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ABSTRACT The proliferation of ubiquitous Internet and mobile devices has brought about the exponential
growth of individual data in big data era. The network user data has been confronted with serious privacy
concerns for extracting valuable information during the process of data mining. Differential privacy preserva-
tion is a new paradigm independent of the adversaries’ prior knowledge, which protects sensitive data while
maintaining certain statistical properties by adding random noise. In this paper, we put forward a differential
privacy preservation multiple cores DBSCAN clustering schema based on the powerful differential privacy
and DBSCAN algorithm for network user data to effectively leverage the privacy leakage issue in the process
of data mining, enhancing data clustering efficaciously by adding Laplace noise. We perform extensive
theoretical analysis and simulations to evaluate our schema and the results show better efficiency, accuracy,
and privacy preservation effect than previous schemas.

INDEX TERMS Privacy preservation, differential privacy, MCDBSCAN clustering, data mining, Laplace
noise.

I. INTRODUCTION
Internet of Things (IoT) is immersing into our daily lives and
providing more comprehensive intelligent services [1]–[3].
Coupled with social networks, the explosive increasing smart
devices exponentially bring about a surge of personal user
data. The flourish of IoT and database techniques make the
data collection no longer just the work of statistics depart-
ment and the government. User data from all kinds of social
network sites, shopping sites and search engines in all walks
of life can be further analyzed and utilized through data
mining by individuals and organizations. Unfortunately, with
private or sensitive information, raw data will inevitably be
in exposure and privacy leakage will be caused during this
process [4]–[6]. On the other hand, in many data publish-
ing applications which directly present the data to users in

database, if data publishers do not take appropriate measures
for data protection, sensitive datamay be leaked. For instance,
for the product information released by an enterprise or a
financial annual report issued by a listed company, if the
data is not carefully discriminated before publishing, it will
give commercial competitors an opportunity to utilize these
information. Therefore, it is a great challenge to provide
privacy guarantee without significant accuracy compromise
in data mining through privacy preservation techniques [7].
Privacy preservation for network user data has been received
wide attentions by the society and academia in recent
years [8]–[10].

Existing privacy preservation techniques mainly include
data encryption, limited data publishing and data distor-
tion, etc. Data encryption [11] adopts encryption technique
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in the data mining process to hide sensitive data, which
is often used in distributed environments. Limited data
publishing [12] publishes data conditionally on specific cir-
cumstances in the way of publishing certain values of the
data, generalizing or anonymizing the data, etc. Data dis-
tortion technique [13] distorts sensitive data while keeping
some data or data attributes intact by adding noise, making
exchange and randomization, blocking, etc. It may ensure
that the processed data can still preserve certain statistical
properties for data mining and other operations.

Differential privacy is a new paradigm of privacy tailored
for statistical databases independent of the adversaries’ back-
ground knowledge or computational power, which defines
a rigorous attack model, reducing the risk of privacy dis-
closure and meanwhile ensuring the availability of data
successfully [14], [15]. It is also a kind of data dis-
tortion technique. Based on differential privacy and data
mining techniques, many algorithms have been presented,
such as Differential Privacy Preservation K-means clustering
method (DP-Kmeans), Improved Differential Privacy Preser-
vation K-means clustering method (IDP-Kmeans) [16], Dif-
ferential Privacy Preservation DBSCAN clustering method
(DP-DBSCAN) [17], etc. These algorithms can achieve effec-
tive clustering via adding noise that conforms to differential
privacy. However, when IDP-Kmeans faces a dataset with
an unknown number of clusters and uneven density distribu-
tion, the clustering effect decreases. DP-DBSCAN is more
time-consuming with less clustering for larger datasets and
smaller privacy budget parameters. Therefore, it is essential
to develop a novel data mining technique for privacy preser-
vation to solve these problems.

In this paper, we focus on the differential privacy preser-
vation in clustering analysis of network user data. By virtue
of the merits of differential privacy which guarantees the
data privacy independent of prior knowledge, we pro-
pose a Differential Privacy Preservation Multiple cores
DBSCAN (DP-MCDBSCAN) clustering schema based on
DP-DBSCAN algorithm for the network user data to effec-
tively solve the privacy leakage in data mining. Specifically,
we establish a result set of initial core points by optimizing the
selection of the initial core points, and then select the desired
core points from the result set for clustering.

The main contributions of this paper are summarized as
follows.

1) We propose a DP-MCDBSCAN schema in clustering
analysis for network user data to improve the clustering
accuracy and data security. Privacy analysis demon-
strates that our DP-MCDBSCAN clustering schema
can not only meet the publishers’ query needs but also
prevent the data of publishers from being attacked.

2) We propose a multiple cores DBSCAN clustering algo-
rithm based on differential privacy. Different from
DP-DBSCAN, DP-MCDBSCAN solves the random-
ness and blindness of DP-DBSCAN effectively by
optimizing the selection of the initial core points. The
proposed algorithm also shows obvious advantages

when dealing with datasets with larger scale and
significant density distributions as well as smaller pri-
vacy budget parameters.

3) We prove the correctness of our schema and perform
extensive experiments to validate our algorithm. The
results indicate that our algorithm is superior to other
algorithms in terms of efficiency, accuracy, and privacy
preservation effect.

The rest of the paper is organized as follows. Section II
reviews the related work. In Section III, we give the prelim-
inary knowledge about differential privacy and DBSCAN.
Section IV proposes the DP-MCDBSCAN clustering
schema. In Section V, experiments are given to verify the
effectiveness of our proposed schema. Finally, we draw our
conclusions and give the future work in Section VI.

II. RELATED WORK
A. DIFFERENTIAL PRIVACY PRESERVATION
Most of the existing research on differential privacy focused
on theoretical properties of their proposed model to protect
users’ privacy.

McSherry [18] achieved a differential privacy preser-
vation algorithm for sensitive data based on Language
INtegrated Queries (LINQ), and developed the Privacy
INtegrated Queries (PINQ) system which can provide some
secondary development interfaces. Mohan et al. [19] pre-
sented GUPT (which is a Sanskrit word meaning ‘Secret’)
which combines the data sensitivity and timeliness to grad-
ually reduce the privacy budget. Blum et al. [20] proposed
distributed differential privacy preservation algorithm based
on interval queries and half-space queries.

Fletcher and Islam [21] proposed a differential privacy
decision making forest algorithm which significantly reduces
the query times and sensitivity. This approach in turn reduces
the amount of noise that must be added to protect privacy,
improving the availability of data.

Several works studied differential privacy in practical
applications. Zhu et al. [22] proposed a neighbor coop-
erative filtering algorithm for the privacy leaking prob-
lem of K-means algorithm through differential privacy.
Chen et al. [23] applied differential privacy to protect
the transportation information in public transportation.
Gotz et al. [24] combined differential privacy with the pub-
lishing algorithm for search log.

These algorithms effectively protect the privacy of the data.
However, due to the characteristics of differential privacy,
the amount of noise added will inevitably affect the availabil-
ity of data. Therefore, how to balance the privacy preservation
and data availability is the focus of our schema in this paper.

B. CLUSTERING ANALYSIS WITH PRIVACY PRESERVATION
Privacy preservation has become a critical concern in data
mining [25]–[27]. The existing privacy preservation tech-
niques in clustering analysis include random perturbation,
data rotation, data exchange, etc.
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Mukherjee et al. [28] proposed a data perturbation method
based on Fourier transform, which guarantees that the
Euclidean distance of data is invariant before and after the
transformation. This approach preserves the privacy and
maintains the statistical properties of data based on distance
information. However, when the distribution of the dataset is
unknown or non-uniform, the distance difference threshold of
the algorithm is difficult to set.

Nayahi and Kavitha [29] presented an anonymous algo-
rithm based on clustering and elastic-similar attacks as well
as probabilistic reasoning attacks. This approach distributes
the anonymous data in the Hadoop Distributed File Sys-
tem (HDFS) to achieve a better tradeoff between privacy and
data availability.

Yu et al. [30] proposed an outlier elimination K-means
algorithm based on differential privacy. Different from IDP-
Kmeans [16], they utilized outlier algorithm to eliminate the
interference of the outlier points, and then selected clustering
core to make the core points more appropriate which reduced
iteration times. However, it still can not handle the dataset
with unknown cluster number.

In this paper, we propose a DP-MCDBSCAN privacy
preservation clustering schema based on differential privacy,
which can better solve the balance problem between privacy
metrics and data availability. Under the strict privacy disclo-
sure risk measurements, our schema achieves higher privacy
standard by means of adding small amount of noise.

III. PRELIMINARIES
A. DIFFERENTIAL PRIVACY
Existing research on differential privacy mainly focused on
two aspects: differentially private data publishing, and differ-
entially private data analysis. In this paper, we mainly discuss
the privacy preservation at data publishing.

During the data publishing, differential privacy disturbs
the source data by adding noise and maintains some of the
data and its specific attributes unchanged, so that the mined
data can still maintain a certain statistical properties in some
aspects [31]. The greatest advantage of differential privacy
preservation is that the amount of noise added is independent
of the dataset scale, and even a large dataset requires only
a small amount of noise to maintain a high level of privacy
preservation.

In differential privacy preservation [14], [15], the amount
of noise added is related to the privacy budget parameter ε.
He et al. [32] did a further exploration on choosing the appro-
priate privacy budget parameter. The method of choosing ε

in our experiments is based on [32]. At the same time, since
adding or deleting a piece of data record does not affect the
query result, the attackers cannot judge the sensitive attributes
of the unknown data record by the known one.

In this section, we introduce the basic principles of differ-
ential privacy used in this paper.
Theorem 1 [15]: Let D and D′ be two neighboring datasets

if they differ in at most one record. Range(M ) stands for

FIGURE 1. Differential privacy disclosure probability curve of
dataset D and D′ .

the range of a random function M , Pr[Ed] stands for the
disclosure risk probability of event Ed , ε is the privacy budget
parameter. If M provides ε-differential privacy, then for all
SM⊆Range(M ),

Pr[M (D) ∈ SM ] ≤ exp(ε)× Pr[M (D′) ∈ SM ]. (1)

ε-differential privacy provides freedom to violate strict
differential privacy for some low probability events. The
disclosure risk probability of data depends on the random
function M , and the choice of the random function is inde-
pendent of the attackers’ background knowledge.

Fig. 1 depicts the privacy disclosure risk probability curve
for two neighboring datasets D and D′ in the context of
satisfying ε-differential privacy preservation.
Definition 1 [15] (Sensitivity): Sensitivity refers to the

maximum change for the query results by deleting any
records in the dataset. For a query function f :D→ Rk , where
R is an abstract range, k is the dimension ofR, the sensitivity
of f is defined as

1f = maxD1,D2 ||f (D1)− f (D2)||1, (2)

where D1 and D2 are two neighboring datasets.
The Laplace mechanism firstly proposed by

Dwork et al. [14] can provide a feasible method of adding
noise which is the basis of differential privacy preservation.
Definition 2 [14] (Laplace Noise): Let b = 1f

ε
, ε is the

privacy budget parameter, then the Laplace noise function is
defined as

Laplace(b) = exp(−
|x|
b
). (3)

The standard deviation of the function is a symmetric
exponential distribution with

√
2b parameter. The probability

density function of Laplace noise with the position parame-
ter 0 and the scale parameter b is defined as

P(x) =
exp(− |x|b )

2b
. (4)

The added noise is proportional to the value of 1f and
inversely proportional to ε, that is, when 1f is small,
the method performs better because less noise is added.When
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FIGURE 2. Probability density function curve of Laplace noise.

ε is reduced, the curve of Laplace(1f
ε
) becomes flat, which

means that the amplitude of the noise is expected to become
larger. When ε is fixed, the curve corresponding to the high
sensitivity function f is more flat, the expected amplitude
change of the nose is also large. The probability density
function curve of Laplace noise is shown in Fig. 2.
Theorem 2 [14]: Let b=1f

ε
, f is the query function, D is

the dataset, and the query result is f (D). By adding Laplace
noise preservation privacy to the query result, the response
value of the random function M is

M (D) = f (D)+ Laplace(b)k , (5)

which satisfies ε-differential privacy preservation.

B. DBSCAN CLUSTERING
DBSCAN (Density Based Spatial Clustering of Applications
with Noise) is a typical clustering algorithm based on density
in data mining, which can distinguish clusters with arbi-
trary shape. The clustering results of DBSCAN depend on
the selection of parameters Eps (neighborhood radius) and
MinPts (the minimum number of objects within the neighbor-
hood radius of core object). A clustering category is obtained
by dividing the samples with connected density into one
class. By classifying all the groups of samples with connected
density into different categories, we get all the final clustering
results.

In the following, we give some concepts of DBSCAN
algorithm used in this paper. For more details, please refer
to [33].
Definition 3 (Eps-Neighborhood): The set of points within

a given object radius Eps is called the Eps-neighborhood
of the object in dataset D, denoted by NEps(xj)={xi ∈
D|distance(xi, xj) ≤ Eps}.
Definition 4 (Core Object): For any object xj ∈ D, if there

are at least MinPts objects in its Eps-neighborhood , that is,
if |NEps(xj)| ≥ MinPts, then xj is the core object .
Definition 5 (Directly Density-Reachable): An object xi is

said to be directly density-reachable from an object xj if xi is
within the Eps-neighborhood of xj, and xj is a core object .
Definition 6 (Density-Reachable): xi is density-reachable

to xj if there exists an object chain p1, p2, . . . , pT , such that

p1 = xi, pT = xj and pk+1 is directly density-reachable
from pk .
Definition 7 (Density-Connected): An object xi is density-

connected to object xj with respect to Eps andMinPts if there
exists a core object xk such that both xi and xj are directly
density-reachable from xk with respect to Eps and MinPts.

IV. DIFFERENTIAL PRIVACY MCDBSCAN
CLUSTERING SCHEMA
A. SYSTEM ARCHITECTURE
We consider a scenario of clustering job-seeking information.
Here we use a information set including 10 million high-
profile resumes as a complete database, denoted as D =
{D1,D2, . . . ,Dm}. A resume includes multiple attributes
such as education, salary, position, company size, etc., where
part of the resumes contain full fields and part of the resumes
exist blank items. In some scenarios, analysts want to learn,
encode and test the data, mine the direction and law of the
position path to form an algorithm model, and then predict
the blank information in the dataset.

Analysts can sort out and mine some of these attributes
separately in mining data. Each attribute can be used as
a dimension, hence, this is a multi-dimensional clustering
model. For example, analysts can only mine two attributes,
such as education and salary. First, the data is preprocessed
and converted into the data in interval [0, 1] by normalization
operation. Then our DP-MCDBSCAN algorithm can be used
to carry out the mining process. Each resume is an object
p in dataset D. Through pre-setting the Eps-neighborhood ,
the data density near each p can be calculated, where there
are only the two dimensions of education and salary. The
dataset is divided into different clusters according to the
degree of density aggregation, and the results can be obtained
after further sorting. The vacant salary item can be predicted
according to education degree.

There are some sensitive attributes (such as the job
seekers’ name, age, contact, etc.) in those resumes which
will inevitably leak in the mining process if not protected
well. To solve the problem, we introduce differential privacy
preservation to DBSCAN clustering algorithm, and set the
corresponding privacy budget parameter ε according to the
required preservation level. After adding a certain amount
of noise, analysts are unable to mine the sensitive attributes
through the known information. One of the great advantages
is that the amount of noise added has nothing to do with the
size of the dataset. Even for 100,000 copies of the resumes,
a higher level of preservation can also be achieved through a
small amount of noise.

By summing up the above application scenarios, we can
abstract the general scenario in which our schema applies.
The system architecture of DP-MCDBSCAN schema is
shown in Fig. 3. In the following, we depict the principle of
our schema.

As can be seen from Fig. 3, by means of computers,
mobile phones, pad and other intelligent terminals, users
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FIGURE 3. System architecture of DP-MCDBSCAN schema.

using a variety of services will produce massive data which
are stored in the service provider servers (SPs). In order
to find the rules from the massive data, predict the user’s
behavior preferences and do some statistics, SPs regularly
publish and update the datasets. Meanwhile, SPs add Laplace
noise to protect the users’ privacy before publishing the data.
Faced with publishing data, the required results are obtained
through the query functions and then clustered employing
our DP-MCDBSCAN algorithm. For the sake of continuous
validity of privacy preservation, the users need to wait for
the publishers to update the datasets before the number of
queries reaches the upper limit. Finally, the clustering results
are analyzed to obtain the rules of statistics and predict the
behavior preference of users.

B. DP-MCDBSCAN CLUSTERING
1) DP-DBSCAN ALGORITHM
Our DP-MCDBSCAN algorithm is proposed on the basis of
DP-DBSCAN algorithm [17]. In the following, we give a
briefly introduction of DP-DBSCAN algorithm.

In DP-DBSCAN algorithm, a cluster can be uniquely iden-
tified by any of the core objects. That is, for any data object p
that satisfies the core object condition, all the sets of data
objects Oi in dataset D density-reachable from p constitute
a complete clustering C and p ∈ C .
DP-DBSCAN clustering algorithm calculates the Eucli-

dean distance between two points in the Eps-neighborhood
from the core objects, and determines whether the two points
are density-reachable to form a new cluster. For a class of

queries, if an exact distance between two points is published
in the cluster analysis, the attackers can infer the specific
information between the two points from the known object
radius Eps, hence the sensitive attributes have the revealing
possibility.

Based on the privacy preservation data analysis [34],
DP-DBSCAN adds noise to each dimension of the direct
density-reachable points in the dataset by differential privacy
technique so that the published data can conform to the
privacy budget requirement, thereafter the privacy of the data
is protected during clustering.

2) DP-MCDBSCAN ALGORITHM
Since DP-DBSCAN publishes the approximation of data
points density, the attackers cannot deduce the sensitive prop-
erties of the data points even if they grasp some informa-
tion through the knowledge background. However, when the
privacy budget parameter ε is small (i.e., the added noise is
too large), the accuracy of DP-DBSCAN clustering algorithm
will decrease. Moreover, when the data size is large and the
density is non-uniform, the clustering efficiency will also
decrease.

In order to solve the drawbacks of DP-DBSCAN where
the initial core object is randomly selected, we propose a
DP-MCDBSCAN (Differential Privacy Preservation Multi-
core DBSCAN Clustering) algorithm which determines mul-
tiple core objects as the initial object to cluster through the
furthest distance selection method. Our algorithm ensures
that the initial cluster centers are dispersed as far as possible
so that the initial core objects selected are not in the same
cluster, reducing the influence of the initial core objects
selection on the clustering result.

Our DP-MCDBSCAN algorithm comprises the following
seven steps.
Step 1: Let X={x1, x2, . . . , xn} and Y={y1, y2, . . . , yn}

be two points directly density-reachable in dataset D with
n-dimensional space [0, 1]n.

In the dataset with n-dimensional space [0, 1]n, the point
distance between X and Y is

dis(X ,Y ) =
n∑
i=1

(xi, yi)2.

Let b = 1f
ε
. Add random noise to each dimension to get

dis′(X ,Y ) =
n∑
i=1

(xi, yi)2 + Laplace(b),

where

Laplace(b) = exp(−
|x|
b
) = exp(−

x × ε

1f
).

Repeat the above process until all points are already con-
tained in any cluster or are marked as "noise", the algorithm
ends.
Step 2: Select the two distance-farthest core points P andQ

from N samples of dataset.
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Step 3: d(P,Q) is the distance of the encrypted
points P and Q, make the following decision:

1) If d(P,Q) > Eps, continue.
2) If d(P,Q) ≤ Eps, turn to Step 6.
Step 4: Determine whether the core object comes up

through above steps. If it is the core object, it will be added to
the core objects set Core(); otherwise, this point is removed,
and the dataset sample point is changed into N←N−1.
Step 5: According to the number of core objects in Core()

set, denoted by count(Core()), do the following:
1) If count(Core())=0, go to Step 2 and find the initial

objects again.
2) If count(Core())=1, find the furthest point from the first

point in the remaining objects, and then go to Step 3.
3) If count(Core())=2, find the sample point P3 satis-

fying the following formula in the remaining sample
points:

d(P1,P3) ∗ d(P2,P3) ≥ d(P1,Pi) ∗ d(P2,Pi)

where Pi is any point in the remaining sample points
except P3.
Then go to Step 3 to determine the relationship between
P3 and all points in Core(). If its distance from any
point in Core() is less than or equal to Eps, go to Step 6
directly.

4) If count(Core())>2, find the point Pj satisfying the
following formula in the remaining sample points:

d(P1,Pj) ∗ d(P2,Pj) ∗ . . . ∗ d(Pcount(Core()),Pj)

≥ d(P1,Pi) ∗ d(P2,Pi) ∗ . . . ∗ d(Pcount(Core()),Pi)

Then go to Step 3 to determine the relationship between
dj and all points in Core(). If the distance from any
point in Core() is less than or equal to Eps, go to Step 6
directly.

Step 6: Find all the directly density-reachable points in the
Eps-neighborhood of each core object in Core().
Step 7: Find the maximum density connected set by the

directly density-reachable points of the object in Core().
The detailed pseudocode of our DP-MCDBSCAN is elab-

orated in Algorithm 1.

3) CORRECTNESS OF THE ALGORITHM
In the following, we give the correctness proof of
DP-MCDBSCAN.
Theorem 3: DP-MCDBSCAN algorithm satisfies

ε-differential privacy preservation.
Proof: Sensitivity refers to the biggest change to the

query result caused by deleting any record in the dataset,
which is the nature of the query function f itself, regardless
of the size of the dataset. The sensitivity 1f of most query
function is smaller. Specially, sensitivity 1f = 1 for the
counting query function.

LetD1 andD2 be the adjacent datasets with only one record
difference.

Algorithm 1 DP-MCDBSCAN
Input: D={P1,P2, . . . ,Pn}: a dataset of n points in d dimensions,

Eps: neighborhood radius, MinPts: the minimum number of
points in the neighborhood radius of the core points, ε: privacy
budget parameter.

Output: n clusters C = {C1, . . .Cn}.
1: Add noise to the distance of data points in D, calculate the

distance of the data points after adding noise:

dis′ =
n∑
i=1

(xi, yi)2 + Laplace(a),

Laplace(a)=exp(− x×ε
1f )

2: MCDBCAN(D, Eps, MinPts) {
3: C = 0
4: for each point P in dataset D do
5: NeighborPts = regionQuery(P,Eps)
6: end for
7: Add all core points to Dcore set
8: Select the farthest core points p1, q1 from Dcore
9: Add p1, q1 to Core() set
10: while Dcore! = null do
11: for each point P in Dcore do
12: if dist(P,P′) < Eps then
13: Delete P from Dcore
14: end if // P′ is any point in Dcore
15: end for
16: Select the maximum point satisfied

count(core)∑
i=1

dist(P,P′)

to join Core() set
17: end while
18: for each point P in core do
19: C=next cluster
20: expandCluster(P,NeighborPts,C,Eps,MinPts)
21: end for
22: for each point P in dataset D do
23: Mark P as "NOISE"
24: end for
25: }
26: expandCluster(P, NeighborPts, C , Eps, MinPts) {
27: Add P to cluster C
28: for each point P′ in NeighborPts do
29: if P′ is not visited then
30: Mark P′ as "visited"
31: end if
32: if P′ is not yet a member of any cluster then
33: Add P′ to cluster C
34: end if
35: end for
36: }
37: regionQuery(P, Eps) {
38: Return all points within P′s Eps-neighborhood

(including P)
39: }

When adding or deleting a record in n-dimensional
space [0, 1]n, the sensitivity of each dimension 1f = 1.

The sensitivity of the whole query sequence 1f = n.
Let Par(D1) and Par(D2) denote the clustering results after

adding the noise ofD1 andD2 respectively, and S denotes any
kind of clustering.
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Then, according to Theorem 1 and Theorem 2, we have

Pr[Par(D1) = S]
Pr[Par(D2) = S]

≤ exp(ε).

Thus, we proved that DP-MCDBSCAN algorithm satisfies
ε-differential privacy preservation.

C. PRIVACY ANALYSIS
In this section, we elaborate the privacy analysis of our
DP-MCDBSCAN schema. We assume that the analysts are
semi-trusted. The data publishers should not only be met
their query needs but also prevent users’ privacy from being
attacked.

1) PUBLISHERS
Data publishers need to publish data frequently without
knowing the analysts’ background. In order to prevent ana-
lysts from finding individual differences by differentiating
data published at different time points and accessing to
individual data further, the noise needs to be added. Thus,
each published data does not affect the query results due
to the existence of a record. The Laplace noise added to
DP-MCDBSCAN is the effective noise calculated from the
sensitivity of the query function.

2) ANALYSTS
The analysts send query through the query function and
receive the result. Usually, they do not contact the users or the
data publishers. They only employ the query function to
get the statistical rules in the data. After the processing of
DP-MCDBSCAN, they can only get the noised data, and
can’t identify individual differences by the knowledge back-
ground. Even though they have mastered part of the user’s
information by linking to other databases, no other user data
can be inferred because they do not know the amount of noise
added.

3) DIFFERENTIAL PRIVACY
In our schema, Laplace noise is added to every query. No one
knows the amount of noise added, and therefore they cannot
infer the personal data by removing the noise. Hence, differ-
ential privacy can perfectly protect the security of a single
query. The privacy budget parameter ε is used to balance
the privacy preservation level and data accuracy. A smaller
privacy budget parameter ε means higher preservation level
and lower data accuracy.

However, different privacy has its own limitations. As the
number of queries increases, the level of privacy preservation
will be reduced. Although the answer to a single query is
accordance with ε-differential privacy, we can’t implement it
when many queries are answered unless they are manipulated
on different disjoint subsets of dataset. In the setup of our
schema, the queries are made on a random sample of the
original data which is constantly changing. If the data subset
of the query is somewhat non-trivial, they will overlap each
other and interconnected.

In order to ensure the privacy of both multiple queries and
single query, we have chosen to set the upper limit K of the
queries when the original data set is not large enough.

For the same data subset, when the query reaches the upper
limit K , the server will suspend the service and wait until all
data is updated. When the update is complete, the new dataset
will be a completely different set of previous dataset. At this
moment, the query counter is reset and the service is opened
again.

V. EXPERIMENTS
In this section, we implement DP-MCDBSCAN and evaluate
its performance via extensive experiments.

A. EXPERIMENT SETUP
In order to evaluate the performance of our DP-MCDBSCAN
algorithm, we conduct the experiments on four datasets of
UCI [35] with different database properties and scale: Wine,
Haberman, Waveform Database and MAGIC . The details of
the datasets are shown in Table I, which includes their alias,
data type, number of attributes and records.

TABLE 1. Experimental Dataset Characteristics

Firstly, the datasets are preprocessed to be normalization
and the values of each attribute are controlled within the same
interval. In order to minimize the impact of parameters Eps
andMinPts, the preprocessing takes 1/25 of the dataset scale
as the value of MinPts and Eps is adjusted gradually with a
gradient of 0.1. The optimal values of Eps andMinPts of each
dataset are determined by observing the clustering effect.
The privacy level is controlled under the determined Eps and
MinPts values, thus the clustering validity of the algorithm
under different privacy levels is evaluated.

In our experiments, the average results are reported by
running each test dataset one hundred times independently,
and all the experiments are run on Intel (R) Core (TM)
i7-4700MQ CPU@3.4GHz with 8GB memory in operating
system Win10 X64 Ultimate.

B. EVALUATION METRICS
1) F-MEASURE INDEX
F-measure [36] is one of the commonly used evaluation
indexes of clustering results, which canmeasure the availabil-
ity of clustering results. If the clustering results of two clus-
tering algorithms are calculated by F-measure, the F value
will be proportional to the similarity of the results.
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The formula for the F-measure evaluation index is as
follows:

P = Precision(Ci,Dj) =
nij
|Dj|

(6)

R = Recall(Ci,Dj) =
nij
|Ci|

(7)

Fi =
2 ∗ P ∗ R
P+ R

(8)

where Ci and Dj are the clustering results of two clustering
algorithms, nij denotes the number of objects at the intersec-
tion of cluster Ci of Dj, P is the precision, and R is the recall
rate.

A higher F-measure value means the algorithm has more
clustering availability. In this paper, the F-measure value is
used to evaluate the clustering results of DP-MCDBSCAN
and DP-DBSCAN algorithms. We run the two algorithms
respectively for clustering by setting up different privacy bud-
get parameter ε. The clustering results are compared with the
ones provided by the original dataset to judge the availability
of final results.

2) CALINSKI-HARABASZ INDEX
Calinski-Harabasz [37] is also an evaluation index
(hereinafter referred to as CH index for short) to evaluate the
validity of clustering. CH index is the ratio of the closeness
of the class described by the deviation matrix within the class
and the separation degree of the classes described by the
deviation matrix between the classes. CH index is defined
as follows:

CH (K ) =
trB(k)/(k − 1)
trW (k)/(n− k)

(9)

where n represents the number of clustering, k represents the
number of current classes, trB(k) represents the trace of the
deviation matrix between the classes, and trW (k) represents
the trace of the deviation matrix within the class.
trB(k) refers to the sum of squares of the distance between

the center points of each cluster and the center point of the
dataset, which is used to measure the separation degree of
the dataset. trW (k) refers to the sum of squares between the
points in the class and the center of the cluster, which is used
to measure the closeness of the cluster. CH is the ratio of
those. The larger the CH value, the more compact the cluster
in the class is, themore dispersed the cluster between the class
is, the better the clustering validity is.

C. ANALYSIS OF EXPERIMENTAL RESULTS
We perform differential privacy preservation clustering by
running the two algorithms on dataset D2, and the clustering
results are shown in Figs. 4 and 5.

Fig. 4 is the results of DP-DBSCAN clustering and Fig. 5 is
the results of the DP-MCDBSCAN clustering. In both fig-
ures, the red hollow circles represent the noise points, and
different colors represent different clusters. The cross sym-
bols indicate the core points in the clusters. The solid dots
indicate the boundary points of each cluster.

FIGURE 4. Clustering results of DP-DBSCAN algorithm.

FIGURE 5. Clustering results of DP-MCDBSCAN algorithm.

FIGURE 6. Run time comparison of two algorithms on D4.

It can be seen from the figures that both the two methods
can accurately distinguish the core points, boundary points
and noise points of each cluster. However, because the way
of the initial core point selection of the two algorithms is
different, the effect of the cluster classification formed by
DP-MCDBSCAN is different from that of DP-DBSCAN.
Since DP-MCDBSCAN is clustered initially via multi-core
clustering, the number of the cluster classification formed
by DP-MCDBSCAN is more than that of DP-DBSCAN, and
the classification is more detailed. DP-MCDBSCAN can still
accurately distinguish the noise points for the datasets with
non-uniform density. Thus, it is not easy to miss some cases
where the distribution is similar but different clusters are
clustering.

Fig. 6 shows the comparison of two algorithms in terms of
run efficiency using the subset of dataset D4 with different
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data volumes. The two algorithms is executed numerous
times in D4 respectively. Comparing the time efficiency
of the two algorithms, it can be seen that the time of
DP-MCDBSCAN is slightly higher than that of the original
DP-DBSCAN with smaller data. The main reason is that the
basic time in the initial determination of multiple core points
is relatively longer than the total time spent.

However, when the dataset reaches a certain scale, here
the data quantity is 1.67 ∗ 104, the run time superiority of
DP-MCDBSCAN appears, which is that after the initial core
points is determined, the following only need to determine
the remaining points of each cluster. In contrast, because
of the data volume of DP-DBSCAN as well as the clusters
increased, a large number of the following existing iterative
computing is used to find new core points, much time is spent.
We can conclude from Fig. 6 that our DP-MCDBSCAN
algorithm hasmore superiorities in the face of the dataset with
larger scale or the dataset with more clusters.

FIGURE 7. F -measure comparison of two algorithms.

Next, we consider the impact of F-measure on the privacy
budget parameter ε∈{0.1, 0.2, . . . , 0.5, . . . , 1}, ranging from
strict to loose privacy requirements. Fig. 7 shows the com-
parison of the F-measure values for the clustering results of
two algorithms on dataset D3 under different ε. It can be
seen that the accuracy of the DP-MCDBSCAN is slightly
higher than that of the DP-DBSCAN.When ε is large enough,
the clustering of both algorithms is accurate and effective.
Faced with smaller ε, DP-MCDBSCAN can better deal with
the dataset.

Meanwhile, differential privacy has the characteristic that
the added noise has nothing to do with the dataset scale.
Therefore, DP-MCDBSCAN has the greater superiority in
handling large scale dataset. The larger the scale of the
dataset, the stronger the noise immunity and the better per-
formance the DP-MCDBSCAN will have.

In our last experiment, we select D1, D2 and D3 as our
test datasets. We compare our algorithm with DP-DBSCAN
through the Calinski-Harabasz (CH ) index to further eval-
uate the clustering validity. We perform privacy-preserving
clustering and analyze on D1, D2 and D3 via executing the
two algorithms multiple times. We utilize the mean value of
CH and plot the CH ratio curve of the two algorithms. The
closer to 1 the CH ratio is, the closer the clustering validity
of the two algorithms is. The experimental results are shown
in Figs. 8, 9 and 10.

FIGURE 8. CH ratio on D1.

FIGURE 9. CH ratio on D2.

FIGURE 10. CH ratio on D3.

The results of the figures show that DP-MCDBSCAN can
achieve a good effect on privacy preservation by adding a
small amount of noise. We also find that it ensures that
DP-MCDBSCAN has the similar clustering validity as the
traditional DP-DBSCAN clustering algorithm. Especially,
it indicates that the level of privacy preservation depends
on the value of ε. The privacy preservation level can be
controlled by the value of ε. The smaller the ε, the more noise
added and the higher the privacy preservation level.

By comparing the results of the three figures, we con-
clude that under the same level of privacy preservation
(i.e., the same ε), DP-MCDBSCAN has the following fea-
tures: the clustering validity for smaller dataset is higher than
that for larger dataset, and the clustering validity for lower
dimensional dataset is higher than that for high-dimensional
dataset.

VI. CONCLUSION
Ensuring privacy security of network user data in data min-
ing is an important and challenging problem. In this paper,
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we focus on the privacy preservation in clustering analysis
of network user data. We have proposed a DP-MCDBSCAN
schema and the corresponding algorithm. Different from
the previous works, we adopt the multiple cores selection
method at the farthest distance on the clustering result to solve
the randomness and blindness of DP-DBSCAN effectively.
Simulation results show that our algorithm reduces the effect
of clustering when the added noise is too large and the time
effectiveness of the results is enhanced. Due to the charac-
teristics of differential privacy, the amount of noise added is
independent of the size of dataset, so the clustering effect
of the larger scale dataset is more accurate under the same
privacy budget parameter.

Our future work will focus on reducing the influence of
input parameters on clustering results and balancing the influ-
ence between adding noise and the accuracy of clustering.
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