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ABSTRACT A graph-based collecting study recently attracted significant attention from the scientific
research community. Normalized Cheeger cut is a balanced graph partition criterion and a generalized
version of normalized graph cut. A stress-free resolution of the normalized Cheeger cut can be obtained by
employing the eigenvectors of curve p-Laplacian. However, it is highly sensitive for the original Cheeger
cut to collect the interference of noise and disrelated properties. Thus, the performance of the Cheeger
cut decreases when high-dimensional data are grouped. To decrease the negative influence of outliers
and superfluous properties of collecting, we design an efficient attribute decrease method which is based
on neighborhood rough approximation. This design aims to improve the collection of the Cheeger cut.
The suggested algorithm introduces information entropy to the neighborhood rough sets in order to measure
the importance of attributes. This algorithm reserves the most valuable features and removes the redundant
features while retaining the maximum category information of raw data. We then build the p-Laplacian
array with the optimized attribute sets and obtain the collecting consequences via the eigen-subspace
decomposition of graph p-Laplacian. The cogency of the proposed algorithm is established in various
standard data collections. Experimentations demonstrated that our method enjoys sturdy robustness to
noise or disrelated feature information in high-dimensional figures.

INDEX TERMS Normalized Cheeger cut, graph p-Laplacian, neighborhood rough set, attribute-value
lessening.

I. INTRODUCTION
This era of information explosion constantly exposes us to
diverse data every day. Collecting analysis is a powerful tool
for data mining and information statistics. The basic idea
of collecting is dividing the data set into some categories
by determinate analogy measures, which ensures the data
belongs to the same collections which own high analogies,
whereas the data points that belong to distinguishing collec-
tions share low similarities [1]. Statistics collecting aims
to explore the core link among objects and find valuable
knowledge from massive data. Collecting is the first step
in identifying the hidden relationships andmodels inside data.
Collecting has gained increasing attention as a main method
of data mining. Collecting in pattern recognition can be used
for speech recognition and character recognition; collecting
in image processing can be used in image segmentation
and machine vision; collecting in statistical learning can
be used for data compression and information retrieval [2].
Additionally, collecting has many other applications, such

as multi-relational data mining, data stream monitoring, and
time series analysis. Collection analysis also plays a signifi-
cant role in biology, psychology, archaeology, geology, geog-
raphy, and marketing [3]. Old-style bunching approaches,
for example, k-means and FCM algorithm, are appropriate
for operating data sets with spherical structures. However,
these algorithms fall into local optimum when dealing with
non-convex data sets. Graph-based collecting overcomes this
limitation by transforming the collecting difficulty to a graph
dividing issue. The eigenvectors of curve Laplacian array
help obtain a relaxed solution to the graph-cut objective
function [4]. At the side of predictable collecting algorithms,
graph-based collecting can recognize several complex data
structures that are ideal for non-convex data sets. Cheeger
cut is a modified form of standardized cut and cheeger
cut is gaining increasing consideration [5]. Cheeger cut
can produce a high number of well-adjusted collections
through graph p-Laplacian array [6]. The p-Laplacian array
is not a linear generalization form of Laplacian. Cheeger
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cut collecting uses the eigenvectors of p-Laplacian array to
group statistics points. Active research is being conducted
in this area on account of its reliable theoretical basis
and nice collecting consequences. Blekas and Lagaris [7]
gained appreciated parallel evidence helping decrease the
intersection between categories and amelioration collection
eloquence by using Newtons second law to investigate the
interface among figures points. Jia et al. [8] proposed a fresh
scarce spectral collecting technique using the Nystrm approx-
imation and adaptive sampling to reduce the complexity
of eigen decomposition. Saade et al. [9] used the Bethe
Hessian operative to make an improvement of the perfor-
mance of spectral collecting; they showed that such tactic
integrations the merits of the operator which would not
track back with tangible symmetric array. Dhanjal et al. [10]
presented an accessorial spectral collecting that modern-
izes eigenvectors of Laplacian in a computer-based effec-
tive means. Gao et al. [11] constructed the scant empathy
graph on a trivial typical data collection and used indige-
nous exclamation to modify the postponement of collecting
consequences. Semertzidis et al. [12] injected pairwise limi-
tations to a lesser empathy sub-array and used a rare tactic
of a milestone phantom collecting to reserve little diffi-
culty. Science and technology have grown significantly and
generated massive data that results in data explosionİ. High
dimensional is one of the features of these data. It is
difficult for customary collecting set of rules to satisfy
the demand of present methods in data analysis. Although
various collecting algorithms execute in good condition of
little figures space, they can not deal with high-dimensional
data as well as the low-dimensional data and they often gain
unbefitting or invalid collecting consequence [13]. Therefore,
it becomes a global research hotspot for people to create
and improve neoteric collecting algorithms for excavating
immense high-dimension numbers. Attribute reduction is a
valid way of reducing data size and it is frequently employed
as a pretreatment phase for statistics excavating. Deleting
the disrelated or superfluous properties while keep the cata-
loguing capability of acquaintance base is the substance of
the attribute reduction. Attribute reduction reduces computa-
tional complicacy and improves the efficiency of algorithms.
From the perspective of economy, efficient attribute reduc-
tion makes an improvement in acquaintance simplicity of
intellectual information structures and decrease the charge of
information structures a lot. Such perspective indicates trade
principle that cost minimization and profits maximization,
which is crucial to commercial cleverness. For the purpose of
handling the high-dimensional figures effectively, we design
a novel characteristic lessening method relied on neighbor-
hood rough set as well as integrate it with normalized Cheeger
cut (NCC) collecting. The anticipated algorithm succeed to
the benefits of neighborhood rough approximation and curve
p-Laplacian. The comprehensive experiments on target statis-
tics collections prove the effectiveness of this algorithm. This
study is arranged as following: Section 2 presents NCC.
Section 3 uses neighborhood rough approximation to select

the most valuable attributes. Section 4 improves NCC with
the optimized attribute set. Section 5 compares the enactment
of the suggested algorithm with several prevalent collecting
set of rules. Section 6 gives the conclusions of major findings
and discusses the direction for future studies.

II. NCC COLLECTING
A. APPLICATION BACKGROUND
Spitting image division is a puzzle in supercomputer visu-
alization. Image dissection is a pivotal step from image
processing to image analysis and has a long research history.
Image segmentation methods based on collecting analysis are
important and widely used image segmentation algorithms.
Images in grayscale, color, texture, or other types can be
segmented by collectingmethod [14]. Themain idea of image
segmentation is performing collecting on the image pixels
to obtain the segmentation consequence. Initially, the pixels
in image space is represented with the corresponding points
of feature space. After the collecting in feature space, wemap
the collecting consequences returning to the primary image
room. Researchers have presented different interpretations
and expressions of image segmentation. Using the concept
of setting, image segmentation can be regularly defined [15].
Make set R represent the entire image area. The dissection
of R could be regarded as the process of allocating R into k
non-empty sets (sub-regions) R1, R2,..., Rk which satisfy the
following five circumstances.

(1) ∪ni=1Ri = R
(2) For everyi 6= j, there is
(3) For i = 1, 2, k, there is P(Ri) = TRUE
(4) For i 6= j, there is P(Ri ∩ Rj) = FALSE
(5) For i = 1, 2, k, Ri is a connected region
where P(Ri) is the logical predicate for all the elements

in set Ri, and ∅ is the empty set. Condition (1) means
the sum (union) of all sub regions in the image segmen-
tation consequences should include all pixels in the orig-
inal image. That is, segmentation should ensure that every
pixel in the appearance is grouped into a sub-area. Condition
(2) indicates that each subregion in the segmentation conse-
quences does not overlap each other. A pixel cannot belong
to two regions. Condition (3) means that each subregion
in the segmentation consequences has unique characteris-
tics or that pixels in the same region have the same character-
istics. Condition (4) indicates the lack of public cross parts
among regions in the segmentation consequences. Condi-
tion (5) shows that the pixels in the same sub region of the
segmentation consequences should be connected. The above
definitions and the definition of collecting have similari-
ties. Thus, image segmentation problem can be identified
as a collecting problem. We may collection on the pixel
feature set of image to obtain the final segmentation conse-
quence. Collecting analysis can address the lack of training
samples in image segmentation task and meet the condi-
tions of unsupervised processing requirements [16]. Image
segmentation method based on collecting usually consists
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of two steps: (1) the feature extraction process of pixels
and (2) treating image pixels as sample points and applying
the collecting algorithm to divide them into collections.
Cheeger cut collecting has a solid theoretical foundation and
can identify complex data structures. This method also has
great advantage in image segmentation.

B. OBJECTIVE FUNCTION OF CHEEGER CUT
Cheeger cut collecting is based on ethereal graph model.
Owned a statistics set, we structure an directionless slanted
curve G = (V,E), where V is the set of vertices signified by
statistics dots, and E is the regular of edges weighted by the
parallels in the middle of the crossed vertices in the edge.
Assume A is a subset of V, the counterpart of A is inscribed
as Ā = V\A The censored of A and Ā is well-demarcated as

cut(A,A) =
∑

i∈A,j∈A

Wij (1)

where wij is the resemblance between vertices i and j. A clear
graph part represents that the similarities within a gathering
are the largest, whereas the similarities among collections
are the smallest. To obtain balanced collections, Bühler and
Hein [17] modified the normalized cut criterion and propose
normalized Cheeger cut, which is denoted as NCC.

NCC(A,A) =
cut(A,A)

min{vol(A), vol(A)}
(2)

where vol(A) =
∑

i∈A,j∈V
wij is the volume of subset

A. Formula (2) considers the internal and external connec-
tions of collections. A Cheeger cut divides the graph into
a number of subgraphs to minimize Formula (2). However,
research indicates that it is an NP-hard problem to seek
the optimal solution of a normalized Cheeger cut. Through
bringing in a p-Laplacian array, we may obtain a hassle-
free resolution of normalized Cheeger cut, which is stated by
Rayleigh quotient principle.

C. GRAPH P-LAPLACIAN
Spectral curve model is closely connected with the graph
Laplacian array. We can utilize the properties of the
p-Laplacian array to optimize the objective function of a
NCC. It is defined by Hein et al. [18] that the internal creation
formula of customary graph Laplacian 12 as follows.

〈f ,
i

2

f 〉 =
1
2

n∑
i,j=1

Wij(fi − fj)2 (3)

where f is the eigenvector of Laplacian matrix. Assuming the
Laplacian operator is generalized to 1p, where p ∈ (1, 2],
then 1p is denoted as

〈f ,
i

p

f 〉 =
1
2

n∑
i,j=1

Wij(fi − fj)p (4)

The normalized graph Laplacian 12 in matrix notation is
represented as12 = I−D−1W , whereW is theweightmatrix

formed by edge weights. D is the degree matrix, which is a
diagonal matrix with the diagonal element di = sumni=1Wij.
The corresponding normalized p-Laplacian operator 1p can
be derived easily:

(
i

p

f )i =
1
d

∑
j∈V

Wijϕp(fi − fj) (5)

where ϕp(y) = |y|p−1sign(y), y ∈ r , and ϕ2(y) = y when
p= 2. The eigenvalue λp of p-Laplacian is defined as follows.
Definition 1: If there is a real number λp that satisfies

Formula (6), λp is the corresponding eigenvalue of Eigen-
vector f.

(
i

p

f )i = λpφp(fi), ∀i = 1, . . . , n (6)

In a array operation, the eigenvector that corresponds to the
minutest eigenvalue is asked to include significant discern-
ment information. This attribute is crucial in a collecting
algorithm as well. Definition 2 applies this characteristic to
a nonlinear p-Laplacian operator.
Definition 2: If λp is the smallest eigenvalue of normalized

graph p-Laplacian1p, λp should satisfy Formula (7) to reach
the lower bound.

λp = argmin
f ∈R

〈
f ,1pf

〉
n∑
i=1

di|fi|p
(7)

Formula (7) can be converted into a function Gp(f) of
normalized p-Laplacian as follows.

Gp(f ) =
〈f ,

a
p f 〉

n∑
i=1

di|fi|p
=

1
2

n∑
i,j=1

Wij|fi − fj|p

n∑
i=1

di|fi|p
(8)

The analysis from above proves that the inferior bound of
Gp(f) is relative to the eigenvalues and eigenvectors of 1p.
We then show the mathematical connection between Gp(f)
and the objective function of NCC.

D. RELAXED SOLUTION OF NCC
Theorem 1: For p>1 and every partition of V into A, Ā,
a function (f,A) exists such that the functional Gp associated
to the normalized p-Laplacian satisfies

Gp(f ,A) = cut(A,A)

∣∣∣∣∣ 1

vol(A)
1

p−1

+
1

vol(A)
1

p−1

∣∣∣∣∣
p−1

(9)

Formula (11) can be understood as a harmonious graph cut
principle. We then obtain the following special case:

lim
p→1

Gp(f ,A) = NCC(A,A) (10)

Proof: Function (f,A) for a partition A, of V is first
defined as

(f ,A)i =

1/vol(A)
1

p−1 i ∈ A

−1/vol(Ā)
1

p−1 i ∈ Ā
(11)
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Formula (11) is brought into
〈
f ,

a
p f
〉
and

∑n
i=1 di|fi|

p.
Thus, we have〈

f ,1pf
〉
=

1
2

n∑
i,j=1

wij
∣∣fi − fj∣∣p

=

∑
i∈A,j∈Ā

wij

∣∣∣∣∣∣ 1

vol(A)
1

p−1

+
1

vol(Ā)
1

p−1

∣∣∣∣∣∣
p

n∑
i=1

di|fi|p =
∑
i∈A

di

∣∣∣∣∣∣ 1

vol(A)
1

p−1

∣∣∣∣∣∣
p

+

∑
i∈Ā

di

∣∣∣∣∣∣ 1

vol(Ā)
1

p−1

∣∣∣∣∣∣
p

=
vol(A)

vol(A)
p

p−1
+

vol(Ā)

vol(Ā)
p

p−1

=
1

vol(A)
1

p−1

+
1

vol(Ā)
1

p−1

By substituting the numerator and denominator of Formula
(8) with the above two expressions, we acquire the formula:

Gp(f ,A) =

〈
f ,1pf

〉
n∑
i=1

di|fi|p

=

∑
i∈A,j∈Ā

wij

∣∣∣∣∣∣ 1

vol(A)
1

p−1
+

1

vol(Ā)
1

p−1

∣∣∣∣∣∣
p

1

vol(A)
1

p−1
+

1

vol(Ā)
1

p−1

=

∑
i∈A,j∈Ā

wij

∣∣∣∣∣∣ 1

vol(A)
1

p−1

+
1

vol(Ā)
1

p−1

∣∣∣∣∣∣
p−1

≤

∑
i∈A,j∈Ā

wij

∣∣∣∣∣∣ 2

min {vol(A), vol(Ā)}
1

p−1

∣∣∣∣∣∣
p−1

= 2p−1
cut(A, Ā)

min{vol(A), vol(Ā)}

Make a comparison between the above inequality and the
objective function of NCC obtains

lim
p→1

Gp(f ,A) = NCC(A,A)

End Proof
Theorem 1 shows that the solution of Gp(f) is a relaxed

estimated resolution ofNCC(A,A). From the process of mini-
mizing Gp(f). the optimal graph partition can be gained.
The extreme value of Gp(f) is the eigenvalue of graph p-
Laplacian.

λp = argmin
p→1

Gp(f ) (12)

where λp is the eigenvalue corresponding to eigenvector f.
Thus, using the p-Laplacian operator, NCC can be figured

out in polynomial time. After set a suitable threshold,
the second eigenvector vp(2) of p-Laplacian array leads to

a bipartition of the graph [17]. After minimized the corre-
sponding Cheeger cut, the optimal threshold is decided.
The following threshold should satisfy the second eigenvector
vp(2) of graph p-Laplacian 1p:

argmin
At={i∈V |v

(2)
p (i)>t}

NCC(At , Āt ) (13)

III. NEIGHBORHOOD ROUGH SET APPROXIMATION
Pawlak [19] proposed rough set theory in 1982. Conceptions
of domain, lower estimate and upper calculation are included
in the definition of the theory in order to designate the
progression of anthropological book learning and critical
reasoning. In a rough set model, production rules represent
obtained knowledge and it is simple for operators to compre-
hend, receive and employ. For choosing property subsets,
searching decision regulations and exploring acquaintance
reliance and other arenas, rough set is used generally as a
calculated instrument for handling blurry and indeterminate
acquaintance. Among the rough set knowledge discovery,
attribute reduction is the main content. This process describes
the necessity of each attributes in the information system and
the process of removing superfluous knowledge.

Nevertheless, the foundation of the Pawlak rough set [19] is
known as the characteristic philosophy of uniformity associ-
ations and similarity categories which are merely appropriate
for dealing with discrete data. Constant figures are general
in the real domain and they should be discretized at the early
stage.We could choose suitable dissection in order to separate
the series of nonstop property principles into a variety of
separation breaks and then show the characteristic values
in every subinterval by using different integers. The loss
of information inevitably happened in such conversion and
the analyzing consequences are based on the efficacy of the
separation intervals to a huge extent. In order to figure out
this puzzle, Hu et al. [20] introduced neighborhood relation-
ships into a rough set and proposed the neighborhood rough
set exemplary. Attributes can be analyzed straightly in this
model with unbroken values to eliminate the discretization
procedure. Consequently, there are a lot of benefits in feature
assortment and cataloguing accuracy.

A. δ-NEIGHBORHOOD
Rough sets define the difficult that will be dealt with as
information organism. S = 〈U ,A,V ,F〉 is an information
system. U is domain, which is a non-empty data set. A is the
attribute set. V is the feature value set. F is a map function,
which indicates the association of the model and the relevant
characteristic.
Definition 3: Jia, Ding, Ma and Xing(2014) point out

that given domain U, for object yi ∈ U , the definition of
δ-neighborhood of yi is

δ(yi) = {y|y ∈ U ,1(y, yi) <= δ} (14)

where δ ≥ 0, δ(y) is the neighborhood particle of yi, and 1
is a distance function. For y1, y2, y3 ∈ U , 1 satisfies the
following relations.

VOLUME 6, 2018 20107



L. Li, J. Yue: NCC With Neighborhood Rough Approximation

(1) 1(y1, y2) ≥ 0,1(y1, y2) = 0,, if and only if y1 = y2;
(2) 1(y1, y2) = 1(y2, y1);
(3) 1(y1, y3) ≤ 1(y1, y2)+1(y2, y3). [21]
For a sample set of N attributes, distance is usually calcu-

lated by P-norm.

1p(y1, y2) = (
n∑
i=1

|f (y1, ai)f (y2, ai)|p)

1
p

(15)

where f(y, ai) is the value of attributes ai of sample y. If ai is
a symbolic trait,

(1) |f (y1, ai)− f (y2, ai)| = 0, if y1, y2 have the same value
on attribute ai; and
(2) |f (y1, ai) − f (y2, ai)| = 1, if y1, y2 have disparate

values on attribute ai.
For instance, domain U = {y1, y2, y3, y4, y5}, a is an

attribute of U and f (y, a) stands for the attribute value of
sample y on attribute a. f (y1, a) = 1.1, f (y2, a) = 1.2,
f (y3, a) = 1.6, f (y4, a) = 1.8, and f (y5, a) = 1.9. Neighbor-
hood size is set to δ = 0.2. Given that |f (y1, a)− f (y2, a)| ≤
0.2;thus, y2 ∈ δ(y1), y1 ∈ δ(y2). We then derive each samples
δ-neighborhood: δ(y1) = {y1, y2}, δ(y2) = {y1, y2}, δ(y3) =
{y3, y4}, δ(y4) = {y3, y4, y5}, δ(y5) = {y4, y5}. If domain U
includes multiple attributes, the δ-neighborhood of samples
can be calculated in a similar way.

B. NEIGHBORHOOD DECISION SYSTEM
Definition 4: Given a domain U = {y1, y2, · · · · · · , yn}
positioned in real space, A is on behalf of the attribute set
of U and D is on behalf of the decision-making attribute.
If A can produce a type of neighborhood connection of
domain U, then NDT = 〈U ,A,D〉 is named a neighbor-
hood decision system. For a neighborhood decision system
NDT = 〈U ,A,D〉, eparated to N similarity categories by
decision-making attribute D:y1, y2, · · · · · · , yn. ∀B ⊆ A,
the upper approximation,lower approximation, and decision-
making borderline of decision attribute D about B are corre-
spondingly distinct as

NBD =
N⋃
i=1

NBYi (16)

NBD =
N⋃
i=1

NBYi (17)

NBD =
N⋃
i=1

NBYi (18)

where NBYi = {yi|δB(yi) ∩ Yi 6= ∅, yi ∈ U}, and NBYi =
{yi|δB(yi) ⊆ Yi, yi ∈ U}. The concept of upper and lower
approximation is explained by giving a case of the catego-
rizations of two types. Assume that domain U includes two
correspondence types, just as seen in Figure 1. One type
of testers is labelled with *, the other are labelled with +.
The figure shows that the tasters in the rounded neighborhood
of taster y1 are belong to category *. Thus, y1 is part of the

lower approximation of class *. The tasters in the neighbor-
hood of y3 come from category +. Thus, y3 fits in the lower
guesstimate of category+. Category * tasters and category+
samples are covered in the neighborhood of sample y2. Thus,
y2 is a borderline taster. This categorization is accordant with
our instinctive understanding of categorization difficulties.

FIGURE 1. Neighborhood rough set exemplary.

The lower approximation NBD of decision attribute D is
also called a positive decision region denoted as POSB(D).
The size of POSB(D) mirrors the separable point of domain U
in a given attribute space. A large positive region consequence
in sharp boundaries of each category and less overlap.

We describe the reliance of decision-making attribute D on
condition attribute B on the basis of the nature of the positive
region.

γB(D) =
Card(NBD)

Card(U )
(19)

where 0 ≤ γb(D) ≤ 1. γb(D) is the proportion which is
obtained from the tasters entirely confined in a definite cate-
gory of decision-making accounted for every tester, on the
basis of the description of situation attribute B, in the tester
series. The superior the positive region NBD is, the reliance
of decision D on circumstance B will be stronger.

C. NEIGHBORHOOD ATTRIBUTE REDUCTION
Jia et al. claim that given NDT = 〈U ,A,D〉, B is a subset of
A. For an arbitrary attribute, ∀a ∈ B, If γB−a(D) < γB(D),
a is indispensable to B. If γB−a(D) = γB(D), a is an irrelevant
feature. [21]If the attributes in B are all indispensable to B, B
is a reduced set.
Definition 5: Jia et al. claim that given aNDT = 〈U ,A,D〉,

if B is a subset of A and it meets the conditions below, B is
called A’s reduction. (1) ∀a ∈ B, γB−a(D) < γB(D), and (2)
γA(D) = γB(D). [21] Condition (1) means that there are no
irrelevant attributes in a reduction set, namely the reduction
set should be isolated. Condition (2) indicates that the reduc-
tion process should not influence the whole distinguishable
nature of the system.
Definition 6: Given a neighborhood decision system

NDT = 〈U ,A,D〉, B v A, and ∀a ∈ A − B, the important
degree of a relative to B is defined as

SIG(a,B,D) = γB∪a(D)− γB(D) (20)
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According to the neighborhood rough sets, we can create the
attribute decrease algorithm by using the traits significance
index. First, we work out the significance degree of the
rest of traits and enlarge the attribute with the most signif-
icance to the decrease series. This practice is repeated until
the significant degree of the rest of attributes is 0, which
indicates that the dependent function values of the system
will not change when a new attribute is added. However,
some attributes may own the highest degree of significance.
Traditional reduction algorithms choose one attribute from all
attributes randomly, which arbitrarily does not consider the
influences on additional elements on attribute assortment and
might consequence in bad discount consequences.

Based on information theory, analyzing attribute reduc-
tion make an improvement on reduction accuracy. Several
researchers have proven the feasibility of thismethod.Wu and
Gou [22] proposed a decision table reduction algorithm based
on conditional information entropy. Shannon [23] introduced
joint information into a decision table to designate attribute
significance and gain the correlative decrease of attributes.
Shannon, as the inventor of information concept, points out
that any information has severance [24]. There is a close rela-
tionship among the size of the redundancy and the incidence
likelihood, improbability of each emblem of information,
such as statistics, letters and characters. Information elimi-
nates the indecision of possessions. The higher the vague-
ness is, the amount of the entropy value will be greater and
the amount of information needed to achieve clarity will be
larger [25]. The characterization of entropy is given below.
Definition 7: Given knowledge P and its partition U/P =
{Y1,Y2, · · · · · · ,Yn} exported on domain U, the information
entropy of knowledge P is defined as:

H (P) = −
n∑
i=1

p(Yi)logp(Yi) (21)

where P(Yi) = |Yi|/|U | is on behalf of the probability
of equivalence category Yi on domain U. We appraise
attributes by using information entropy which is consid-
ered as another criterion. When numerous attributes have
the highest degree of significance, we make a comparison
between the info entropy of such attributes and choose the
attribute with minutest entropy which means that bringing
the minimum indeterminate information, then incorporate it
into the lessening set to obtain improved attribute lessening
consequences. This modified attribute lessening algorithm is
exposed as Algorithm 1.
Algorithm 1: Attribute granulation based on neighborhood

rough set approximation. Input: the NDT = 〈U ,A,D〉
system.

Output: attribute reduction result red .
Step 1. For each attribute a in attribute set A, compute its

relationship Na with neighborhood.
Step 2. Use empty set to initialize red .
Step 3. SetB = A−red . For each attribute a ∈ B, computes

its importance degree SIG(ai, red,D) = γred∪a(D)−γred (D).

Step 4. If there is only one attribute ak has the
maximum importance degree, namely SIG(ak , red,D) =
maxi(SIG(ai, red,D)), ak is a candidate attribute; other-
wise, we need to compare the entropy of each attributes
and select the attributes that satisfy H (ak ) = mini(H (ai))
(Jia et al., 2014). [21]

Step 5. If the importance degree of ak is greater than 0, add
ak to the set red , then turn to Step 3; otherwise, output the
reduction set red(Jia et al., 2014). [21]

IV. NCC WITH NEIGHBORHOOD
ROUGH APPROXIMATION
Huge high-dimensional statistics handing out has been a
puzzle in statistics excavating. Statistics of high-dimension
is often supplemented by the obscenity of dimensionalityİ.
Thus, old NCC cannot fully play its advantages. Furthermore,
there are a mass of noise and disrelated features in the real
data sets, which probably causes dimension trapİ. The dimen-
sion trapİ would impede with the collecting procedure of
algorithms and influence the accuracy of collecting conse-
quences [26]. Thus, we propose a novel NCC algorithm
with neighborhood rough approximation (NRA-NCC).This
algorithm first computes the degree of importance of each
attribute based on neighborhood rough set theory. This
algorithm then removes redundant attributes, retain the most
important attributes according to their importance and the
characteristics of the decision system, measure the resem-
blances among statistics points to structure the likeness array
and p-Laplacian array, and divide the graph into multiple sub-
graphs with the eigenvectors of p-Laplacian array to mini-
mize the normalized Cheeger cut specification and acquire
great superiority collecting consequences. The thorough
phases of NRA-NCC algorithm are shown in Algorithm 2.

Algorithm 2. NCC with neighborhood rough approxima-
tion

Input: Dataset, the cluster number k
Output: k separated clusters
Step 1. Decrease the attributes of data points according to

Algorithm 1 and gain the reduced attribute set red.
Step 2. After attribute granulation, compute the resem-

blances among data points according to the new data set red
and form the sympathy array W ∈ Rn×n using self-tuning
Gaussian kernel function, which is defined by the following
formulation:

Wij = exp

(
−
d2(yi, yj)
σiσj

)
(22)

where σi = 1
p

∑p
k=1 d(yi, yk ) is the Euclidean distance

from point yi to its p-th nearest neighbor. Rather than use a
unchanging parameter σ , this algorithm sets a homologous
stricture σi for each point yi which is based on their neighbor-
hood information.

Step 3. Modify the first collection Ai = V and set the
collection number s = 1.
Step 4. Repeat Steps 4 to 8.
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TABLE 1. Data sets used in the experiments.

Step 5. Based on Formula (5) with the affinity array W to
structure p-Laplacian array.

Step 6. Figure out the second eigenvector V (2)
p of graph

p-Laplacian 1p and seek a suitable threshold value which
meets Formula (13).

Step 7. Use V (2)
p to split every collection Ai(i =

1, 2 · · · · · · , S) and minimalize the general Cheeger cut
objective function.

Step 8. s⇐ s+ 1.
Step 9. Terminate the circle and output the collecting

consequences until the number of collections s = k .

V. EXPERIMENTAL ANALYSIS
A. DATA SETS
We take six benchmark statistics series to conduct the
trials and test the effectiveness of the proposed NRA-NCC
algorithm. The traits of such statistics series are seen
in Table 1. Ionosphere, Sonar, and WDBC are from the
University of California Irvine machine learning repository1.
Colon Cancer, Duke Breast Cancer, and Leukemia are all
cancer data sets from the LIBSVM data page 2

B. EVALUATION METRIC
Several methods can measure the merits of collecting conse-
quences. F-measure is a commonly used evaluation index
which is on the basis of artificial annotation. F-measure is
acquired from information repossession arena and includes
accuracy and recollection ratios. The distinction between
the collecting consequences and the realistic categories from
various angles are described by these two indicators. F-score
is figured out by the accuracy and recollection ratio is a
widespread index to assess a collection. F-score gives an
unbiased assessment to the engendered collections. Assume
that k categories are in the dataset, and category I is connected
with collection i* in collecting consequences. We may calcu-
late the F-score of category i by executing the following three
formularies.

P(i) = Nii∗/Ni∗ (23)

R(i) = Nii∗/Ni∗ , (24)

1http://archive.ics.uci.edu/ml/
2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

and

F(i) =
2× P(i)× R(i)
P(i)+ R(i)

(25)

where P(i) and R(i) are separately the accuracy ratio and the
recollection ratio, Nii∗ represents the scope of the juncture of
category i and collection i*, Ni is the size of category i, and
Ni* is the magnitude of collection i*.

The complete F index of the collecting consequences is the
weighted regular of every categorys F-score.

F =
1
n

k∑
i=1

[Ni × F(i)] (26)

where n is the number of taster points, k is the category
number of statistics set, and Ni is the proportions of category
i. F ∈ [0, 1]. With the growth of the F index, the gap between
the collecting consequences of the algorithm and the real data
category will be narrowed.

C. COLLECTING CONSEQUENCES
In the trial, NRA-NCC algorithm is compared with the
formal normalized cut collecting (NC) density adaptive spec-
tral collecting (DSC) [27], self-tuning p-spectral collecting
(ST-pSC) [28] and NCC algorithm [5]. Figure 2 shows the
collecting consequences of collecting consequences of five
algorithms on each data set. The horizontal axis of the
figure is the collection label and the vertical axis is the F-score
of every collection.

Figure 2 shows that the enactment of NC algorithm is
near NCC algorithm. NC and NCC are on the basis of
graph theory and collecting problematic is transformed into
a graph segregating difficult. So these two algorithms might
discover the international optimal resolution with the assis-
tance of the spectral technique and Laplace transform.DSC
algorithm uses local density adaptive similarity measure
to calculate the similarities between data points. ST-pSC
algorithm classifies data points based on shared nearest
neighbors. NCC algorithm can generate balanced collections
on Ionosphere data set. DSC algorithm is suit for Sonar
data set. ST-pSC algorithm works well on WDBC dataset.
However, the F-scores of NC, DSC, ST-pSC and NCC for
high dimensional collecting problems are lower than the
proposed NRA-NCC algorithm. The information in every
attribute of the cases is distinguishing and they play different
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FIGURE 2. Collecting consequences on different datasets. (a) Ionosphere. (b) Sonar. (c) WDBC. (d) Colon Cancer.
(e) Duke Breast Cancer. (f) Leukemia.

TABLE 2. Total F index of different algorithms.

roles in the collecting. Improper feature selection will largely
affect the collecting consequences. Traditional graph cut
collecting algorithm does not take this into account. This
algorithm is impressionable to the influence of noise and
disrelated attributes and are not suitable for high-dimensional
applications. However, with the help of attribute granula-
tion, NRA-NCC algorithm can handle multi-scale collecting
problems and identify more complex data structures. For
additional evaluation, Table 2 shows the whole F index for
every algorithm and the amount of condition attributes of
distinguishing data sets.

Table 2 shows that the NRA-NCC algorithm works well
with high-dimensional data. On most data sets, the proposed
NRA-NCC algorithm can generate more accurate collecting
consequences than NC, DSC, ST-pSC and NCC algorithms.
Neighborhood rough sets are used by NRA-NCC algorithm
to adjust data occasions. Neighborhood attribute granula-
tion deletes attributes which have no relation and keeps

the attributes that make the most contribution to collecting.
Thus, the statistics points within the equal collection are
compressed, whereas the statistics points between distinc-
tive collections are divided. Thus, NRA-NCC algorithm has
high collecting accuracy in most cases. The neighborhood
attribute reduction is on the basis of information entropy
reduces the passive influences of noise figures and super-
fluous attributes on the collecting. This method reduces the
difficulty of problem solving and describes the approximate
relationship between data points much better. NRA-NCC
algorithm integrates the advantages of Cheeger cut collecting
and neighborhood rough approximation. This algorithm has
good robustness and strong generalization ability.

VI. CONCLUSIONS
Discrete data is the only appropriate date to apply outmoded
rough set philosophy, but old rough set theory requires the
discretization of the domain when dealing with continuous

VOLUME 6, 2018 20111



L. Li, J. Yue: NCC With Neighborhood Rough Approximation

data. Neighborhood rough sets overcome this limitation
through neighborhood approximation, which can directly
process the numeric statistics. We adjust the attribute less-
ening technique which is on the basis of neighborhood rough
sets to improve the performance of NCC on high-dimensional
data. Selecting the suitable attributes with the new method,
there is a close connection between the attribute importance
and the information entropy. Facing multiple attributes with
the equal significance degree, we may make a comparison
between the information entropy of these traits and choose
the attribute with trifling entropy to join the lessening set
to improve the compact attribute set. We propose that the
NRA-NCC algorithm is rely on the optimized attribute reduc-
tion set in the second innovation. NRA-NCC highlights the
distinctions between data points while keeping their charac-
teristics to let the last collecting consequences close to the
realistic statistics categorization. Experimentations prove that
the proposed NRA-NCC algorithm is grander to traditional
Cheeger cut algorithms. NRA-NCC has strong anti-jamming
and good generalization abilities to high-dimensional data.
Future studywill focus on how to apply NRA-NCC algorithm
to a recommendation system, text categorization, pattern
recognition, and other fields.
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