ELEMENT Dist (Val+) ELEMENT Dist (Val+) ELEMENT CreditRating (Dist) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Dist (Val+)	
ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Corporate-Customer*, Personal-<br Customer*)> ATTLIST Val Poss CDATA "1.0" ELEMENT Corporate-Customer (Dist) ATTLIST Corporate-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ELEMENT Dist (Val+) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ELEMENT CreditRating_value (#PCDATA) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ATTLIST Val Possonal-Customer (Dist) ELEMENT Dist type (disjunctive) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive)	
ELEMENT Val (Corporate-Customer*, Personal-<br Customer*)> ATTLIST Val Poss CDATA "1.0" ELEMENT Corporate-Customer (Dist) ATTLIST Corporate-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ELEMENT Val (Discount_value) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount_value) ELEMENT Val (Discount_value) ELEMENT Discount_value (#PCDATA) ELEMENT CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ELEMENT Val (CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT Val (Discount_value) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ELEMENT Val (CreditRating_value) ELEMENT Val (CreditRating_value) ELEMENT Val (CardNo*) ELEMENT Val (Val+) ELEMENT Val (CardNo*) ELEMEN</td <td></td>	
Customer*)> <iattlist "1.0"="" cdata="" poss="" val=""> <ielement (dist)="" corporate-customer=""> <iattlist #required="" corporate-customer="" fid="" idref=""> <ielement (val+)="" dist=""> <iattlist (disjunctive)="" dist="" type=""> <ielement (discount?,="" creditrating?)="" val=""> <ielement (dist)="" dist="" out=""> <ielement (val+)="" dist=""> <ielement (val+)="" dist=""> <ielement (val+)="" dist=""> <ielement (discount_value)="" val=""> <iattlist (disjunctive)="" dist="" type=""> <ielement (discount_value)="" val=""> <iattlist "1.0"="" cdata="" poss="" val=""> <ielement (discount_value)="" val=""> <iattlist "1.0"="" cdata="" poss="" val=""> <ielement (val+)="" dist=""> <ielement (dist)="" creditrating=""> <ielement creditrating_value)=""> <iattlist (conjunctive)="" dist="" type=""> <ielement (creditrating_value)="" val=""> <iattlist "1.0"="" cdata="" poss="" val=""> <ielement (creditrating_value)="" val=""> <iattlist "1.0"="" cdata="" poss="" val=""> <ielement creditrating_value)=""> <iattlist "1.0"="" cdata="" poss="" val=""> <ielement (dist)="" personal-customer=""> <ielement (dist)="" personal-customer=""> <ielement (val+)="" dist=""> <iattlist (disjunctive)="" dist="" type=""> <ielement (val+)="" dist=""> <iattlist (disjunctive)="" dist="" type=""> <ielement (cardno*)="" val=""></ielement></iattlist></ielement></iattlist></ielement></ielement></ielement></iattlist></ielement></iattlist></ielement></iattlist></ielement></iattlist></ielement></ielement></ielement></iattlist></ielement></iattlist></ielement></iattlist></ielement></ielement></ielement></ielement></ielement></ielement></iattlist></ielement></iattlist></ielement></iattlist>	
ELEMENT Corporate-Customer (Dist) ATTLIST Corporate-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount (Dist) ELEMENT Dist (Val+) ELEMENT Dist (Val+) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist type (conjunctive) ELEMENT Dist (Val+) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Dist (Val+) ELEMENT Val (CardNo*)	
ATTLIST Corporate-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Dist (Val+) ELEMENT Dist (Val+) ELEMENT Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT CreditRating_value (#PCDATA) ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ATTLIST Dist type (disjunctive) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive)	
<pre><!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (Discount?, CreditRating?)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount (Dist)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (Discount_value)--> <!--ELEMENT Val (Discount_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (Discount_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount_value (#PCDATA)--> <!--ELEMENT Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT CreditRating_value(#PCDATA)--> <!--ELEMENT Val Poss CDATA "1.0"--> <!--ELEMENT CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT CreditRating_value(#PCDATA)--> <!--ELEMENT Personal-Customer (Dist)--> <!--ATTLIST Personal-Customer FID IDREF #REQUIRED--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> </pre>	
ATTLIST Dist type (disjunctive) ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount_value (#PCDATA) ELEMENT CreditRating (Dist) ELEMENT Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	
ELEMENT Val (Discount?, CreditRating?) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount_value (#PCDATA) ELEMENT CreditRating (Dist) ELEMENT Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	
ATTLIST Val Poss CDATA "1.0" ELEMENT Discount (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (Discount_value) ELEMENT Discount_value (#PCDATA) ELEMENT CreditRating (Dist) ELEMENT CreditRating_value) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Val Porsonal-Customer (Dist) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	
<pre><!--ELEMENT Discount (Dist)--> <!--ELEMENT Discount (Dist)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (Discount_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount_value (#PCDATA)--> <!--ELEMENT Discount_value (#PCDATA)--> <!--ELEMENT CreditRating (Dist)--> <!--ELEMENT Dist (Val+)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ELEMENT Val Poss CDATA "1.0"--> <!--ELEMENT Val Poss CDATA "1.0"--> <!--ELEMENT Dist (Val+)--> <!--ELEMENT Val Poss CDATA "1.0"--> <!--ELEMENT Val Poss CDATA "1.0"--> <!--ELEMENT Val CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT CreditRating_value)--> <!--ELEMENT Personal-Customer (Dist)--> <!--ELEMENT Personal-Customer FID IDREF #REQUIRED--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (CardNo*)--></pre>	
ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount_value (#PCDATA) ELEMENT CreditRating (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ELEMENT Dist (Val+) ELEMENT Dist type (disjunctive) ELEMENT Dist type (disjunctive) ELEMENT Val (CardNo*)	
ATTLIST Dist type (disjunctive) ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount_value (#PCDATA) ELEMENT CreditRating (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ELEMENT Dist type (disjunctive) ELEMENT Val (CardNo*)	
ELEMENT Val (Discount_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Discount_value (#PCDATA) ELEMENT CreditRating (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value) ATTLIST Personal-Customer (Dist) ELEMENT Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ELEMENT Dist type (disjunctive) ELEMENT Val (CardNo*)	
<pre><!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Discount_value (#PCDATA)--> <!--ELEMENT CreditRating (Dist)--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (conjunctive)--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT Val (CreditRating_value)--> <!--ATTLIST Val Poss CDATA "1.0"--> <!--ELEMENT CreditRating_value)--> <!--ATTLIST Personal-Customer (Dist)--> <!--ILEMENT Personal-Customer FID IDREF #REQUIRED--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (CardNo*)--></pre>	
<ielement (#pcdata)="" discount_value=""> <ielement (dist)="" creditrating=""> <ielement (val+)="" dist=""> <iattlist (conjunctive)="" dist="" type=""> <ielement (creditrating_value)="" val=""> <iattlist "1.0"="" cdata="" poss="" val=""> <ielement (creditrating_value)="" val=""> <iattlist "1.0"="" cdata="" poss="" val=""> <ielement (#pcdata)="" creditrating_value=""> <ielement (#pcdata)="" creditrating_value=""> <ielement (dist)="" personal-customer=""> <ielement #required="" fid="" idref="" personal-customer=""> <ielement (val+)="" dist=""> <ielement (disjunctive)="" dist="" type=""> <ielement (cardno*)="" val=""></ielement></ielement></ielement></ielement></ielement></ielement></ielement></iattlist></ielement></iattlist></ielement></iattlist></ielement></ielement></ielement>	
ELEMENT CreditRating (Dist) ELEMENT Dist (Val+) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	
ELEMENT Dist (Val+) ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	<pre><!--ELEMENT Discount_value (#PCDATA)--></pre>
ATTLIST Dist type (conjunctive) ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	et ,
ELEMENT Val (CreditRating_value) ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	ELEMENT Dist (Val+)
ATTLIST Val Poss CDATA "1.0" ELEMENT CreditRating_value (#PCDATA) ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	
<pre><!--ELEMENT CreditRating_value (#PCDATA)--> <!--ELEMENT Personal-Customer (Dist)--> <!--ATTLIST Personal-Customer FID IDREF #REQUIRED--> <!--ELEMENT Dist (Val+)--> <!--ATTLIST Dist type (disjunctive)--> <!--ELEMENT Val (CardNo*)--></pre>	
ELEMENT Personal-Customer (Dist) ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	ATTLIST Val Poss CDATA "1.0"
ATTLIST Personal-Customer FID IDREF #REQUIRED ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	<pre><!--ELEMENT CreditRating value (#PCDATA)--></pre>
ELEMENT Dist (Val+) ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	<pre><!--ELEMENT Personal-Customer (Dist)--></pre>
ATTLIST Dist type (disjunctive) ELEMENT Val (CardNo*)	ATTLIST Personal-Customer FID IDREF #REQUIRED
ELEMENT Val (CardNo*)	<pre><!--ELEMENT Dist (Val+)--></pre>
	<pre><!--ATTLIST Dist type (disjunctive)--></pre>
<pre><!--ELEMENT CardNo (#PCDATA)--></pre>	<pre><!--ELEMENT Val (CardNo*)--></pre>
	<pre><!--ELEMENT CardNo (#PCDATA)--></pre>

FIGURE 4. Fuzzy XML DTD model derived from fuzzy OWL 2 Ontology in Figure 3.

 $o_e \in EndE^{FI}, (o, o_s), (o_1, o'_1), \dots, (o_n, o'_n) \in \mathbf{f}^{FI},$ and $(o, o_1), (o_1, o_2), \dots, (o_{n-1}, o_n), (o_n, o_e) \in \mathbf{r}^{FI},$ then $\delta(o) = \langle E \rangle d_1, \dots, d_k \langle E \rangle,$ where (i) two atomic fuzzy class identifiers *StartE* and *EndE* are needed to represent respectively the start tag and end tag of *E*; (ii) o_s and o_e denote the start and end tags of the root element, o_i denotes the *i*-th component of *d*, and o'_i is the root of d_i , $i \in \{1, ..., n\}$; (iii) in the model $\delta(o)$, for the sake of simplicity, **f** and **r** are used to denote the fuzzy property identifiers constructed, where **f** represents the start tag of an element and **r** represents the other components of the element in the tree structure of the fuzzy XML document *d*.

And the second part of *Theorem 1* can be proved similarly for the first part above, it is a mutually inverse process. Let $d \in d_{T,E}$ be a fuzzy XML document, then we can obtain a model $\zeta(d) = (\Delta^{\zeta(d)}, \bullet^{\zeta(d)})$ satisfying the fuzzy axioms of *FO*, *as follow*:

(a) If d is a terminal $T \in \mathbf{T}$, then $\Delta^{\zeta(d)} = (\varphi(T))^{\zeta(d)}$;

(b) If *d* is a sequence of form $\langle E \rangle d_1, \ldots, d_k \langle E \rangle$, where d_i is an instance satisfying to the fuzzy DTD model $E \rightarrow (\alpha, A)$, then a tree-model $\zeta(d)$ can be constructed as follows:

$$\begin{split} & \sum_{\substack{\zeta(d) \\ l \in I}} \{o, o, o_1, \dots, o_n, o_e\} \cup \sum_{\substack{\Delta \\ l \in I}} \{c(a) = \{o_s\} \cup \bigcup_{\substack{1 \le i \le n \\ l \le i \le n}} Start E^{\zeta(d_i)} \\ & EndE^{\zeta(d)} = \{o_e\} \cup \bigcup_{\substack{1 \le i \le n \\ l \le i \le n}} EndE^{\zeta(d_i)} \\ & Tag^{\zeta(d)} = \{o_s, o_e\} \cup \bigcup_{\substack{1 \le i \le n \\ l \le i \le n}} Tag^{\zeta(d_i)} \\ & r^{\zeta(d)} = \{(o, o_1), (o_1, o_2), \dots, (o_{n-1}, o_n), (o_n, o_e)\} \\ & \cup \bigcup_{\substack{1 \le i \le n \\ l \le i \le n}} r^{\zeta(d_i)} \\ & f^{\zeta(d)} = \{(o, o_s), (o_1, o_1'), \dots, (o_n, o_n')\} \\ & \cup \bigcup_{\substack{1 \le i \le n \\ l \le i \le n}} r^{\zeta(d_i)} \end{split}$$

Given a fuzzy OWL 2 ontology instance o

<Address>BCBA Industries 204 Main St. Chicago</Address>

< Discount value>80%</ Discount value>

< Discount value>90%< Discount value>

< CreditRating value>"C" </ CreditRating value>

< CreditRating value>"B"</ CreditRating value>

1. <Customer>

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13. 14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29

31. </Val>

32. </ Customer >

2. <CID>2015050908</CID>

<Name>Smith</Neme>

< Corporate-Customer >

<Val Poss = 0.95>

<Val Poss = 0.80>

<Dist type = "disjunctive">

<Dist type = "conjunctive">

<Val Poss = 0.85>

<Discount>

</Val>

</Val>

</Discount >

<CreditRating>

<Val Poss = 0.60>

<Val Poss = 0.85>

</Corporate-Customer >

<Personal-Customer >

</Dist>

</Val>

</Val>

</Dist>

</CreditRating >

30. </Personal -Customer >

 $FAxiom_0 = \{$ Individual (*o*₁ Type (Customer) Value(*Customer*hasop*CID*, *o*₂₁)); Value(CIDhasdpPCDATA, Individual $(0_{21}$ Type (CID) "2015050908")); Individual (*o*₁ Type (Customer) Value(*Customer*hasop*Name*, *o*₂₂)); Individual (022Type (Name) Value(NamehasdpPCDATA, "Smith")); Individual (o1 Type (Customer) Value(CustomerhasopAddress, *o*₂₃)); Individual (023 Type (Address) Value(AddresshasdpPCDATA, "Industries 204 Main St. Chicago")); Individual (*o*¹ Type (Customer) Value(*Customer*hasop*Val*₂₄, *o*₂₄)); Individual (o_{24} Type (Val_{24}) Value(Val₂₄hasopPersonal-Customer, o₃₁) Value(*Val₂₄*hasop*Corporate-Customer*, *o*₃₂) Value(Val24hasopPoss, "0.85")); Individual (031 Type (Personal-Customer) Value(*Personal-Customer*hasop*CardNo*, *o*₄₁)); Individual (041 Type (CardNo) Value(CardNohasdpPCDATA, "1111 2222 3333 4444")); Individual (032 Type (Corporate-Customer) Value(Corporate-CustomerhasopCreditRating, 042) Value(*Corporate-Customer*hasop*Discount*, o_{43})); Individual (*o*₄₂ Type (CreditRating) Value(CreditRatinghasopDist₅₁, o₅₁)); Individual (051 Type (Dist51) $Value(Dist_{51}hasop Val_{61}, o_{61})$ Value(*Dist₅₁*hasop*Type*, "conjunctive")); Individual (o_{61} Type (Val₆₁) Value(Val₆₁hasopPoss, "0.6") Value(Val_{61} hasop $CreditRating_value, o_{71})$ [$\bowtie 0.6$]); Individual (071 Type (CreditRating value) Value(CreditRating valuehasdpPCDATA, "C") [⋈ 0.6]); Individual (062 Type (Val62) Value(Val₆₂hasopPoss, "0.85") Value(Val_{62} hasop $CreditRating value, o_{72}$) [$\bowtie 0.85$]); Individual (072 Type (CreditRating_value) Value(*CreditRating_value*hasdp*PCDATA*, "D") [⋈ 0.85]); Individual (043 Type (Discount) Value(DiscounthasopDist₅₂, o₅₂)); Individual (052 Type (Dist52) Value(Dist₅₂hasopVal₆₃, o₆₃) Value(Dist₅₂hasopType, "disjunctive")); Individual (063 Type (Val63) Value(Val63hasopPoss, "0.95") Value(Val_{63} hasop $Discount value, o_{73}$) [$\bowtie 0.95$]); Individual (073 Type (Discount_value) Value(Discount valuehasdpPCDATA, "80%") [⋈ 0.95]); Individual (o_{64} Type (Val₆₄) Value(Val64hasopPoss, "0.8") Value(Val_{64} hasop $Discount value, o_{74}$) [$\bowtie 0.8$]); Individual (074 Type (Discount value) Value(Discount valuehasdpPCDATA, "90%") [⋈ 0.85]);

FIGURE 5. A fuzzy OWL 2 ontology instance o.

So far, we propose the approach that can map a fuzzy OWL 2 ontology to a fuzzy XML model. As shown in *Section A*, constructing a fuzzy XML model from a fuzzy ontology has two steps: transforming the structure of fuzzy ontology into a fuzzy DTD and transforming the fuzzy ontology instance into the fuzzy XML document conforming the fuzzy DTD. For the first step, *Table 2* provides several rules of transforming all the fuzzy OWL 2 ontology identifiers and axioms into symbols of a fuzzy DTD. For the second step, *Table 3* provides some rules of transforming of instance level

FIGURE 6. The fuzzy XML document derived from the fuzzy OWL 2 ontology instance in Figure 5.

<CardNo >1111 2222 3333 4444</CardNo >

from the fuzzy ontology into the fuzzy XML model based on the structure in the first step.

D. A TRANSFORMING EXAMPLE FROM FUZZY OWL 2 ONTOLOGY TO FUZZY XML DOCUMENT

In order to explain the transforming approach well, we provide a fuzzy OWL 2 ontology instance in *Figure 5*, and the fuzzy XML document derived from the instance is shown in *Figure 6*.

IV. CONCLUSIONS

XML has been the standard for data representation and exchange based on the Web. Meanwhile, information is imprecise and uncertain in the real world. Then, fuzzy XML model has been proposed. In this paper, we mainly investigate fuzzy OWL 2 ontology and fuzzy XML model. Their formal definitions are proposed. Furthermore, we propose an approach of transforming fuzzy OWL 2 ontology into fuzzy XML model at structure and instance levels, respectively. The correctness of the approach is proved, and a transformation example is provided to well explain the proposed approach. In the future, we will evaluate the reusing fuzzy OWL 2 ontologies approach with more complex examples based on fuzzy XML model.

REFERENCES

- [1] S. Abiteboul, L. Segoufin, and V. Vianu, "Representing and querying XML with incomplete information," in Proc. 12th ACM SIGACT-SIGMOD-SIGART Symp. Principles Database Syst., 2001, pp. 150-161.
- [2] S. M. Benslimane, M. Malki, and D. Bouchiha, "Deriving conceptual schema from domain ontology: A Web application reverse engineering approach," Int. Arab J. Inf. Technol., vol. 7, no. 2, pp. 167-176, 2010.
- [3] E. Bertino and B. Catania, "Integrating XML and databases," IEEE Inter-
- net Comput., vol. 5, no. 4, pp. 84–88, Jul. 2001.
 [4] F. Bobillo and U. Straccia, "Fuzzy ontology representation using OWL2," Int. J. Approx. Reasoning, vol. 52, no. 7, pp. 1073-1094, 2011.
- [5] F. Bobillo, "Managing vagueness in ontologies," Ph.D. dissertation, Dept. Ciencias Computación e I. A., Univ. Granada, Granada, Spain, 2008.
- [6] R. Conrad, D. Scheffner, and J. C. Freytag, "XML conceptual modeling using UML," in Proc. Int. Conf. Conceptual Modeling, 2000, pp. 558-571.
- [7] M. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N. Subramanian, "XPERANTO: Middleware for publishing objectrelational data as XML documents," in Proc. 26th Int. Conf. Very Large Data Bases (VLDB), 2000, pp. 646–648.[8] A. Gaurav and R. Alhajj, "Incorporating fuzziness in XML and mapping
- fuzzy relational data into fuzzy XML," in Proc. ACM Symp. Appl. Comput., 2006, pp. 456-460.
- M. Hacherouf, S. N. Bahloul, and C. Cruz, "Transforming XML doc-[9] uments to OWL ontologies: A survey," J. Inf. Sci., vol. 41, no. 2, pp. 242–259, 2015.
- [10] G. Kappel, E. Kapsammer, and W. Retschitzegger, "Integrating XML and relational database systems," World Wide Web, vol. 7, no. 2, pp. 343-384, 2004.
- [11] W. J. Li, X. Chen, and Z. M. Ma, "Reengineering fuzzy nested relational databases into fuzzy XML model," in Proc. IEEE Int. Conf. Fuzzy Syst., Jul. 2014, pp. 1612–1617.
- [12] T. Lukasiewicz and U. Straccia, "Managing uncertainty and vagueness in description logics for the semantic Web," Web Semantics, Sci., Serv. Agents World Wide Web, vol. 6, no. 4, pp. 291–308, 2008.
 [13] Z. M. Ma, J. Liu, and L. Yan, "Fuzzy data modeling and algebraic opera-
- tions in XML," *Int. J. Int. Syst.*, vol. 25, no. 9, pp. 925–947, 2010. [14] Z. M. Ma, J. Liu, and L. Yan, "Matching twigs in fuzzy XML," *Inf. Sci.*,
- vol. 181, no. 1, pp. 184–200, 2011. [15] Z. M. Ma and L. Yan, "Fuzzy XML data modeling with the UML and relational data models," Data Knowl. Eng., vol. 63, no. 3, pp. 972-996, 2007
- [16] Z. M. Ma and L. Yan, "Modeling fuzzy data with XML: A survey," Fuzzy Sets Syst., vol. 301, pp. 146-159, Oct. 2016.
- [17] T. Naser, R. Alhajj, and M. Ridley, "Flexible approach for representing object oriented databases in XML format," in Proc. 10th Int. Conf. Inf. Integrat. Web-Based Appl. Serv., 2008, pp. 430-433.
- [18] T. Naser, K. Kianmehr, R. Alhajj, and M. J. Ridley, "Transforming objectoriented databases into XML," in Proc. IEEE Int. Conf. Inf. Reuse Integr., Aug. 2007, pp. 600-605.
- [19] A. Nierrman and H. V. Jagadish, "ProTDB: Probabilistic data in XML," in Proc. 28th Int. Conf. Very Large Data Bases, 2002, pp. 646-657.
- [20] B. Oliboni and G. Pozzani, "Representing fuzzy information by using XML schema," in Proc. Database Expert Syst. Appl., 2008, pp. 683-687.
- [21] OWL 2 Web Ontology Language Direct Semantics (Second Edition). [Online]. Available: http://www.w3.org/TR/2012/REC-owl2-directsemantics-20121211/
- [22] OWL 2 Web Ontology Language Document Overview (Second Edition). [Online]. Available: https://www.w3.org/TR/owl2-overview/
- [23] OWL 2 Web Ontology Language New Features and Rationale (Second Edition). [Online]. Available: http://www.w3.org/TR/2012/REC-owl2-newfeatures-20121211/
- [24] F. F. F. Peres and R. dos S. Mello, "A rule-based conversion of an objectoriented database schema to a schema in XML schema," in Proc. IEEE 4th Int. Conf. Digit. Inf. Manag., Nov. 2009, pp. 1-7.
- [25] P. Senellart and S. Abiteboul, "On the complexity of managing probabilistic XML data," in Proc. 26th ACM SIGMOD-SIGACT-SIGART Symp. Principles Database Syst., 2007, pp. 283-292.
- [26] G. Stoilos, G. Stamou, and J. Z. Pan, "Fuzzy extensions of OWL: Logical properties and reduction to fuzzy description logics," Int. J. Approx. Reasoning, vol. 51, no. 6, pp. 656–679,2010.
- [27] M. Van Keulen, A. de Keijzer, and W. Alink, "A probabilistic XML approach to data integration," in Proc. Int. Conf. Data Eng., 2005, pp. 459-470.
- [28] C. A. Yaguinuma, M. T. Santos, H. A. Camargo, M. C. Nicoletti, and T. M. Nogueira, "A meta-ontology for modeling fuzzy ontologies and its use in classification tasks based on fuzzy rules," *Int. J. Comput. Inf. Syst.* Ind. Manage. Appl., vol. 6, pp. 89-101, Jun. 2014.

- [29] L. Yan, Z. M. Ma, and J. Liu, "Fuzzy data modeling based on XML schema," in Proc. ACM Symp. Appl. Comput., 2009, pp. 1563-1567.
- [30] L. Yan and Z. M. Ma, "Formal translation from fuzzy EER model to fuzzy XML model," Expert Syst. Appl., vol. 41, no. 8, pp. 3615-3627, 2014.
- [31] L. A. Zadeh, "Fuzzy sets," Inf. Control, vol. 8, no. 3, pp. 338-353, Jun. 1965.
- [32] L. A. Zadeh, "Fuzzy sets as a basis for a theory of possibility," Fuzzy Sets Syst., vol. 1, no. 1, pp. 3-28, 1978.
- [33] F. Zhang, L. Yan, Z. M. Ma, and J. Cheng, "Knowledge representation and reasoning of XML with ontology," in Proc. ACM Symp. Appl. Comput., 2011, pp. 1705-1710.
- [34] F. Zhang, Z. M. Ma, G. Fan, and X. Wang, "Automatic fuzzy semantic Web ontology learning from fuzzy object-oriented database model," in Proc. Int. Conf. Database Expert Syst. Appl., 2010, pp. 16-30.
- [35] F. Zhang, Z. M. Ma, and L. Yan, "Construction of fuzzy ontologies from fuzzy XML models," Knowl.-Based Syst., vol. 42, pp. 20-39, Apr. 2013.
- [36] F. Zhang and Z. M. Ma, "Representing and reasoning about XML with ontologies," Appl. Intell., vol. 40, no. 1, pp. 74-106, 2014.

WEIJUN LI received the M.S. degree from Northwest University, Xi'an, China. He is currently pursuing the Ph.D. degree in computer application technology at Northeastern University, Shenyang, China. His current research interests include knowledge engineering and the Semantic Web.

LI YAN received the Ph.D. degree from Northeastern University, Shenyang, China. She is currently a Full Professor with the Nanjing University of Aeronautics and Astronautics, Nanjing, China. She has authored or co-authored over 60 papers on these topics. She is also the author of two monographs published by Springer. Her research interests include databases, XML, and the Semantic Web, with a special focus on spatiotemporal information and uncertainty.

FU ZHANG received the Ph.D. degree from Northeastern University, Shenyang, China, in 2011. He is currently an Associate Professor with the School of Computer Science and Engineering, Northeastern University. He has authored over 40 refereed international journals and conference papers. His research has been published in highquality international conferences, e.g., CIKM and DEXA, and in highly cited international journals, e.g., Fuzzy Sets and Systems, Knowledge-Based

Systems, and Integrated Computer-Aided Engineering. He has also authored two monographs published by Springer. His current research interests include knowledge graph, the Semantic Web, and knowledge representation and reasoning.

XU CHEN received the Ph.D. degree from Northeastern University, Shenyang, China, in 2017. He is currently a Senior Engineer with North Minzu University, Yinchuan, China. His current research interests include knowledge engineering and spatiotemporal data management.