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ABSTRACT In this paper, we investigate the statistical properties of double Hoyt fading channels, where
the overall received signal is determined by the product of two statistically independent but not necessarily
identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the
probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and
average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced
for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double
Hoyt channel, we then provide analytical expressions for the average symbol error probability of both
coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown
that all the obtained theoretical results include those that are already known for double Rayleigh channels as
a special case. In addition, simplified expressions for the Hoyt×Rayleigh, Rayleigh×one-sided Gaussian,
and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model
to measured real-world propagation channels is examined and discussed by comparing the derived CDF and
LCR with published measurement data collected in inter-vehicular propagation environments. Numerical
and simulation results are also provided to confirm the validity of the derivations.

INDEX TERMS Double Hoyt fading channel model, vehicular-to-vehicular (V2V) channels, probability
density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), average duration
of fades (ADF), symbol error probability (SEP).

I. INTRODUCTION
Double-scattering fading channels can statistically be mod-
eled by a product of two classical fading processes. Research
in this area has attracted much interest in recent years. Mea-
surement campaigns and theoretical studies have demon-
strated that these kinds of stochastic channels are useful
for the modeling of specific multipath propagation channels,
such as keyhole channels [2], [3] and street corner chan-
nels [4]. The underlying modeling concept is also suitable
for the development of mobile-to-mobile (M2M) channels
[5]–[7], vehicular-to-vehicular (V2V) channels [8]–[10],
dual-hop cooperative relaying channels [11]–[14], and radio
frequency identification channels [15], [16]. Numerous
works are available in the recent literature which are devoted
to the statistical characterization of cascaded fading channels

and the related performance analysis. For instance, the first-
and second-order statistics of double Rayleigh fading chan-
nels have been investigated in [7] and [13]. CascadedWeibull
fading channels have been introduced and analyzed in [17].
In [18], analytical expressions have been derived for the
main statistical properties of double Rice fading channels,
such as the mean value, variance, probability density function
(PDF), level-crossing rate (LCR), and average duration of
fades (ADF). Theoretical results for the general case of N
multihop Rayleigh (N∗Rayleigh) channels and N multihop
Nakagami-m (N∗Nakagami-m) channels have been reported
in [4], [19], and [20], respectively, where N is the num-
ber of independent and not necessarily identically Rayleigh
(or Nakagami-m) random processes. Recently, simple and
approximate closed-form expressions for the LCR and ADF

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

19597

https://orcid.org/0000-0003-1675-1741


N. Hajri et al.: Statistical Properties of Double Hoyt Fading with Applications to the Performance Analysis

of double Nakagami-m processes have been presented in [21].
Additionally, Peppas et al. [22] introduced the so-called
cascaded generalized-K fading model, which is constructed
as the product of N independent but not necessarily iden-
tically distributed squared generalized-K random variables,
and analyzed their main statistical properties. Furthermore,
Chau and Huang [23] studied the second-order statistics
of two correlated double Rayleigh fading channels. More
recently, in [24], the product of N Nakagami-m random pro-
cesses has been approximated by a log-normal process, and
approximate closed-form expressions have been determined
for the corresponding LCR and ADF.

From the literature above, it can be noted that all the
published works on the statistical properties of cascaded
fading channels have only considered models grounded on
widely accepted distributions, namely the Rayleigh, Weibull,
Rice, Nakagami-m, and generalized-K distributions. Besides
all these classical distributions, the Hoyt (also referred to as
Nakagami-q) model [25]–[27], where q (0 ≤ q ≤ 1) is called
the Hoyt fading severity parameter, has attracted the attention
of many researchers in recent years. This model offers a
high degree of flexibility in that it allows to describe fading
conditions which are more severe than those described by the
Rayleigh fading model. In fact, the Hoyt channel includes
the Rayleigh channel (q = 1) and the one-sided Gaussian
channel (q = 0) as special cases [27], [28]. Further-
more, the complex channel gain can be expressed in terms
of Gaussian processes, making the Hoyt model attractive
in simulation based performance studies. The statistical
characterization of Hoyt fading channels and performance
analysis of digital communication schemes over such chan-
nels have widely been studied in the literature. For exam-
ple, the main statistical properties of single Hoyt fading
channels have been reported in [25], [27], [29], and [30].
Important studies dealing with the performance analy-
sis of wireless transmission schemes over such channel
have been reported in [30]–[33]. An expression for the
bivariate Hoyt distribution assuming arbitrarily correlation
pattern in non-stationary environments has recently been
derived in [34].

Motivated by the appropriateness of double fading chan-
nel models for the modeling of double scattering scenarios
in V2V communications, and strengthened by the attrac-
tive features of the Hoyt fading model, we investigate in
this paper the statistics of double Hoyt fading channels and
analyze the symbol error probability (SEP) performance
of coherent M-ary phase-shift keying (M-PSK) and square
M-ary quadrature amplitude modulation (M-QAM) schemes.
The underlying channel model is sufficiently generic as
it includes the double Rayleigh, double one-sided Gaus-
sian, Hoyt×Rayleigh (or Rayleigh×Hoyt), Hoyt×one-sided
Gaussian (or one-sided Gaussian×Hoyt), Rayleigh×one-
sided Gaussian (or one-sided Gaussian×Rayleigh) fading
channels as special cases. This implies that the results pre-
sented in this work encompass all results obtained for these
special cases.

Specifically, we provide theoretical expressions for the
PDF, CDF, LCR, and ADF of double Hoyt fading pro-
cesses, which are defined by the product of two independent
but not necessarily identically distributed single Hoyt fad-
ing processes. Apart from the channel statistics, the focus
of this paper is also on the error performance analysis of
wireless communications over double Hoyt fading channels.
By making use of the derived expression for the PDF of the
underlying double Hoyt fading process, the investigation of
analytical expressions for the SEP is carried out for both
coherent M-PSK and square M-QAM modulation schemes
under the assumption of quasi-static channel conditions,
i.e., the instantaneous signal-to-noise ratio (SNR) remains
constant over the symbol duration and changes randomly
from one symbol to the next one. The derived expressions
for the first-order statistics of the envelope fading process as
well as the SEP are given in terms of finite-range integrals of
trigonometric functions that are easy to calculate numerically.
Concerning the analytical solutions for the LCR and ADF,
they involve finite- and semi-infinite range integrals. Tomake
the LCR and ADF computationally tractable, closed-form
approximate solutions have been derived for these statisti-
cal quantities by applying the Laplace approximation theo-
rem [35]. It is shown that all the derived analytical quantities
include the corresponding results that are already known
for double Rayleigh fading channels. Additionally, simple
analytical expressions are deduced for asymmetrical double
fading channels described by the compound Hoyt×Rayleigh
(or Rayleigh×Hoyt) channels. The obtained results are also
valid for double one-sided Gaussian, Hoyt×one-sided Gaus-
sian, and Rayleigh×one-sided Gaussian channels, which are
considered as limiting cases of the double Hoyt model. More-
over, the applicability of the model to the characterization
of real-word channels is examined by comparing the CDF
and LCR of the double Hoyt fading envelope with that of
measurement data collected in inter-vehicular channels
reported in [8]. Finally, the validity of the derived analytical
results is verified by means of simulations. Drawing upon
the results on the envelope of double Hoyt fading channels,
derived in this paper, analytical expressions for the PDF,
CDF, LCR, and ADF of the associated instantaneous channel
capacity can also be investigated.

The remainder of the paper is organized as follows.
Section II presents a description of the double Hoyt fading
channel model followed by the derivation of the charac-
teristic function (CF) and the PDF of the quadrature com-
ponents of the complex channel gain as well as the PDF
and CDF of the double Hoyt process. Exact and closed-
form approximate expressions are investigated in Section III
for the LCR and ADF of double Hoyt processes. The
SEP performance analysis of M-PSK and square M-QAM
modulation schemes is provided in Section IV. Section V
contains numerical and simulation results along with the
fitting of the CDF and LCR to measurement data on inter-
vehicular channels. Finally, the conclusion is outlined in
Section VI.
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II. FIRST-ORDER STATISTICS OF DOUBLE HOYT
MULTIPATH FADING CHANNELS
In double Hoyt fading environments, the complex channel
gain is described under narrow-band conditions by the prod-
uct of two statistically independent but not necessarily iden-
tically distributed zero-mean complex Gaussian processes
according to

Z (t) = (X1(t)+ jY1(t))(X2(t)+ jY2(t))

= X1(t)X2(t)− Y1(t)Y2(t)

+j(X1(t)Y2(t)+ X2(t)Y1(t))

= Z1(t)+ jZ2(t) (1)

where Xi(t) and Yi(t) are real valued zero-mean Gaussian
processes with variances σ 2

Xi and σ
2
Yi (i = 1, 2), respectively,

which are not necessarily identical. The overall fading enve-
lope R(t) of the underlying double Hoyt channel is defined as

R(t) = R1(t)R2(t). (2)

In (2), Ri(t) =
√
X2
i (t)+ Y

2
i (t) (i = 1, 2) is a Hoyt process,

the PDF of which is given by [25]

pRi (z) =

(
1+ q2i
qi�i

)
z exp

− z2

4�i

(
1+ q2i
qi

)2


×I0

[
z2

4�i

(
1− q4i
q2i

)]
, z ≥ 0 (3)

where �i = E(R2i ) = σ
2
Xi + σ

2
Yi , in which E(·) represents the

expectation operator, and I0(·) is the modified Bessel function
of the first-kind. Also in (3), qi ∈ [0, 1] denotes the Hoyt
fading parameter that is defined in terms of the variances σ 2

Xi
and σ 2

Yi as qi = σXi/σYi if σYi ≥ σXi , and as qi = σYi/σXi in
the case where σXi ≥ σYi . Here, we assume that σXi ≥ σYi
(i = 1, 2).

In this section, our major focus is on the determination
of the PDF and CDF of the double Hoyt process R(t),
which are important for the performance analysis of wireless
communications. Prior to that, however, we investigate the
first-order statistics of the in-phase and quadrature compo-
nents of the complex faded envelope Z (t). The statistics
of these quadrature components are of relevance for, e.g.,
the determination of the statistics of the channel envelope
and phase, and the derivation and performance assessment
of channel simulators [30]. The analysis will be carried out
under the assumption of independent complex channel gains
Xi(t)+ jYi(t) (i = 1, 2), which are not necessarily identically
distributed.

A. STATISTICS OF Zi (t)
As can be noted from (1), the stochastic process Zi(t)
(i = 1, 2) is written as the sum of the product of two inde-
pendent Gaussian processes. From [36, eq. (6.2)], the PDF
of the process X (t) = X1(t)X2(t) is given by pX (x) =
K0(|x|/(σX1σX2 ))/(πσX1σX2 ), where K0(·) is the zeroth-order
modified Bessel function of the second kind [38]. The CF

of the process X (t) is given by ψX (ω) = 1/
√
1+ σ 2

X1
σ 2
X2
ω2

[36, eq. (6.4)]. The PDFs and CFs of the other product
Gaussian processes appearing in (1) are expressed in a similar
manner as above, except that the standard deviations σX1 and
σX2 have to be replaced by the associated quantities. Thus,
as the two products of the Gaussian processes of the real part
of (1) are statistically independent, it follows that the CF of
Z1(t) = X1(t)X2(t)− Y1(t)Y2(t) can be written as

ψZ1 (ω) =
1

(1+ σ 2
X1
σ 2
X2
ω2)1/2(1+ σ 2

Y1
σ 2
Y2
ω2)1/2

. (4)

Analogously, the CF of Z2(t) = X1(t)Y2(t) + X2(t)Y1(t) is
given by

ψZ2 (ω) =
1

(1+ σ 2
X1
σ 2
Y2
ω2)1/2(1+ σ 2

X2
σ 2
Y1
ω2)1/2

. (5)

Now, the PDF of Zi(t) (i = 1, 2) can be obtained via the
inverse Fourier transform of the CF ψZi (ω) according to [36]

pZi (z) =
1
2π

∫
∞

−∞

ψZi (ω) exp(−jωz)dω

=
1
π

∫
∞

0
ψZi (ω) cos(ωz)dω. (6)

Unfortunately, there is no closed-form solution for the inte-
gral in (6). However, a closed-form solution to the PDF pZ2 (z)
of Z2(t) can be obtained for the special case of σX1σY2 =
σX2σY1 = σQ, i.e., q1 = q2. In this case, the integral in
(6), after the insertion of (5), can be solved with the help
of [38, eq. (3.723.2)], leading to

pZ2 (z) =
1

2σQ
exp

(
−
|z|
σQ

)
. (7)

The result above states that Z2(t) follows the Laplace distribu-
tion with the parameter σQ, i.e., Z2(t) ∼ L(0, σQ). Note that
this statistics holds true for Z1(t) only if σX1σX2 = σY1σY2 ,
i.e., q1 = 1/q2. In this situation, however, the constraint
qi ≤ 1 cannot be fulfilled simultaneously for both q1 and q2,
which means that the underlying statistical property cannot
be valid for Z1(t). Finally, for σXi = σYi = σ , i.e., qi = 1
(i = 1, 2), the statistics of Z1(t) and Z2(t) are described by
the Laplace distribution L(0, σ ) which is the known result for
double Rayleigh fading channels [13, eq. (5)].

In the sequel, we investigate the PDF and CDF of the enve-
lope process R(t), which are of relevance for the performance
analysis.

B. PDF AND CDF OF THE DOUBLE HOYT PROCESS R(t)
Owing to the fact that the Gaussian processes Xi(t) and Yi(t)
are assumed to be statistically independent, it follows that the
processes R1(t) and R2(t) are also statistically independent.
As a starting point for the derivation of the PDF of the double
Hoyt process R(t) = R1(t)R2(t), we may use the fact that the
PDF of the product of the two independent processes R1(t)
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and R2(t) can be expressed as follows [37]

pR(z) =

∞∫
−∞

1
|y|

pR1R2

(
z
y
, y
)
dy (8)

where pR1 R2 (x, y) is the joint PDF (JPDF) of the envelopes
R1(t) and R2(t). Owing again to the independence assump-
tion, this JPDF can be written as the product of the two
marginal PDFs pR1 (x) and pR2 (y), i.e., pR1 R2 (x, y) =
pR1 (x) pR2 (y). Hence, the PDF of the double Hoyt process
R(t) is given by

pR(z) =

√
Aq1Aq2
�1�2

z

∞∫
0

1
y
exp

[
−
Aq1z

2

4�1y2
−
Aq2y

2

4�2

]

×I0

(
Bq1
4�1

z2

y2

)
I0

(
Bq2
4�2

y2
)
dy (9)

where Aqi =
(
(1+ q2i )/qi

)2
and Bqi = (1 − q4i )/q

2
i (i =

1, 2). As a key step towards solving the integral in (9),
we employ the integral form of the Bessel function I0(z) =
1
π

∫ π
0 exp (z cos(θ )) dθ (see [38, eq. (8.431.3)]), which

yields

pR (z) =

√
Aq1Aq2

π2�1�2
z

π∫
0

π∫
0

dθ1dθ2

∞∫
0

1
y

× exp
[
−(Aq1 − Bq1 cos(θ1))

4�1

z2

y2

]

× exp
[
−(Aq2 − Bq2 cos(θ2))

4�2
y2
]
dy. (10)

Then, by making the change of variable x = y2 and using
[38, eq. (3.471.9)], it is possible to carry out the semi-infinite
integral in (10) explicitly to obtain the following PDF of
double Hoyt processes R(t)

pR (z) =

√
Aq1Aq2

π2�1�2
z

π∫
0

π∫
0

dθ1dθ2

K0

(
z

2
√
�1�2

√
(Aq1 − Bq1 cos(θ1))(Aq2 − Bq2 cos(θ2))

)
.

(11)

It can be observed that the provided solution for the semi-
infinite range integral in (9) could be replaced by a double-
integral of trigonometric functions with finite limits. To the
best of the authors’ knowledge, the PDF in (11) is new and
more computationally tractable than the equivalent single
semi-infinite range integral representation in (9). In addition,
(11) is more suitable for insightful analytical investigations,
e.g., the SEP performance analysis as will be shown in
Section IV. For the special case of Hoyt×Rayleigh fading,
obtained by setting q2 = 1 in the expressions for Aq2 and
Bq2 , the integral with respect to the variable θ2 can be carried

out, and (11) simplifies to

pR (z) =
2
√
Aq1

π�1�2
z

×

π∫
0

K0

(
z

√
�1�2

√(
Aq1 − Bq1 cos(θ1)

))
dθ1.

(12)

Here, it goes without saying that a distribution having the
same functional form as (12) can be obtained by inserting
q1 = 1 in the quantities Aq1 and Bq1 appearing in (11)
and performing the integration with respect to the variable
θ1. Similarly, for the trivial case of double Rayleigh fading,
where qi = 1 in Aqi and Bqi (i = 1, 2), the double-finite range
integral in (11) can be solved analytically to yield the already
known closed-form expression for the PDF pR(z) [7]. For
completeness, we should add that the derived PDF pR(z) in
(11) also incorporates the limiting cases known as Hoyt×one-
sided Gaussian (q2 → 0), Rayleigh×one-sided Gaussian
(q1 = 1, q2 → 0), and double one-sided Gaussian (q1 → 0,
q2 → 0) distributions. Unfortunately, the determination of
these limiting PDFs from (11) has been found to be tedious.
Instead, we may seek to provide formulas for the underly-
ing PDFs by making use of the involved distributions and
applying the concept of transformation of random variables
described in (8). Accomplishing this task, we obtain closed-
form expressions for the PDFs of the envelope in cascaded
Rayleigh×one-sided Gaussian and double one-sided Gaus-
sian fading channels as

pR(z) =

√
2

�1�2
z exp

[
−

√
2

�1�2
z

]
(13)

pR(z) =
2

π
√
�1�2

K0

(
z

√
�1�2

)
(14)

respectively. It should be mentioned that (13) and (14) have
been derived using [38, eq. (3.472.3)] and [38, eq. (3.471.9)],
respectively. Unfortunately, a simplified expression for the
PDF of the cascaded Hoyt×one-sided Gaussian channel does
not exist.

Using the PDF derived above, we can readily determine
the CDF FR(z) of double Hoyt processes R(t). This statistical
quantity is obtained according to [37]

FR(z) =

z∫
0

pR (x)dx. (15)

Substituting (11) in (15), letting y = (x/z), and using [38, eqs.
(6.561.8) and (2.553.3)], an expression for the CDF FR(z) is
given by

FR (z) = 1−
2
π2

√
Aq1Aq2
�1�2

z

π∫
0

π∫
0

dθ1dθ2

×

K1

(
z

2
√
�1�2

√
(Aq1 − Bq1 cos(θ1))(Aq2 − Bq2 cos(θ2))

)
√
(Aq1 − Bq1 cos(θ1))(Aq2 − Bq2 cos(θ2))

(16)
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where K1(·) stands for the first-order modified Bessel func-
tion of the second kind [38]. Setting q2 = 1 in (16), the finite-
range integral with respect to the variable θ2 can be solved,
yielding the following expression for the CDF of cascaded
Hoyt×Rayleigh fading channels

FR (z) = 1−
2
π

√
Aq1
�1�2

z

π∫
0

1√
(Aq1 − Bq1 cos(θ1))

×K1

(
z

√
�1�2

√
(Aq1 − Bq1 cos(θ1))

)
dθ1. (17)

By setting q1 = 1 in (17), it can be verified that the CDF
reduces to that of double Rayleigh fading channels [7]. In the
same way, the CDF of the Rayleigh×one-sided Gaussian
fading envelope can be obtained using (13) and with the help
of [38, eq. (2.322)] as

FR(z) =

√
�1�2

2
−

(
z+

√
�1�2

2

)
exp

(
−

√
2

�1�2
z

)
.

(18)

To conclude this section, we point out that the outage prob-
ability Pout (r) of the end-to-end radio links is defined as the
probability that the process R(t) falls below a threshold value
r , which means that this performance metric equals the CDF
FR(z) of R(t), i.e., Pout (r) = FR(r).

III. LCR AND ADF OF THE ENVELOPE
FADING PROCESS R(t )
To have a thorough knowledge of the statistics of double Hoyt
fading channels, it is also common to investigate the cor-
responding LCR and ADF quantities. Expressions for these
quantities will be derived in the sequel.

A. Exact Theoretical Solution for the LCR
The LCR describes how often the process R(t) crosses a
given level r from up to down (or from down to up) per time
unit. This statistical quantity, denoted here by NR(r), can be
obtained by solving the following integral [40], [41]

NR(r) =

∞∫
0

ż pRṘ (r, ż) dż (19)

where pRṘ (z, ż) is the JPDF of the double Hoyt process R(t)
and its time derivative Ṙ(t) at the same time instant. Owing
to the fact that the processes R1(t) and R2(t) are mutually
independent, the JPDF pRṘ (z, ż) can be obtained by invoking
the standard result in [42] as

pRṘ (z, ż) =

∞∫
0

∞∫
−∞

1
y2
pR1Ṙ1

(
z
y
,
ż
y
−

z
y2
ẏ
)

×pR2Ṙ2 (y, ẏ) dẏdy z ≥ 0, |ż| <∞

(20)

where pRiṘi (x, ẋ) (i = 1, 2) represents the JPDF of the
Hoyt process Ri(t) and its time derivative Ṙi(t), which is

given by [27]

pRiṘi (x, ẋ)=

√
Aqi

√
2π3/2�i

x

π∫
0

1√(
βYi +

(
βXi − βYi

)
cos2(θ )

)
×exp

[
−

√
Aqi

2�i
x2
(
q2i cos

2(θ )+ sin2(θ )
)]

× exp

[
−

ẋ2

2
(
βYi +

(
βXi − βYi

)
cos2(θ )

)] dθ
(21)

where the quantities βXi and βYi represent the negative curva-
ture of the autocorrelation functions 0XiXi (τ ) and 0YiYi (τ ) of
the processesXi(t) and Yi(t), respectively, at τ = 0, i.e., βXi =
−0̈XiXi (0) and βYi = −0̈YiYi (0). Now, by substituting (21)
in (20) and with the help of [38, eq. (3.323.27)], we get the
following expression for the JPDF pRṘ (z, ż) of the processes
R(t) and Ṙ(t)

pRṘ (z, ż) =

√
Aq1Aq2

√
2π5/2�1�2

z

π∫
0

dθ1

π∫
0

dθ2

∞∫
0

dy

1√
z2F(θ2)+ y4F(θ1)

exp

[
−

√
Aq1

2q1�1

z2

y2
G(θ1)

]

× exp

[
−

√
Aq2

2q2�2
y2G(θ2)

]

× exp

[
−

(ży)2

2
[
z2F(θ2)+ y4F(θ1)

]] (22)

where the functions F(θi) and G(θi) (i = 1, 2) are given by

F(θi) = βYi +
(
βXi − βYi

)
cos2(θi)

G(θi) = q2i cos
2(θi)+ sin2(θi). (23)

Finally, after substituting (22) in (19) and performing again
some algebraic manipulations, the LCR NR(r) of the dou-
ble Hoyt fading process R(t) can be expressed in the final
form as

NR(r) =

√
Aq1Aq2

√
2π5/2�1�2

r

π∫
0

dθ1

π∫
0

dθ2

∞∫
0

1
y

×

√(
r
y

)2

F(θ2)+ y2F(θ1)

× exp

[
−

( √
Aq1

2q1�1

(
r
y

)2

G(θ1)+

√
Aq2

2q2�2
y2G(θ2)

)]
dy.

(24)

Unfortunately, the integrals appearing in (24) do not have
closed-form solutions, and thus need to be evaluated using
numerical integration techniques. For the particular case of
double Rayleigh channels, obtained by setting q1 = q2 = 1
in (24), the integration with respect to θ1 and θ2 becomes
possible, and (24) reduces to the known semi-infinite range
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integral expression reported in [13, eq. (17)]. That is, even
for the particular case of double Rayleigh fading channels
reported in [13], the semi-infinite range integral in (24) can-
not be solved. To reduce the computational effort, we provide
next an approximate expression for the LCR of the dou-
ble Hoyt fading process by using Laplace’s approximation
theorem [35].

B. Approximate Theoretical Solution for the LCR
Since a closed-form solution does not exist for the inner-
integral in (24), it is desirable to find at least an approximate
solution. As outlined inAppendixA, the approximation of the
semi-infinite range integral in (24) using Laplace’s approxi-
mation theorem [35] leads to the following result for the LCR
NR(r) of the process R(t)

NR(r) ≈

√
Aq1Aq2

2π2�1�2
r

π∫
0

π∫
0

√
q1�1F(θ2)√
Aq1G(θ1)

+
q2�2F(θ1)√
Aq2G(θ2)

× exp

−(Aq1Aq2) 14√
�1�2

√
G(θ1)G(θ2)

q1q2
r

 dθ1dθ2.

(25)

For the special case that the envelope R(t) is Hoyt×Rayleigh
distributed, i.e., q2 = 1, (25) reduces to

NR(r) ≈

√
Aq1

π�1�2
r

π∫
0

√
q1�1βY2√
Aq1G(θ1)

+
�2F(θ1)

2

× exp

−√2 (Aq1) 14√
�1�2

√
G(θ1)
q1

r

 dθ1. (26)

If in addition q1 = 1, then (26) results in the already known
approximate solution for the LCR of double Rayleigh pro-
cesses, which was derived in [19, eq. (33)].

C. ADF TR (r ) of the Double Hoyt Process R(t)
In addition to the LCR, the ADF is of great importance to
the characterization of fading channels. The ADF TR(r) of
the double Hoyt processes R(t) is the expected value of the
length of the time intervals during which the process R(t) is
below a given level r . Following [43], the ADF TR(r) of the
double Hoyt process R(t) is defined by

TR(r) =
FR(r)
NR(r)

. (27)

By substituting (16) and (24) in (27), a formula for the ADF
TR(r) of the double Hoyt process R(t) can be deduced. Fur-
thermore, by substituting the obtained approximate solution
for the LCR NR(r) according to (25) in (27), we obtain an
approximate expression for the ADF TR(r).
Apart from the outage based performance metrics derived

above, the average SEP is a common performance metric
in wireless communications. In the next section, analytical
expressions are derived for the SEP performance of coherent
M-PSK and square M-QAM modulation schemes.

IV. SEP OF M-PSK AND M-QAM MODULATION SCHEMES
We assume that the double Hoyt channel fading is slow
and frequency non-selective. The derivation of the SEP of
coherent M-PSK and square M-QAMmodulation schemes is
carried out by invoking the conventional PDF approach [30].
According to this approach, the corresponding SEP can be
obtained by solving the following integral

P̄s =

∞∫
0

Ps (E|γ )pγ (γ ) dγ (28)

where Ps (E|γ ) denotes the conditional SEP in additive white
Gaussian noise channels, and pγ (γ ) stands for the PDF of
the instantaneous SNR per symbol γ (t) = R2(t)

(
Es
/
N0
)
,

with Es being the average received symbol energy, andN0 the
one-sided power spectral density of the receiver noise. The
PDF pγ (γ ) of γ (t) can directly be obtained from the PDF
pR(z) of the envelope R(t) by using [30, eq. (2.3)]. As a result,
it follows that

pγ (γ ) =

√
Aq1Aq2
2π2γ̄

π∫
0

π∫
0

dθ1dθ2

K0

(
1
2

√
γ

γ̄

√(
Aq1 − Bq1 cos(θ1)

) (
Aq2 − Bq2 cos(θ2)

))
(29)

where γ̄ = �1�2 (Es|N0) denotes the average SNR. Expres-
sions for the SEP of M-PSK and M-QAM modulation
schemes are thoroughly derived in the following subsections.

A. SEP OF M-PSK MODULATION
For coherent M-PSK modulation, the conditional SEP
Ps (E|γ ) is given by [30, eq. (8.23)]

Ps(E|γ ) =
1
π

(M−1)π/M∫
0

exp
(
−

gpsk
sin2(ϕ)

γ

)
dϕ (30)

where gpsk = sin2(π/M ), and M is the number of possible
transmitted information symbols. Substituting (29) and (30)
in (28) and using [38, eqs. (6.614.4) and (8.338.1)] and [39,
eq. (13.18.5)], the SEP P̄s of M-PSK modulation is given by

P̄s =

√
Aq1Aq2

4π3gpsk γ̄

π∫
0

dθ1

π∫
0

dθ2

(M−1)π/M∫
0

sin2(θ3)dθ3

×0

(
0,

sin2(θ3)
16gpsk γ̄

(Aq1 − Bq1 cos(θ1))(Aq2 − Bq2 cos(θ2))

)

× exp

(
sin2(θ3)
16gpsk γ̄

(Aq1 − Bq1 cos(θ1))(Aq2 − Bq2 cos(θ2))

)
(31)

where 0 (·, ·) denotes the incomplete gamma function
defined in [39, eq. (8.4.4)]. The finite-range integrals in
(31) can be efficiently computed using numerical integra-
tion techniques. For the special case of the asymmetrical
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Hoyt×Rayleigh fading, i.e., q2 = 1, the SEP P̄s in (31)
simplifies to

P̄s =

√
Aq1

2π2gpsk γ̄

π∫
0

dθ1

(M−1)π/M∫
0

sin2(θ3)dθ3

×0

(
0,

sin2(θ3)
4gpsk γ̄

(Aq1 − Bq1 cos(θ1))

)

× exp

(
sin2(θ3)
4gpsk γ̄

(Aq1 − Bq1 cos(θ1))

)
. (32)

If in addition q1 = 1, then the integral with respect to θ1 can
be solved andwe obtain the SEP P̄s of double Rayleigh fading
channels as

P̄s =
1

πgpsk γ̄

(M−1)π/M∫
0

sin2(θ3) exp

(
sin2(θ3)
gpsk γ̄

)

×0

(
0,

sin2(θ3)
gpsk γ̄

)
dθ3. (33)

Letting M = 2 in (33) and using [39, eq. (13.18.5)], yields
the bit error probability of binary PSK modulation reported
in [44, eq. (17)].

For the special cases of Rayleigh×one-sided Gaussian and
double one-sided Gaussian fading channels, the correspond-
ing SEP ofM-PSK can directly be determined using the PDFs
given in (13) and (14), respectively. To proceed, we consider
first the Rayleigh×one-sided Gaussian channel. Substituting
pγ (γ ) deduced from (13) together with (30) into (28) and
using [38, eqs. (3.333.2), (8.25.1), and (8.25.4)] yields

P̄s =
1√

2πgpsk γ̄

(M−1)π/M∫
0

sin(θ ) exp

(
sin2(θ )
2gpsk γ̄

)

×erfc

(
sin(θ )√
2gpsk γ̄

)
dθ (34)

where erfc(·) represents the complementary error func-
tion [38]. Similarly, substituting the expression of pγ (γ ),
obtained from (14), and (30) in (28), results, after some
algebraic manipulations, in the following expression for the
SEP of M-PSK over double one-sided Gaussian channels

P̄s =
1

2π3/2
√
gpsk γ̄

(M−1)π/M∫
0

sin(θ ) exp

(
sin2(θ )
8gpsk γ̄

)

×K0

(
sin2(θ )
8gpsk γ̄

)
dθ. (35)

B. SEP OF SQUARE M-QAM MODULATION
In the case of M-QAM modulation with square signal con-
stellation diagrams, the conditional SEP Ps (E|γ ) is given by
[30, eq. (9.20)]

Ps(E|γ ) = 4
(
1−

1
√
M

)
Q
(√

2gQAMγ
)

−4
(
1−

1
√
M

)2

Q2
(√

2gQAMγ
)

(36)

where gQAM = 3/ (2(M − 1)), and Q(·) represents the Gaus-
sian Q-function [30, eq. (4.2)]. Substituting (29) and (36) in
(28), and performing the algebraic manipulations explained
in Appendix B, the average SEP P̄s of square M-QAM mod-
ulation over double Hoyt fading channels is obtained as

P̄s = f1

(
4
(
1−

1
√
M

)
,
π

2

)
− f1

(
4
(
1−

1
√
M

)2

,
π

4

)
(37)

where the function f1(·, ·) is given by

f1(a, α)

=
a
√
Aq1Aq2

4π3gQAM γ̄

π∫
0

dθ1

π∫
0

dθ2

α∫
0

sin2(θ3)dθ3

×0

(
0,

sin2(θ3)
16gQAM γ̄

(Aq1−Bq1 cos(θ1))(Aq2−Bq2 cos(θ2))

)

× exp

(
sin2(θ3)
16gQAM γ̄

(Aq1−Bq1 cos(θ1))(Aq2−Bq2 cos(θ2))

)
.

(38)

For Hoyt×Rayleigh fading scenarios, where q2 = 1, (37)
simplifies to

P̄s = f2

(
4
(
1−

1
√
M

)
,
π

2

)
− f2

(
4
(
1−

1
√
M

)2

,
π

4

)
(39)

where

f2(a, α) =
a
√
Aq1

2π2gQAM γ̄

π∫
0

dθ1

α∫
0

sin2(θ3)

×0

(
0,

sin2(θ3)
4gQAM γ̄

(Aq1 − Bq1 cos(θ1))

)

× exp

(
sin2(θ3)
4gQAM γ̄

(Aq1 − Bq1 cos(θ1))

)
dθ3.

(40)

Furthermore, the corresponding results for double Rayleigh
fading channels are obtained by setting q1 = 1 in (39), which
results in the following expression for the SEP

P̄s =
4

πgQAM γ̄
(1−

1
√
M

)

π/2∫
0

sin2(θ3)0

(
0,

sin2(θ3)
gQAM γ̄

)

× exp

(
sin2(θ3)
gQAM γ̄

)

)
dθ3

−
4

πgQAM γ̄
(1−

1
√
M

)2
π/4∫
0

sin2(θ3)0

(
0,

sin2(θ3)
gQAM γ̄

)

× exp

(
sin2(θ3)
gQAM γ̄

)
dθ3. (41)
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TABLE 1. The optimized parameters of the analytical double Hoyt and double Rayleigh fading channel models for the highway propagation conditions.

By proceeding similarly as in the case of M-PSK modula-
tion, the SEP P̄s over Rayleigh×one-sided Gaussian channels
equals

P̄s = g1

(
4
(
1−

1
√
M

)
,
π

2

)
−g1

(
4
(
1−

1
√
M

)2

,
π

4

)
(42)

where

g1(a, α) =
a√

2πgQAM γ̄

α∫
0

sin(θ ) exp

(
sin2(θ )
2gQAM γ̄

)

×erfc

(
sin(θ )√
2gQAM γ̄

)
dθ. (43)

It should be mentioned that (42) was attained by using
[38, eqs. (3.333.2), (8.25.1), and (8.25.4)] in combination
with the alternate definite integral form of the Gaussian
Q-function [30, eq. (4.2)] and its square [30, eq. (4.9)].
Finally, the SEP P̄s of square M-QAM over double one-sided
Gaussian channels, is determined by performing the required
substitutions in (28) and using [30, eqs. (4.2) and (4.9)] and
[38, eqs. (6.618.3), (1.411.9), and (9.72)]. This yields

P̄s = g2
(
4
(
1− 1

√
M

)
, π2

)
− g2

(
4
(
1− 1

√
M

)2
, π4

)
(44)

where the function g2(·, ·) has the form

g2(a, α) =
a

2π3/2
√
gQAM γ̄

α∫
0

sin(θ ) exp

(
sin2(θ )
8gQAM γ̄

)

×K0

(
sin2(θ )
8gQAM γ̄

)
dθ. (45)

V. MODEL VALIDATION AND RESULTS VERIFICATION
In this section, we first check the validity of the double
Hoyt distribution in describing real-word fading channels.
We then present numerical and simulation results to verify
the correctness of the derived statistical quantities.

A. MODEL VALIDATION THROUGH
MEASURED CHANNELS
For the validation of the proposed double Hoyt channel
model, it is important tomatch its statistical properties against
channel measurement data. Since double scattering is a typi-
cal propagation effect in V2V channels, where the scattering

FIGURE 1. The optimized CDF FR (z) of the double Hoyt and double
Rayleigh processes for the highway propagation conditions.

is supposed to occur around both the transmitter and the
receiver, it is imperative in this study to corroborate the dou-
ble Hoyt model with field measurements in V2V channels.
To this end, we restrict our focus on the CDF and LCR of
the fading envelope and use the corresponding measurements
of inter-vehicular communication channels available in [8].
These measurements were collected at 5.2 GHz in highway
environment. The set of channel parameters controlling the
CDF and LCR is restricted to q1, q2, �1, �2, fT ,max, and
fR,max, in which fT ,max and fR,max stand for the maximum
Doppler frequencies experienced at the mobile transmitter
and the mobile receiver, respectively. To examine the suit-
ability of the model, these parameters have to be optimized
by applying standard optimization procedures aiming to min-
imize the deviations between the analytical and measured
CDFs and LCRs of V2V channels. Performing the numer-
ical optimization resulted in the optimized model parame-
ters values shown in Table 1 for the highway propagation
scenario. Making use of these values, the CDF and LCR
of the double Hoyt model are obtained and compared with
corresponding measurements. Fig. 1 depicts the optimized
CDF together with the measured CDF reproduced from [8].
The optimized CDF of a double Rayleigh fading process is
also shown for comparison. The conclusion to be drawn from
this figure is that the fading occurring on the real-world V2V
channel is seen to be worse than the one predicted by the
double Rayleigh model, and appears to be closely described
by the double Hoyt model. This observation demonstrates
the flexibility and potential of the double Hoyt model in
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FIGURE 2. The optimized LCR NR (r ) of the double Hoyt and double
Rayleigh processes for the highway propagation conditions.

describing severe multipath fading scenarios. Next, the com-
parison between the measured LCR of the considered real-
word V2V channel [8] and the LCRs predicted by the double
Rayleigh and double Hoyt channels is shown in Fig. 2. It is
apparent that both models are useful to describe the measured
data especially in the low amplitude regime, although the
double Hoyt model produces a slightly better match. Overall,
these preliminary observations reveal that, due to its enough
flexibility, the double Hoyt distribution has the potential to
be applicable in the description of realistic V2V fading chan-
nels, where the propagation conditions are more severe than
those described by the double Rayleigh model. To the best
of our knowledge, not a single previous study considered
the applicability of the double Hoyt multipath propagation
model in the description of realistic inter-vehicular fading
channels. We believe that the study of double or, in general,
multiple scattering effects requires further extensive field
measurements.

B. NUMERICAL AND SIMULATION RESULTS
In this section, numerical and simulation results are provided
to check the validity of the theoretical results and to visualize
the impact of double Hoyt fading on the performance of wire-
less V2V communication systems. We assume the widely
adopted Clarke’s 2-D channel model for the scattering envi-
ronment. The concept of Rice’s sum-of-sinusoids [40], [41]
has been adopted to perform the simulations, and the method
of exact Doppler spread [42] has been employed to determine
the parameters of the sinusoids. For the fading conditions
described above, the second spectral moments βXi (i = 1, 2)
of the processes Xi(t) are given by βX1 =

2
1+q21

�1
(
π fT ,max

)2
and βX2 =

2
1+q22

�2
(
π fR,max

)2 [43] whereas βYi = q2i βXi .

All results presented here are obtained for �1 = �2 =

1, fT ,max = 20 Hz, and fR,max = 30 Hz. As can be
observed, the theoretical and simulation results are in per-

FIGURE 3. The envelope PDF pR (z) of the double Hoyt process R(t) for
different combinations of the Hoyt fading parameters q1 and q2.

FIGURE 4. The CDF FR (z) of the double Hoyt process R(t) for different
combinations of the Hoyt fading parameters q1 and q2.

fect agreement demonstrating the correctness of the deriva-
tions. Fig. 3 shows the theoretical and simulated PDF pR(z)
of the double Hoyt process R(t) for different combinations
of the Hoyt fading parameters q1 and q2. As can be noted,
the location of the peak of the PDF is shifted to the left with
decreasing values of the Hoyt fading parameters, illustrat-
ing the fact that the fading severity increases with decreas-
ing values of q1 and q2. Fig. 4 illustrates the behavior of
the CDF FR(r) (or equivalently the outage probability) of
double Hoyt, double Rayleigh, double one-sided Gaussian,
Hoyt×one-sided Gaussian, Rayleigh×one-sided Gaussian,
and Hoyt×Rayleigh fading channels. Note that the outage
performance improves with increasing values of q1 and q2,
as was to be expected. In Fig. 5, we compare the exact
theoretical, simulated, and approximate LCR NR(r) of the
double Hoyt process R(t) for various values of the Hoyt
fading parameters q1 and q2 with q1 = q2. For this low
mobility scenario, where fT ,max = 20 Hz and fR,max = 30
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TABLE 2. Mean square error for q1 = 0.5, q2 = 0.5, fR,max = 30 Hz, and different values of the maximum Doppler frequency fT ,max.

FIGURE 5. The LCR NR (r ) of the double Hoyt process R(t) for various
values of the Hoyt fading parameters q1 and q2.

FIGURE 6. The LCR NR (r ) of the double Hoyt process R(t) for different
values of the maximum Doppler frequency fT ,max.

Hz, the approximate result is seen to slightly deviate from
the exact solution. In contrast, this deviation tends to dis-
appear with increasing values of the Doppler frequencies as
can be noted from the content of Fig. 6. This numerical
observation reveals that the LCR approximation is compu-
tationally advantageous for the case of moderate and high
Doppler frequencies. The same finding can also be noted for
the ADF results reported in Fig. 7. In this figure, the exact
theoretical, simulated, and approximate ADF TR(r) are seen
to be in good correspondence for high values of the maximum
Doppler frequency fT ,max. To provide an accuracy assess-
ment of the approximation, the mean square error (MSE)

FIGURE 7. The ADF TR (r ) of the double Hoyt process R(t) for different
values of the maximum Doppler frequency fT ,max.

FIGURE 8. The SEP P̄s of coherent M-PSK modulation schemes over
double Hoyt fading channels.

between the approximate and exact LCR solutions is com-
puted. The obtained results are reported in Table 2, from
which it is observed that the MSE declines as the Doppler
frequency increases. Fig. 8 illustrates the SEP ofM-PSK over
double Hoyt fading channels for different values of M ∈

{2, 4, 8, 16}. As expected, by increasing M , the quality of
the transmission deteriorates and the SEP increases. Finally,
the SEP of 4-QAM is sketched in Fig. 9 to demonstrate the
effect of the fading severity parameters q1 and q2. It can be
noticed that an increase in the values of these parameters
yields an improvement in the SEP performance. Namely,
the best SEP performance of 4-QAM is obtained in double
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FIGURE 9. The SEP P̄s of 4-QAM modulation schemes over double Hoyt
fading channels.

Rayleigh fading channels, while the worst one corresponds
to the case of double one-sided Gaussian fading channels.

VI. CONCLUSION
In this paper, the statistical properties of double Hoyt fading
channels have been analyzed. Analytical expressions have
been derived for the PDF of the quadrature components of the
overall complex channel gain as well as for the PDF and CDF
of the envelope process. In addition, exact and approximate
analytical solutions for the LCR and ADF of double Hoyt
fading processes have been determined. Moreover, the SEP
performance of M-PSK and square M-QAM modulation
schemes over double Hoyt fading channels has been studied.
Explicit formulas for the above metrics have been presented
for channels that are special cases of the double Hoyt fading
model. To examine the capability of the underlying channel
model to describe real-word channels, the derived CDF and
LCR of the double Hoyt channel model have been matched to
those of published measured CDF and LCR of V2V channels.
It has been observed that the envelope statistics of the double
Hoyt model are in close agreement with the corresponding
measured statistics, demonstrating its potential to statisti-
cally describe realistic inter-vehicular propagation scenarios.
Finally, all the derived analytical results have been verified
by means of computer simulations.

APPENDIX A
In this Appendix, we outline the steps taken in the deriva-
tion of the approximate solution in (25) for the LCR NR(r)
of the double Hoyt process R(t). The employed Laplace
approximation theorem is based on the following Laplace-
type integral [35]

J (λ) =

∞∫
0

g(y) exp (−λf (y)) dy

'

√
2π
λ
·
g(y0)√
f̈ (y0)

exp (−λf (y0)) (46)

where λ is a real-valued positive constant, f (y) and g(y)
denote two real-valued functions that are assumed to be
infinitely differentiable, and the quantity y0 stands for the
value of y for which df (y)

/
dy = 0. Also in (46), f̈ (y0)

represents the second derivative of the function f (y) with
respect to the variable y evaluated at y0. It is important to
note that the LCR NR(r) in (24) fulfills all conditions of the
Laplace theorem. Therefore, a comparison of (24) and (46)
yields 

λ = 1

f (y) =
√
Aq1

2q1�1

(
r
y

)2
G(θ1)+

√
Aq2

2q2�2
y2G(θ2)

g(y) = 1
y

√(
r
y

)2
F(θ2)+ y2F(θ1).

(47)

After some algebraic manipulations, we can present the quan-
tities y0, f (y0), g(y0), and f̈ (y0) in the following form

y0 =
(
Aq1
Aq2

) 1
8
(
q2G(θ1)
q1G(θ2)

) 1
4

√√
�2
�1
r

f (y0) =
(
Aq1Aq2

) 1
4

√
�1�2

√
G(θ1)G(θ2)

q1q2
r

g(y0) =

√(
Aq2
Aq1

) 1
2 q1�1G(θ2)
q2�2G(θ1)

F(θ2)+ F(θ1)

f̈ (y0) =
4
√
Aq2

q2�2
G(θ2).

(48)

After substituting (48) in (46), we obtain the approximate
closed-form solution in (25) for the LCR NR(r) of double
Hoyt fading processes R(t).

APPENDIX B
In this Appendix, we present the derivation of the SEP P̄s
of square M-QAM modulation schemes over double Hoyt
fading channels. By substituting (29) and (36) in (28), P̄s can
be written as

P̄s = 4
(
1−

1
√
M

) √
Aq1Aq2
2π2γ̄

π∫
0

dθ1

π∫
0

dθ2

∞∫
0

dγ

Q
(√

2gQAMγ
)

×K0

(
1
2

√
γ

γ̄

√(
Aq1−Bq1 cos(θ1)

)(
Aq2−Bq2 cos(θ2)

))

−4
(
1−

1
√
M

)2 √Aq1Aq2
2π2γ̄

π∫
0

dθ1

π∫
0

dθ2

∞∫
0

dγ

Q2
(√

2gQAMγ
)

×K0

(
1
2

√
γ

γ̄

√(
Aq1−Bq1 cos(θ1)

)(
Aq2−Bq2 cos(θ2)

))
.

(49)
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Using the alternate definite integral form of the Gaussian
Q-function given by [30, eq. (4.2)]

Q(x) =
1
π

π/2∫
0

exp
(
−

x2

2 sin2(θ )

)
dθ, x ≥ 0 (50)

and its corresponding square described by [30, eq. (4.9)]

Q2(x) =
1
π

π/4∫
0

exp
(
−

x2

2 sin2(θ )

)
dθ, x ≥ 0 (51)

the expression (49) becomes

P̄s = 4
(
1−

1
√
M

) √
Aq1Aq2
2π2γ̄( π∫

0

dθ1

π∫
0

h
(
θ1, θ2, gQAM , γ̄ ,

π

2

)
dθ2

−

(
1−

1
√
M

) π∫
0

dθ1

π∫
0

h
(
θ1, θ2, gQAM , γ̄ ,

π

4

)
dθ2

)
(52)

where the function h
(
θ1, θ2, gQAM , γ̄ , α

)
is given by

h
(
θ1, θ2, gQAM , γ̄ , α

)
=

1
π

α∫
0

dθ3

∞∫
0

exp
(
−
gQAMγ

sin2(θ3)

)

×K0

(
1
2

√
γ

γ̄

√(
Aq1−Bq1 cos(θ1)

) (
Aq2−Bq2 cos(θ2)

))
dγ.

(53)

Using [38, eqs. (6.614.4) and (8.338.1)] and
[39, eq. (13.18.5)], the semi-infinite range integral in (53)
can be solved and h

(
θ1, θ2, gQAM , γ̄ , α

)
can be written as

h(θ1, θ1, gQAM , γ̄ , α)

=
1

2πgQAM

α∫
0

sin2(θ3)dθ3

×0

(
0,

sin2(θ3)
16gpsk γ̄

(Aq1−Bq1 cos(θ1))(Aq2−Bq2 cos(θ2))

)

× exp

(
sin2(θ3)
16gpsk γ̄

(Aq1−Bq1 cos(θ1))(Aq2−Bq2 cos(θ2))

)
.

(54)

Finally, substituting (54) in (52) yields the SEP P̄s in (37).
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