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ABSTRACT Most pattern classification techniques are focused on solving closed-set problems in which a
classifier is trained with samples of all classes that may appear during the testing phase. In many situations,
however, samples of unknown classes, i.e., whose classes did not have any example during the training
stage, need to be properly handled during testing. This specific setup is referred to in the literature as open-set
recognition. Open-set problems are harder as theymight be ill-sampled, not sampled at all, or even undefined.
Differently from existing literature, here we aim at solving open-set recognition problems combining
different classifiers and features while, at the same time, taking care of unknown classes. Researchers have
greatly benefited from combining different methods in order to achieve more robust and reliable classifiers
in daring recognition conditions, but those solutions have often focused on closed-set setups. In this
paper, we propose the integration of a newly designed open-set graph-based optimum-path forest (OSOPF)
classifier with genetic programming (GP) and majority voting fusion techniques. While OSOPF takes care
of learning decision boundaries more resilient to unknown classes and outliers, GP combines different
problem features to discover appropriate similarity functions and allows a more robust classification through
early fusion. Finally, the majority-voting approach combines different classification evidence from different
classifier outcomes and features through late-fusion techniques. Performed experiments show the proposed
data-fusion approaches yield effective results for open-set recognition problems, significantly outperforming
existing counterparts in the literature and paving the way for investigations in this field.

INDEX TERMS Pattern recognition, open-set recognition, data fusion, optimum-path forest, genetic
programming, majority voting.

I. INTRODUCTION
Thus far, most research in pattern recognition has been
focused on solving closed-set problems — those in which
all classes that may appear in the testing stage have had rep-
resentative samples during the training. In many situations,
however, samples of unknown classes, i.e., classes for which
no representatives at all have been seen during training, need
to be properly handled during testing, giving rise to what
is referred to in the literature as an open-set setup. As an
example, consider that a supermarket has an image-based
fruit recognition system installed at the cashiers for produce
identification. In this type of system, all produce that might
appear during system usage will be associated with one of

the products seen in the training (closed set). Nevertheless,
this type of system is inappropriate for problems in which
a new fruit or produce is expected to be recognized by the
application, as the system, if not properly equipped for open-
set recognition, will return as result a fruit with which it was
trained. In an open-set problem, a classifier should be able
to reject such samples, i.e., identify when a sample does not
belong to classes seen in the training [1]. As a matter of
fact, a myriad of problems fall within this pattern recognition
category.

Addressing open-set problems is challenging since we do
not know nor do we have access to all classes that would
be present in the testing phase [1]–[3]. Those classes can
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be, for example, difficult to sample at training phase or sim-
ply unknown [4]. Although difficult, the open-set recogni-
tion problem is not insurmountable. Indeed, some classifiers,
including Support Vector Machines (SVMs) and neural net-
works, have already been proposed or modified to deal with
or, at least, accommodate, open-set constraints and presented
promising results [1]–[3], [5], [6]. However, using a single
classifier with a single object feature might not be enough
to deal with such difficult setup. To our knowledge, none of
these solutions leverages fusion strategies to boost open-set
methods and strengthen the decision-making process.

An open-set method ideally needs a better way to deal
with unknown samples. For this reason, open-set approaches
have to consider the empirical risk and open-space risk.
Empirical risk [1], [7] is related to the specialization of the
classifier. This risk can be measured on training data based on
mislabeled samples. In turn, open-space risk [1], i.e., the risk
of the unknown, is the risk of mislabeling data if we extend
the decision margin, accepting more samples as positives,
where new samples from unknown classes could appear dur-
ing testing — this risk is related to the generalization of the
classifier. An open-set classifier has to minimize the open-set
risk defined in [1], i.e., try to minimize the risk balancing
the empirical risk and open-space risk. As such, combin-
ing different classifiers and features dealing with different
properties of a problem could improve the recognition rate
by better finding appropriate tradeoffs between specializa-
tion and generalization conflicting objectives. In this vein,
in this work, we propose an open-set graph-based classifier
and three variants of it for information fusion. We exploit
fusion information approaches to solve open-set recognition
problems by combining different instances of the proposed
classifiers and features while, at the same time, taking care of
unknown classes that may appear during testing.

In the literature, there exist some techniques aiming at
combining information as early as possible (Early-Fusion
methods) or as late as possible (Late-Fusionmethods) to solve
a particular problem. However, sometimes these approaches
have a high computational and storage footprint, or suffer
with problems related to the curse of dimensionality [8].
Standing out as possible viable fusion alternatives for feature
fusion without incurring in serious high-dimensionality prob-
lems are Genetic Programming (GP) [9] and Majority Voting
schemes [10].

GP was first introduced by Koza [9], inspired by the
biological evolution process. The use of GP presents some
advantages, including high effectiveness in finding good
similarity functions between objects in complex search
spaces [6], [11]–[15]. In turn, theMajority Voting [10] fusion
technique has long been a staple in information fusion offer-
ing a simple, yet effective, late-fusion mechanism easily
adaptable to various domains. Ciuonzo and Salvo [16] proved
the statistical robustness of majority voting in a binary prob-
lem of channel-aware decision fusion outperforming other
fusion methods, further advocating for the use of such simple
methods.

Taking advantage of fusion methods while at the same
time dealing with the open-set recognition setup, in this
work, we propose an open-set graph-based Optimum-Path
Forest (OSOPF) classifier and variants of it for informa-
tion fusion. The information fusion methods are allied with
Genetic Programming (GP) and Majority Voting fusion tech-
niques. While OSOPF draws a bead on learning decision
boundaries more resilient to unknown classes and outliers,
the GP, inspired by the biological evolution process, takes aim
at harnessing different object properties and combining them
to discover appropriate similarity functions to boost classi-
fication results through early fusion. In particular, we focus
on visual-related problems and the considered features often
involve color, texture, and shape properties. Complementary,
the Majority-Voting approach combines different classifica-
tion evidence from different classifier outcomes and features
through a late fusion decision-making process. In summary,
our methods look for a better description/separation of data
points while optimizing for rejecting unknown samples dur-
ing the testing phase. To the best of our knowledge, this
is the first research focused on bringing to bear the power
of diversity through fusion and open-set solutions. We start
with the introduction of the Open-set Optimum-Path For-
est (OSOPF), which extends upon the Optimum-Path Forest
(OPF) classifier [17] — inherently closed set — for open-set
setups.

Previous work has already attested the effectiveness
of the OPF classifier along with genetic programming.
Godoi et al. [6] combined OPF and GP for the author name
disambiguation problem, assuming an open-set regime. Dif-
ferently from Godoi et al’s [6] work, instead of focusing on
specific aspects of a given problem (e.g., name disambigua-
tion), we opt for modifying the classifier learning function
directly empowering the classifier to handle general-purpose
problems.

Some other relevant prior art include the use of GP
and OPF in a series of problems, notably closed-set ones.
dos Santos et al. [18] coupled GP and Relevance Feed-
back (RF) mechanisms when solving some remote sensing
problems. da Silva et al. [15], in turn, coupled OPF and GP
in content-based image retrieval tasks, also using relevance
feedback. The OPF classifier was also tested in informa-
tion fusion problems involving majority voting. Ponti and
Papa [19] proposed a method for combining OPF classifiers
that work with disjoint subsets of data and integrated the
final classification through a majority voting scheme. Finally,
Ponti and Rossi [20] exploited the effects of reduced training
sets when combining different OPF classifiers throughmajor-
ity voting.

To validate the proposed methods, we performed exper-
iments on datasets widely adopted in the validation of
information-fusion approaches in the context of multime-
dia classification. The Analysis of Variance (ANOVA) and
Tukey’s HSD (honest significant difference) tests were used
to compare results. The experiments show that the pro-
posed data fusion schemes yield effective results under
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an open-set recognition regime, significantly outperforming
existing counterparts in the literature.

Finally, we organized the remaining of this work into four
sections. Section II presents some related methods and con-
cepts used in this work. Section III introduces the proposed
methods and also presents the OSOPF classifier, the underly-
ing method of the proposed fusion schemes. Then, Section IV
presents the adopted experimental protocol along with exper-
iments and results. Finally, Section V draws conclusions and
presents possible directions for future work.

II. BACKGROUND
In this section, we present some concepts for a better under-
standing of this work. We start with some Genetic Program-
ming concepts (Section II-A) and the Optimum-Path Forest
classifier (Section II-B). Then, we present the open-set recog-
nition problem (Section II-C) and some related work. Finally,
we discuss some fusion approaches (Section II-D) we use in
the work.

A. GENETIC PROGRAMMING
The Genetic Programming (GP) is a technique first intro-
duced by Koza [9] and it is based on the Darwinian principle
of reproduction, inheritance and survival of the fittest individ-
ual during the biological evolution. This approach, in general,
looks for the best computer program (fittest individual) in a
wide space of computer programswhich are designed to solve
a problem with a range of possible solutions (optimization
problem).

The GP initial population is a set of randomly generated
computer programs (individuals) whose structure programs
may comprise: arithmetic operations, programming opera-
tions, mathematical functions, or domain-specific functions.
Each individual represents a solution of a problem and is
assessed with a score (fitness) that is used as an estimation of
how close an individual solves the target problem. The best
individuals are evolved to create better populations in the
next generations until some criteria are reached. The most
common representation of the individuals consists of a series
of trees (Figure 1) whose leaf nodes are related to variables
while internal nodes denote operators.

FIGURE 1. Example of a GP individual. The leaf nodes (d1, d2 and d3) are
variables while internal nodes (×, /, + and √) are operators. This

individual represents the function (
√

d3 + d1)× (
d2
d3

).

GP exploits differences in performance between indi-
viduals as some of them will be somewhat fitter

than others. The GP, in the evolution phase, chooses the
best individuals of each generation and modifies their struc-
tures using genetic operations with the goal of obtaining
a better population. The most common genetic operations
are: Reproduction, which selects the best individuals
of each generation and copies them to the next gener-
ation; Mutation, which makes random changes in the
structure of individuals; and Crossover, which combines
genetic material between two parents, exchanging sub-trees.
This technique has been used in ranking functions [13],
image retrieval [12], [14], [21]–[23], multimodal image
retrieval [11], author name disambiguation [6], deriving
vegetation indices [24], remote sensing image classifica-
tion [18], [25], [26], among other applications.

More specifically, in the Reproduction operation (asex-
ual), based on the Darwinian natural selection process,
the best individuals (regardless of their fitness) of each gen-
eration are selected to be part of the next generation, without
modifications. TheMutation, in turn, is an asexual operation
that needs only one individual and has the ultimate goal of
diversifying the population through random alterations in the
individuals’ structure — it inserts a random subtree from a
random internal or leaf node by cutting off the initial subtree
located at that point. The Crossover (sexual operation) takes
aim at introducing variation in the population. Firstly, this
operation takes two individuals according to their fitness
function and selects one random node (crossover point) at
each individual, and then, the subtrees that have the crossover
points as roots are interchanged [9].

B. OPTIMUM-PATH FOREST
Optimum-Path Forest (OPF) is a fast graph-based closet-set
multiclass classifier [17] which has been used for different
classification problems in prior art [6], [27]–[33]. It works as
a graph partitioning problem in which the weight of the edges
might be given by a similarity or distance measure between
nodes. The basic idea behind this classifier is to create a
complete graph where each node is a feature vector, then,
we create partitions of the graph in order to group samples
from the same class, taking into account that we can have
more than one partition for each class. To create the graph,
the OPF for unsupervised classification uses a k-nearest
neighbors (k-NN) method to generate the initial graph that
is used for the algorithm. On the other hand, for supervised
problems, it starts with a complete graph. The fitting and
classification phase for this kind of problems are presented
next.

1) FITTING PHASE
Given an edge-weighted complete graph G = (D1,A), each
pair of nodes is connected by an arc in A = D1 × D1 where
D1 is the training set (Figure 2a). The Minimum Spanning
Tree (MST) [34] is calculated on G to find the prototypes T ,
being T ⊂ D1. In the MST, a sample x is considered as
a prototype if it is connected to a sample y, such that their
labels are not equal (Figure 2b), i.e., nodes connected through
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FIGURE 2. Optimum-Path Forest classifier (blue and green classes).
(a) Complete Graph, (b) Minimum Spanning Tree (MST) – Prototypes
selection, samples wrapped in dotted lines. (c) Classification of sample x
as part of the green class.

the MST that belong to different classes (samples located in
the separation frontier). Each class could be represented by
one or more optimum-path trees, which have a prototype as
root.

The distance between two samples x and y is calculated by
d(x, y), where d(x, y) ≥ 0. A path that ends in the sample x is
a sequence of nodes πx = 〈s, s1, s2, . . . , x〉 that has a cost
given by the function f (πx), and πx · 〈x, y〉 represents the
concatenation of the path πx and the arc (x, y). A path is
trivial if πx = 〈x〉 and is optimum if with any other path ςx ,
f (πx) ≤ f (ςx). In the OPF, the connectivity function fmax(π )
is given by the greater arc in the path π :
The distance between two samples x and y is calculated by

d(x, y), where d(x, y) ≥ 0. A path that ends in the sample
x is a sequence of nodes πx = 〈s, s1, s2, . . . , x〉 that has a

cost given by the function f (πx), and πx · 〈x, y〉 represents
the concatenation of the path πx and the arc (x, y). A path is
trivial if πx = 〈x〉 and is optimum if with any other path ςx ,
f (πx) ≤ f (ςx). In the OPF, the connectivity function fmax(π )
is given by the greater arc in the path π :

fmax(〈x〉) =
{
0 if x ∈ T ,
+∞ otherwise

fmax(πx · 〈x, y〉) = max{fmax(πx), d(x, y)}. (1)

With the minimization of fmax , each one of the samples y ∈
D1 has an optimum path P∗(y) from T , where the minimum
cost C(y) is:

C(y) = min
∀πy∈(D1,A)

{fmax(πy)} (2)

Finally, with P∗(y) already defined, the label of y is given
by L(y) following the predecessors of y through the path up
to its root R(y) ∈ T . In V, Algorithm 5 shows the training
stage of the OPF classifier. This algorithm is rooted at the
Image-Forest Transform (IFT) [35].

2) CLASSIFICATION PHASE
Let D2 be the testing set. Each sample z ∈ D2 seeks an opti-
mum path based on the cost function defined by Equation 3:

C2(z) = min{max{C(x), d(x, z)},∀x ∈ D1}, (3)

which represents the best path, based on the minimum maxi-
mum arc to reach a prototype through a sample x. Let s be the
sample that offers the lowest cost to z, then, the label assigned
to z is L(z) = L(s), that is equivalent to L(z) = L(R(s))
(Figure 2c).

Papa et al. [36] also presented Enhanced OPF (EOPF),
which alters the OPF classification algorithm avoiding to visit
all the nodes in the search for the best path, speeding up the
prediction stage. For this, in (3) D1 can be replaced by D′,
where D′ has all the samples of D1 but ordered by the cost
(non-decreasing order) assigned during the training phase.
Given x as the current evaluated sample in D′, the visit stops
when max{C(x), d(x, z)} < C(x ′) for a sample x ′ whose
position in D′ succeeds the position of x. EOPF is detailed
in V (Algorithm 6).

C. OPEN-SET RECOGNITION
In open-set recognition, samples of classes not seen during
training (unknown classes) may appear at testing. Unlike
common closed-set problems, in open-set setups, the clas-
sifiers have to be capable of returning, as result, either one
of the known classes or reject the sample by classifying it
as unknown [1]. In this regime, we need techniques with
strong generalization — i.e., capable of determining whether
a datapoint is too far away from any supporting training
samples and properly rejecting it. Moreover, another point
to take into account is the optimization considering the risk
of the unknown and not only the empirical risk, present in
virtually all closed-set methods.
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Departing from traditional closed-set modeling, more
recently some authors have started to focus on open-set
problems. Most of the techniques for this kind of scenario
are based on adaptations of well-known classifiers such as
Support Vector Machines (SVM) [1], [2], [5], [7], [37], [38]
and Optimum-Path Forest (OPF) [6]. SVM-based approaches
[1], [2], [5], [7], [38] for open-set recognition commonly
rely upon the one-vs-all policy [39] for extending the binary
classifiers to multiclass classification (SVM-OVA). When
combining binary classifiers into a multiclass one by using
one-vs-all policy, a test sample is classified as unknown when
all binary classifiers classify it as negative. When at least one
binary classifier classifies the input sample as positive for a
certain class, the class with highest confidence is chosen as
the final class.

This reasoning was also applied by Heflin et al. [40] and
Pritsos and Stamatatos [37] but with one-class classifiers.
The advantage of using one-class SVMs is that each one-
class classifier classifies as positive possible test samples
only in a bounded region of the feature space. When allied
with the one-vs-all policy, possible faraway test samples, out-
side the support of the training samples, would be classified
as unknown. The disadvantage resides on the well-known
over-specialization of one-class SVMs [41], which impacts
these classifiers heavily in terms of high false unknown
rate. In another work, Support Vector Data Description [42],
a form of one-class classification, was not primarily proposed
for open-set recognition, but serves for this intent as shown
by Pritsos and Stamatatos [37].

The binary classifier 1-vs-Set Machine — in which known
classes represent the ‘‘Set’’ out of all possible unknown
classes that can appear at testing — is an SVM adaptation
proposed by Scheirer et al. [1] to deal with open-set problems.
Following a linear kernel formulation, for each binary clas-
sifier, it employs two parallel hyperplanes to better support
generalization and specialization, seeking to bound positive
samples in between them. The objective is to minimize the
risk of the unknown in the multiclass level by decreasing the
false positive at the binary classification level. An optimiza-
tion phase is performed to find a balance between the empiri-
cal risk (measured on training data) and the open-space risk.
Following a similar reasoning, Costa et al. [2], [5] proposed
a technique using a binary SVM along with a searching
process referred to as Decision Boundary Carving (DBC)
to the problem of assigning an image to a specific camera
in an open-set setup (source camera attribution). Instead of
two hyperplanes, only one hyperplane is used for each binary
classifier, but also aiming at decreasing the false positive rate.

Departing from previous formulations, Scheirer et al. [7]
took aim at the Extreme Value Theory (EVT) and proposed
a Weibull-calibrated process [43] to normalize classification
scores of one-class and binary SVMs. In this sense, their
WSVM method estimates the probability of a test sam-
ple being positive and a probability of not being negative
for each binary model and combines both probabilities to
accept or reject a sample. In another work also leveraging

the powerful extreme value theory, Jain et al. [44] proposed
the SVM with Probability of Inclusion (PISVM) in order
to estimate the unnormalized posterior probability of class
inclusion. The probability of class inclusion combines one-
class rejection ability and the discrimination ability of binary
classifiers.

Moving away from the SVM open-set modeling,
Godoi et al. [6] used the OPF classifier along with genetic
programming to propose a solution for the author name
disambiguation problem. Such problem takes place whenever
the same author publishes articles using similar names (syn-
onyms) or distinct authors use analogous names (homonyms).
To solve the problem, the authors used a threshold to define
new subtrees in the OPF classifier for new authors (new
classes). The GP was used to find similarity functions among
the authors’ references.

Bendale and Boult [45] proposed a Nearest Non-Outlier
(NNO) algorithm, extended fromNearest ClassMean (NCM)
classifiers, for open-set recognition. The NNO classifier is
based on the mean vectors of each known class. This method
detects outliers for bounding the open-space risk and rejects
a sample s when all classifiers reject it. Moreover, this algo-
rithm can add new categories on-the-fly based on human-
labeled data. More recently, a new approach to adapt deep
neural networks for open-set recognition problems was pro-
posed by Bendale and Boult [46]. Their proposed OpenMax
layer is an adaptation of the penultimate layer, SoftMax,
for open-set problems. Once again harnessing concepts from
EVT, the OpenMax layer computes the probability of a sam-
ple being from a class not seen during the training stage.
The rejection of a new sample s is determined by using
the Weibull CDF probability on the distance between the
penultimate layer obtained with s and the Mean Activation
Vector mc, considering c as the most probable class. mc is
computed by using training images from class c that are
correctly predicted by the trained network.

D. INFORMATION FUSION
Early fusion and late fusion are two popular approaches
for data fusion [47]. Early-fusion methods seek to aggre-
gate various independent types of features into one lengthier
(e.g., through feature vector concatenation) feature vector
before some machine learning algorithm can be applied.
One limitation of this approach is, naturally, the increase
in feature dimensionality [8]. On the other hand, late-
fusion methods normally combine classification predictions
(e.g., classification scores or probabilities) for different fea-
ture sets.

Other techniques that have been used for information
fusion are the ensemble methods [48]. Those methods often
use a voting scheme using a set of classifiers trained for
the same task. Some of the algorithms that use this kind of
approach include Bayesian averaging [49], Error-correcting
output coding (ECOC) [39], Bagging [50], and Boost-
ing [51]. Another widely used technique for data fusion
is Genetic Programming (GP), with applications ranging
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from image recognition [18], [25], [26] and information
retrieval [12]–[14], [21]–[24] to multimodal retrieval
problems [11].

In closed-set setups, information fusion approaches have
often led to good classification results [18], [25], [26], [52],
[53]. In turn, when considering open-set configurations, to the
best of our knowledge, those fusion methods have yet to be
exploited. In such problems, the task of dealing with samples
that belong to classes not seen during the training stage is
very challenging. For this reason, it is paramount to look at
alternative (and complementary) ways of characterizing the
problem of interest seeking a better separation of samples
among known classes while empowering the classifier to
reject unknown ones. Given that information fusion can be
used to take advantage of different types of features in a given
problem, it is only natural to think of it in object recognition
tasks when dealing with open-set setups, as we detail in the
next section.

III. OPEN-SET FUSION METHODS
In this section, we propose four inherently multi-
class classifiers for open-set recognition problems. First,
Section III-A presents the Open-set Optimum-Path For-
est (OSOPF) a principled graph-based classifier tailored for
open-set setups. Then we turn our attention to extending upon
the initial OSOPF method with Open-set fusion formulations
leveraging Genetic Programming (GP) and Majority Voting
(MV) to take advantage of several sources of information
while dealing with different open-set problems. Before pro-
ceeding any further, the reader might consider reviewing
OPF’s properties (Section II-B) and algorithms for closed-set
problems (A).

A. OPEN-SET OPTIMUM-PATH FOREST (OSOPF)
In this research, we propose an inherently multiclass graph-
based method, the Open-Set Optimum-Path Forest (OSOPF),
as a new approach for open-set recognition problems based.
The prediction of our method — inspired in the work of
Mendes Júnior et al. [54] for nearest neighbors— is based on
the cost ratio of the two best paths of different known classes.
OSOPF is an extension upon the Optimum-Path Forest —
an innate closed-set classifier. It uses the same cost function
(Eq. 3) and a similar training phase (Algorithm 5) to the OPF
classifier. Unlike the closed-set OPF formulation, however,
in the training stage, we add a key modification, an optimiza-
tion phase that seeks for the best parameter (threshold t) for
the open-set decision-making process later on. In addition,
theOSOPF’s recognition phase (testing operation) is different
as it takes the open-set setup into consideration when classi-
fying an input sample.

Our approach is based on the comparison of a decision
threshold t (optimized in the training phase using a grid-
search procedure and a simulation of an open-set setup)
and a cost relation of the two best paths from different
classes to a given input sample. Given x as input, it looks
for the two nearest classes that offer the best classification

costs c1 and c2 (according to the path cost function in
Equation 3), respectively. Then, the relation r = c1

c2
is cal-

culated. Being s the nearest sample of the path that offers the
best prediction cost c1, x is assigned to the class of the proto-
type sp = R(s); otherwise, x is classified as unknown, i.e.,

L(x) =

{
L(sp) if r ≤ t
unknown if r > t.

(4)

OSOPF training and recognition phase are presented in
Algorithm 1.

Algorithm 1 Training and Recognition Phases of OSOPF
Require: Set of training samples S.
Require: Test sample x.
1: OPF forest generated in the training phase using S

(Section II-B and V).
2: t ← threshold optimized in the training phase

(Section III-A).
3: π1 ← best path to x in the OPF according to fmax (Cost

function in Eq. 3).
4: π2 ← second best path to x in the OPF, such that
L(R(π1)) 6= L(R(π2)).

5: r ← fmax(π1)/fmax(π2) (Cost function in Eq. 3)
6: if r ≤ t then
7: L(x)← L(R(π1)).
8: else
9: L(x)← ‘‘unknown’’.
10: end if

Parameter Optimization: In OSOPF, we use a parameter
optimization phase simulating an open-set setup to find the
best value for the threshold t . In this research, the samples
were divided into training and testing sets (see Figure 3a).
In an open-set scenario, the testing set has samples of known
and unknown classes, as samples of classes whose no rep-
resentative was present during training can also appear (see
Figure 3b). In our parameter optimization phase, we split
samples of the training set into fitting set and validation
set. The fitting set is used to train the classifier while the
validation set is used to verify the accuracy based on the
value t . The training set is divided according to the following:
to simulate the open-set setup on the parameter optimiza-
tion phase, only half of the available classes for training
have representative samples in the fitting set (samples of the
remaining classes are in the validation set), and for each class
considered in the fitting set, half of its samples is in the fitting
set (the remaining is in the validation set; see Figure 3c).

Finally, an OSOPF classifier is fitted using the fitting set,
and, with the samples of the validation set, a grid search [55]
procedure is executed to find the best threshold t . Notice
that at least three available classes in the training set are
required to the parameter optimization phase because at least
one of those classes completely belongs to the validation
set (to simulate an open-set setup), and the fitting set must
contain samples of two different classes. More details about
the dataset partitioning are presented in Section IV-A.2.
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FIGURE 3. General scheme of data partitioning for the parameter
optimization of OSOPF: (a) a dataset is divided into training and testing
sets. (b) Most of the samples in testing set are from unknown classes
(whose no representative at all was seen during the training stage).
(c) Partitioning of the training set to simulate an open-set scenario for
parameter optimization of OSOPF.

Our approach extends upon the traditional closed-set OPF
and introduces modifications to verify if a test sample can be
classified as unknown. To the best of our knowledge, OSOPF
extension is the first version of the OPF classifier suitable
for general open-set recognition. Its main advantage is that
it is inherently multiclass, i.e., the efficiency of OSOPF is
not affected as the number of available classes for training
increases, differently from open-set one-vs-all SVM exten-
sions in the literature, which are rely upon combining several
binary classifiers. Moreover, OSOPF can create a bounded
risk of the unknown space for every known class (using
the support of existing training samples) therefore gracefully
protecting the classes of interest and rejecting unknown ones.
These two advantages make OSOPF ideal for developing
solutions for novelty detection and online learning, which
could detect unknown classes on-the-fly and include them on
the recognition system automatically.

The region in the feature space in which a test sample will
be classified as belonging to a specific class is referred to
as decision boundary. Figure 4 shows the decision bound-
aries comparing two different decision values for OSOPF
(threshold values of 0.5 and 0.8). White areas correspond to
regions where a sample would be labeled as unknown. We can
see how OSOPF builds its decision surface, according to the
threshold, creating a bounded open-space considering the risk
of the unknown. This OSOPF’s behavior gives a favorable
setting to reject samples, predicting the unknown.

B. OPEN-SET FUSION METHODS
We propose three generic inherently multiclass methods for
open-set recognition problems based on OSOPF and fusion
techniques. Our methods aim at improving the object recog-
nition rate using Genetic Programming (GP) and Majority
Voting to combine any kind and number of visual properties
in a given problem through early- and late-fusion approaches.
The proposed methods are OSOPF Open-GP (OSOPFOGP),
OSOPF Closed-GP (OSOPFCGP), and OSOPF Majority Vot-
ing (OSOPFMV).

OSOPFOGP and OSOPFCGP use genetic programming to
combine features through early fusion. The use of GP aims
to discover an individual that allows a better separation
between samples. For this, we look for the best GP indi-
vidual (tree) to be used as distance function to calculate the
arc weights between the objects in the OPF graph. In the
GP Individual, internal nodes correspond to mathematical
operators (+, /,× and

√
) and each leaf node takes the value

of the Euclidean distance between two objects described by a
particular visual feature (e.g., texture and color).

The GP-methods are represented by the pair (γ, δ), where
γ is the OSOPF classifier and δ is an individual (distance
function) generated by GP. To evaluate each pair (γ, δ),
we create an optimum-path forest using the fitting set.
Two sets of samples validation1 and validation2 are used
to assess the OPF classifier. The validation1, used during
n generations, serves to pre-select the pairs (γ, δ) with the
best performance. In turn, validation2 is used to evaluate the
generalization of the GP classifiers and try to avoid over-
fitting. The selection of the best pair (γ, δ) is based on the
average classification accuracy

avgAccuracy =
ac1 + ac2

2
,

where ac1 and ac2 are the normalized accuracies obtained by
the classifier in the sets validation1 and validation2, respec-
tively. The GP-methods have the goal of finding the best GP
individual (δ) that allied with the OSOPF classifier (γ ) gives
a better separation of the data.

Sections III-B.1 and III-B.2 present the open-set GP meth-
ods that consider, respectively, a closed-set and an open-set
training regime. The main difference between them is that
while the closed-set GP simulates a closed-set setup during
the training, the open-set GP creates an open-set setup by
pretending not to have access to some of the known classes
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FIGURE 4. Decision boundaries for a synthetic dataset with two different decision thresholds. Samples in white regions would be
classified as unknown, while samples in a non-white area would be classified as part of the class of the samples with the same
color. The stricter we are in the value, the more we protect classes of interest (specialize to them). The parameter-optimization step
automatically finds the value for t based on available training/validation examples. (a) OSOPF for t = 0,5. (b) OSOPF for t = 0,8.

during training. Finally, in Section III-B.3, we propose a
voting-based method (OSOPFMV) through late fusion that
combines different objects’ features.

As OSOPF is a simple graph-based classifier that during
training stage creates optimum-path trees with samples from
the same class (each class may be represented by one or more
optimum-path trees) based on the distance between the nodes
(objects), the GP is a useful approach to generate a complex
distance function using any number of sources of information
to improve the compaction of the optimum path trees and lead
to a better separation between trees of different classes.

In turn, given that OSOPF is an algorithm that has a fast
training stage, it is effective to use OSOPF along with a
Majority Voting scheme as well. This approach improves its
recognition rate through the ‘‘opinion’’ of some independent
classifiers (committee) that use OSOPF as a base algorithm
(innately open set) but each one working over different types
of features.

1) OSOPF Open-GP (OSOPFOGP)
In this method, during the training stage, we simulate an
open-set setup (pretending that some of the known classes
are unknown) with the goal of reaching a reasonable general-
ization/specialization tradeoff for the classifier, i.e., trying to
define, based on a threshold, a limit on how far a samplemight
be from a tree of class x in order to be labeled as belonging to
that class. As an example, suppose the classifier has access to
five classes (known labels) during training butmanymore can
appear later on during testing. To simulate an open-set setup
during training, the method ‘‘pretends’’ not to know some of
the five classes it has labels and then uses them to better drive
the learning process without over-specializing to those five

classes of interest — e.g., pretending to know only three out
of the five during training. It uses the partitioning showed in
Section IV-A.2.a.

Algorithm 2 presents this method. The sets validation1 and
validation2 have samples that belong to classes not seen in
the fitting set. For its part, validation3 is used to find the best
threshold (see Section IV-A.2.a). In Lines 1 and 2, the set
I is created to store the best individuals of each genera-
tion and the initial GP population is generated, respectively.
In Lines 3-11, the GP individuals evolve during Nevolutions
evolutions. During the Nevolutions evolutions, each individual
is evaluated (Lines 4-7). For this, first, in Line 5, an optimum-
path forest (OPF) is created using the fitting set (a proper
subset of the training set), where each GP-individual is
used as a function distance. Then, in Line 6, the OPF is
assessed with the validation1 set using OSOPF as classifier.
The best NtopIndividuals are selected in each generation and
the GP population is evolved using Mutation, Reproduction,
and Crossover operators (Lines 8, 9 and 10). Next, in Lines
12-16, an OPF is created (based on the fitting set) for each
one of the best individuals that were saved in the set I , then,
the OPFs are assessed with OSOPF and the mean normal-
ized accuracy is calculated, by computing the normalized
accuracy obtained in the sets of samples validation1 and
validation2 for each GP individual i. After that, the best
individual ibest is selected in Line 17. Recall that OSOPF uses
a threshold on a ratio to reject unknown samples. For that
reason, in Line 18, the OSOPFOGP executes a grid-search
to optimize the value of the threshold. The training set is
created in Line 19, where training = fitting ∪ validation1 ∪
validation2 ∪ validation3. At the end, the final forest (OPF)
is created with the training set, using the ibest individual as a
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Algorithm 2 Algorithm for OSOPFOGP
Require: fitting, validation1, validation2, validation3 (see

Section IV-A.2.a)
Require: threshold , Nevolutions, NtopIndividuals
1: I ← ∅.
2: A← initial population.
3: for each g generation of Nevolutions do
4: for each i ∈ A do
5: forest ← OPF(fitting, i) (Section II-B and V –

Alg. 5).
6: i.fitnessValue ← OSOPF(forest, i, threshold,

validation1) (Section III-A – Alg. 1) //normalized
accuracy.

7: end for
8: Ig← NtopIndividuals of g
9: I ← I ∪ Ig
10: A ← new population (Reproduction, Crossover and

Mutation).
11: end for
12: for each i ∈ I do
13: forest ← OPF(fitting, i) (Section II-B

and V – Alg. 5).
14: fitnessval2←OSOPF(forest, i, threshold, validation2)

(Section III-A – Alg. 1). //normalized accuracy.
15: i.fitnessValue← (i.fitnessValue+ fitnessval2)/2
16: end for
17: ibest ← bestIndividual(I ).
18: bestThreshold ← gridSearch(OSOPF, i, validation3)

(Section III-A).
19: training ← fitting ∪ validation1 ∪ validation2 ∪

validation3
20: forest ← OPF(training, ibest ) (Section II-B and V –

Alg. 5).
21: OSOPF(forest, ibest , bestThreshold, testing)

//recognition in the testing set (Section III-A – Alg. 1).

distance function (Line 20). The classifier is assessed in the
testing phase (Line 21).

2) OSOPF Closed-GP (OSOPFCGP)
This method uses a closed-set training looking for a suitable
representation for known classes in order to have a good
‘‘knowledge’’ about them, i.e., it tries to find a better sep-
aration between samples of different classes and minimize
the within-class dispersion. In the training stage, this method
uses the OPF and the partitioning of the samples presented
in Section IV-A.2.b. All classes that appear in partitions
validation1 and validation2 have representative samples in
the fitting set. On the other hand, in the testing (open-set
setup), the best δ individual from the training is used along
with the OSOPF classifier (γ ).
Algorithm 3 details this method. Best individuals of

each generation are saved in I and the initial population

Algorithm 3 Algorithm for OSOPFCGP
Require: fitting, validation1, validation2 (see

Section IV-A.2.b)
Require: threshold , Nevolutions, NtopIndividuals
1: I ← ∅.
2: A← initial population.
3: for each g generation of Nevolutions do
4: for each i ∈ A do
5: forest ← OPF(fitting, i) (Section II-B

and V - Alg. 5).
6: i.fitnessValue ← OPF(forest, i, validation1)

(Section II-B and V - Alg. 6)//normalized accuracy.
7: end for
8: Ig← NtopIndividuals of g
9: I ← I ∪ Ig
10: A ← new population(Reproduction, Crossover and

Mutation).
11: end for
12: for each i ∈ I do
13: forest ← OPF(fitting, i) (Section II-B and V -

Alg. 5).
14: fitnessval2 ← OPF(forest, i, validation2)

(Section II-B and V - Alg. 6)//normalized accuracy.
15: i.fitnessValue← (i.fitnessValue+ fitnessval2)/2
16: end for
17: ibest ← bestIndividual(I ).
18: training← fitting ∪ validation1 ∪ validation2
19: forest ← OPF(training, ibest ) (Section II-B and V).
20: OSOPF(forest, ibest , threshold, testing)

(Section III-A - Alg. 1) //recognition in the testing
set.

is generated (Lines 1 and 2, respectively). In Lines 3-11,
GP individuals are evolved during Nevolutions. In each evolu-
tion, every GP individual is assessed (Lines 4-7). For this,
first, in Line 5 it is created an optimum-path forest (OPF)
with the fitting set, where each GP individual is used as
a distance function. Next, in Line 6, the OPF is eval-
uated with the validation1 set using the OPF classifica-
tion phase. In Lines 8, 9 and 10, the NtopIndividuals of
each generation are selected and the population is evolved
using the Mutation, Reproduction and Crossover operators.
In Lines 12-16, new OPFs are created using the fitting set
and each one of the best individuals in the I set. Each OPF is
assessed using the OPF classification phase and is calculated
the mean normalized accuracy for each individual i based
on their normalized accuracies obtained in the validation1
and validation2. The best individual is selected in Line 17.
Then, in Line 18, the training set is created with the fitting,
validation1, and validation2. Finally, the training set and the
ibest (distance function) are used to define an OPF classifier.
This classifier is evaluated using a testing set with the OSOPF
approach.
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3) OSOPF Majority Voting (OSOPFMV)
Majority Voting is a widely used technique in information
fusion [10], [19], [20]. The OSOPFMV classifier takes into
account the opinion of some OSOPF classifiers that con-
tribute with views of the problem. Given a pair (γ,D) —
where γ is the OSOPF base classifier and D is a set of
descriptors — the OSOPFMV, for each descriptor, computes
an optimum-path forest (OPF) using the Euclidean distance
to separate the nodes of the OPF. Then, the method considers
the labels given to a sample by each pair (γ,Di), where
Di ∈ D. The sample will be labeled with the label that has the
most number of votes — tie-breaking consists of randomly
choosing one of the labels.

Algorithm 4 Algorithm for OSOPFMV

Require: classifier , training, testing
Require: Set of descriptors D
1: F(descriptor, forest)← ∅.
2: for each descriptor ∈ D do
3: forest ← OPF(training, descriptor) (Section II-B

and V - Alg. 5).
4: F ← F ∪ (descriptor, forest).
5: end for
6: for each x ∈ testing do
7: P← ∅
8: for each (descriptor, forest) ∈ F do
9: label ← OSOPF(forest, descriptor, x)

(Section III-A - Alg. 1).
10: P← P ∪ label.
11: end for
12: x.label ← assign the label that has more occurrences

in P; if there is a tie, choose randomly one of the labels
that are involved in the tie.

13: end for

Algorithm 4 details the OSOPFMV method. In the first
line, F is initialized. In Lines 2-5, with the training set, it is
generated an optimum-path forest (OPF) for each descriptor.
These forests are stored in F . The label assignment for each
sample is defined in Lines 6-13 (testing phase). In Lines 8-11,
it is assigned one label for each OPF ∈ F and each assigned
label is saved in P. Note that in Line 9, the OSOPF approach
is used as classifier. At the end, in Line 12, it is assigned
the label with more occurrences in P — tie-break consists
of randomly choosing one of the labels.

IV. EXPERIMENTS AND DISCUSSION
We now turn our attention to presenting the experimen-
tal protocol (Section IV-A), and results of the experiments
(Section IV-B) with the proposed methods compared to base-
lines proposed for open-set scenarios.

A. EXPERIMENTAL PROTOCOL
In this section, we describe the datasets (Section IV-A.1),
the partitioning scheme (Section IV-A.2) for the training/
validation/testing experiments, descriptors (Section IV-A.3),

the GP configuration (Section IV-A.4), and the grid-search
procedure (Section IV-A.5) configuration adopted in this
work.

In this work, we adopted the Normalized Accuracy (NA)
and Open-Set F-Measure (OSFM) as evaluation measures,
following prior work for open-set scenarios [54]. OSFM can
also assume its macro- and micro-averaging forms: OSFMM
and OSFMµ, respectively.

1) DATASETS
Proposed fusion methods were evaluated in the following
datasets: CALTECH-256 [56] ALOI [57], and COIL [58].
We selected these datasets because they provide a differ-
ent degree of difficulty in the recognition task. In Table 1,
we present some characteristics of each dataset, considering
number of classes and samples. We also present the mini-
mum, maximum, and average number of elements per class
in each dataset. The openness of each dataset for experiments
with 3, 6, 9, 12, and 15 known classes are presented in Table 2.
Openness is a measure proposed by Scheirer et al. [1] to
assess how open (when there are unknown classes on testing)
is the scenario of an experiment.

TABLE 1. Datasets considered in this work.

TABLE 2. Openness of the considered datasets for 3, 6, 9, 12, and
15 known classes.

2) DATASET PARTITIONING
Samples of each dataset were divided into training and testing
sets in order to create an open-set setup by leaving samples of
some classes as unknown for testing. Moreover, we divided
the samples of the training set into fitting (samples used
to fit/train a classifier) and validation sets (samples used
to assess the accuracy during grid-search and avoid over-
fitting of the classifier being trained). In some cases, this
division creates open-set or closed-set setups. As OSOPF
needs a parameter optimization phase, we use validation set
to execute the grid-search and find the best value for the
open-set rejection threshold. The partitioning procedure can
be summarized as follows:

1) x classes out of the total n in a given dataset are
selected as known classes and the remaining ones are
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considered to be part of the set of unknown classes.
x ∈ {3, 6, 9, 12, 15} is the number of known classes.

2) Samples in x known classes are partitioned again into
sets of 80% and 20%, which will be further used for
training and testing, respectively.

3) All samples from the unknown classes set are used for
testing.

4) Samples in the training set may be further divided into
fitting and validation sets for parameter optimization.

In the OSOPFMV method, the optimum-path forest is gen-
erated with all available training samples. On the other hand,
for OSOPFOGP and OSOPFCGP, the open-set and closed-set
training setup, respectively, were simulated. For that reason,
samples that belong to the training set were further partitioned
as described below (Step 4 above):

a: OSOPFOGP Partitioning
The OSOPFOGP training scenario simulates an open-set setup
during the training stage and it works as follows:

1) From the x known classes in the training set, ceiling of
half of them are considered as known (y classes) and
the remaining as unknown (z classes).

2) The fitting set has 40% of the samples from the y known
classes and it is used to generate the forest of the OPF
classifier.

3) The validation1 is used to assess the generated forest in
each GP generation and has the following composition:
30% of the samples of the y known classes and 50% of
the samples from the z unknown classes.

4) The validation2 contains 20% of the samples from the
y known classes and 35% from the z unknown classes.
This set is used to calibrate the learning process and
avoid over-fitting.

5) The validation3 is used to find the best threshold in the
OSOPFOGP classifier. This set is composed of 10% of
the samples from the y known classes and 15% from
the z unknown classes.

b: OSOPFCGP Partitioning
The training of the OSOPFCGP method considers a closed-set
scenario during the training stage. The partitioning works as
follows:
• 40% of the samples from the x known classes are used in
the fitting stage. This is used to create the optimum-path
forest (OPF).

• The validation1 has 30% of the samples from the x
known classes and is used to validate the generated
forest.

• To avoid over-fitting, the validation2 is used. This set
contains 30% of the samples from the x known classes.

3) DESCRIPTORS
We opted to use traditional color and texture descrip-
tors, considering that they contribute differently for the
object characterization task. In this vein, we selected the
Border/Interior Pixel Classification (BIC) [59], Color

Autocorrelogram (ACC) [60], Color Coherence Vec-
tor (CCV) [61], Quantized Compound Change Histogram
(QCCH) [62], and Local Activity Spectrum (LAS) [63]
descriptors. The first three are color descriptors and the last
two characterize texture information. Description was not the
focus of our work and any other set of features could be
considered including bags of visual words and deep-learning
generated features.

4) GP CONFIGURATION
We used the JGAP [64] Java library to implement the GP
framework. In the case of the mathematical operators and
reproduction rate, we used the configuration proposed in [12].
The operators used were: +, /, × and

√
along to a repro-

duction rate of 0.05. In addition to the reproduction rate, there
exist some attributes to take into account as well: mutation
rate, crossover rate, size of the initial population, number of
generations and deep of the tree.

To assess the impact of the mutation and crossover rates,
the following strategy was adopted:
• We consider an initial population of 100 individuals and
the evolution over 10 generations.

• Mutation and crossover rates were (0.05, 0.1, 0.2) and
(0.2, 0.5, 0.8), respectively.

• We perform experiments combining the values of the
mutation and crossover (total of 9 experiments).

• We select the values of the rates that obtained the best
results.

To assess the importance of the number of individuals (X )
in the initial population, number of generations (Y ), and depth
of the tree (Z ) in the results, we used a two-level full-factorial
design [65]. This design was tested and used in [24], [66],
and [67], in which each parameter is assessed with two val-
ues, a low value (−) and a high value (+). The parameter
evaluation results in 2n experiments, where n is the number of
parameters, in our case, n = 3. Each experiment was executed
three times with different random seeds to generate distinct
initial populations. Therefore, there are a total of 24 execu-
tions. To evaluate the impacts of different parameter settings,
we resorted to the ALOI dataset (considering 9 classes of
interest as known classes) and the OSOPFOGP classifier.

TABLE 3. Parameter effect.

Table 3 shows the effects of each parameter in the experi-
ments. Note that some parameter settings are not important
to the whole classification procedure (with effects lower
than 1%). These percentages indicate that none of such
parameters affect the results when their values are modified
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FIGURE 5. Normalized Accuracy evolution considering the best 15 GP individuals in each generation: (a) validation1, (b) validation2 and (c) test .

(low or high values). To calculate the effect of a specific
parameter p, the following methodology was used:

1) b = mean of all the experiments where p had its low
value.

2) a = mean of all the experiments where p had its high
value.

3) effect = a− b.

a: Parameter settings
Table 4 shows mathematical operators and values of
the parameters we used in this work. Figure 5 depicts
the evolution curve of the GP classifier. The accuracy
scores in the validation1, validation2, and test , obtained
by the 15 best individuals in each generation are plotted
in Figures 5a, 5b, and 5c, respectively. We can see that the
NA in validation1 (set used to generate and select the best
individuals) are higher the more evolved the GP individuals
are. However, the improvement of the individuals in the
last generations do not have a high impact on the scores;
therefore, the classifier stabilizes with just 30 generations.
Note that all curves have a similar behavior with the classifier
reaching some state of equilibrium in the last generations.

TABLE 4. GP configuration we adopted in this work.

5) GRID SEARCH
The OSOPF method relies on a threshold to limit how far
a sample A could be from the rest of the samples of a par-
ticular class C . We performed a traditional grid search [55]
procedure to find such threshold based on the samples in the
validation set while simulating an open-set setup as discussed
in Section III-A. The range of values to look for in the
threshold search were [0.5, 1], with 5 grid-search levels and
10 threshold values evaluated in each level.

B. RESULTS AND DISCUSSION
To test the classifiers, we used 10 executions for 3, 6, 9, 12 and
15 known classes out of all existing ones in the dataset for
training. In any case, for testing, all classes in the dataset can
appear. In other words, we performed 10 executions using
3 classes as known classes and the same for 6, 9, 12 and
15 known classes.

1) VARIATIONS OF THE PROPOSED METHOD
Firstly, we present results of the OSOPF based methods
(OSOPF, OSOPFCGP, OSOPFOGP and OSOPFMV) along
with the OPF classifier. An interesting aspect to notice
here is that the traditional closed-set OPF outperforms our
OSOPF method in the AKS. As explained before, this is
expected as OSOPF focuses on better balancing the decision
on known classes and reject unknown samples. In contrast,
in Figures 6b, 7b and 8bwe can observe that OPF has noAUS,
because the it is a closed-set classifier that never classifies
a test sample as unknown. The AUS determines how well
the unknown samples are identified at testing phase. In other
words, OPF is not recommended for open-set problems.
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FIGURE 6. Comparison of OSOPF methods for the ALOI dataset.
(a) Accuracy on Known Samples (AKS). (b) Accuracy on Unknown
Samples (AUS). OPF has no AUS, because the standard OPF is a closed-set
classifier that never classifies a test sample as unknown. (c) Normalized
Accuracy (NA).

In the ALOI dataset (Figure 6), the proposed OSOPF has
a better NA than OPF as our method reduces the misclassifi-
cation with respect to the OPF in 37%, 36%, 36%, 37% and
37% with 3, 6, 9, 12 and 15 known classes, respectively. Fur-
thermore, in the COIL dataset (Figure 7), OSOPF improves
the OPF results in 39%, 34%, 40%, 36% and 37% for 3,
6, 9, 12 and 15 known classes, respectively. Finally, in the
CALTECH-256 dataset (Figure 8), OSOPF outperforms OPF
regarding NA reducing the misclassification by more than
20% in all cases for 3, 6, 9, 12 and 15 known classes.

We now turn our attention to the impact of improving
OSOPF with fusion methods, via genetic programming (GP)

FIGURE 7. Comparison of OSOPF methods for the COIL dataset.
(a) Accuracy on Known Samples (AKS). (b) Accuracy on Unknown
Samples (AUS). OPF has no AUS, because the standard OPF is a closed-set
classifier that never classifies a test sample as unknown. (c) Normalized
Accuracy (NA).

and voting fusion. First of all, it is clear that OSOPF
greatly benefits from its combination with the GP and
voting fusion schemes. OSOPFOGP is more appropriate
to the open-set setup than OSOPFCGP. For the ALOI
dataset (Figure 6), we have the OSOPFOGP improving
the recognition in about 10% (e.g., for 9 and 15 known
classes), the OSOPFCGP improving the recognition in 3%
and 11.6% (e.g., 6 and 12 known classes), respectively,
and the OSOPFMV (e.g., 3 known classes) improving the
recognition in about 8% when compared to OSOPF. Fur-
thermore, the OSOPFMV had the best AUS in all the
experiments (Figure 6b), boosting previous OSOPF’s results
in 2.4%, 10.8%, 6.1%, 6.6% and 9.4% for 3, 6, 9, 12, and
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FIGURE 8. Comparison of OSOPF methods for the CALTECH-256 dataset.
(a) Accuracy on Known Samples (AKS). (b) Accuracy on Unknown
Samples (AUS). OPF has no AUS, because the standard OPF is a closed-set
classifier that never classifies a test sample as unknown. (c) Normalized
Accuracy (NA).

15 known classes for training, respectively. Regarding the
NA, the OSOPFOGP and OSOPFMV have similar results with
both, outperformingOSOPF in, at least, 5% for 3, 6, 9, 12, and
15 known classes. In the COIL dataset (Figure 7), OSOPFOGP
and OSOPFMV significantly improve results compared to
the other methods. Similar trends can be observed for
the CALTECH-256 dataset (Figure 8) with OSOPFOGP,
OSOPFCGP, and OSOPFMV outperforming OSOPF for dif-
ferent metrics, with statistical significance. Please refer to
Appendix C for a complete analysis of the statistical signifi-
cance for all considered methods.

In general, the best classifier was the OSOPFOGP, which
shows that using OSOPF and genetic programming to aggre-
gate different feature sets is indeed effective for the open-set

recognition problems. Moreover, when combining OSOPF
and GP, we need to simulate the open-set setup during
the training of the genetic programming fusion method.
We can also see that the OSOPFMV also shows to be
very effective for this problem with similar performance
to OSOPFOGP when considering the normalized accuracy
(Figures 6c, 7c and 8c). The macro- and micro-averaging
scores (OSFMM and OSFMµ) for the three datasets are
presented in Appendix B.

These results highlight that the main problem in open-
set setups is to find an optimum equilibrium between the
specialization and generalization of classifiers. In our results,
we observed that the OSOPFCGP method presents good
results for the AKS. More specifically, between fusion meth-
ods in the CALTECH-256 dataset, the OSOPFCGP resulted
in the best AKS. In contrast, this method leads to low results
with respect to the rest of classifiers when considering the
unknown (AUS metric). On the other hand, OSOPFOGP and
OSOPFMV lead to good results by better rejecting unknown
samples (AUS) while attaining reasonable results identifying
known samples (AKS). These two methods find a reasonable
equilibrium between the specialization and generalization
for the ALOI and COIL datasets. For the CALTECH-256
dataset, the OSOPFOGP and OSOPFMV present reasonable,
but lower, AKS.

2) COMPARISON WITH PRIOR ART
After having evaluated the different forms of the pro-
posed methods, we turn our attention to posing them
with respect to existing methods in prior art. For com-
parison purposes, we will use MO to denote a given
method M that uses an open-set grid search. Our best
methods (OSOPFOGP and OSOPFMV) are compared to a
plethora of approaches available in prior art: Support Vec-
tor Machines (SVMO), Multiclass One-Class Support Vector
Machines (SVMOC

O ), Decision Boundary Carving (DBCO),
1-vs-SetMachine (1VSO),Weibull-calibrated Support Vector
Machines (WSVMO), Support Vector Machines with Proba-
bility of Inclusion (PISVMO), Support Vector Data Descrip-
tion (SVDDO), Support Vector Data Description one-class
binary-based (SVDDOCBB

O ). All SVM methods use one-vs-
all approach in the multiclass level.

In Figures 9 (ALOI), 10 (COIL), and 11 (CALTECH-256),
we present the accuracy on known samples (AKS), accu-
racy on unknown samples (AUS) and the normalized accu-
racy (NA) of the state-of-the-art methods along with the
OSOPFOGP andOSOPFMV. This experiment aims at showing
how effective our best OSOPF methods are when compared
to existing solutions for the open-set problem. OSOPF has a
high AUS, because it is based on the distance proportion of
the two best paths that ends in samples of different classes.
When a test sample is far from the training ones, the ratio
of the cost function of both paths approaches 1 and, con-
sequently, it is more likely to be greater than the rejection
threshold and it is properly marked as unknown. Moreover,
our fusion approaches (OSOPFOGP and OSOPFMV) found
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FIGURE 9. Results of the state-of-the-art methods vs OSOPF methods for
ALOI dataset. (a) Accuracy on Known Samples (AKS). (b) Accuracy on
Unknown Samples (AUS). (c) Normalized Accuracy (NA).

some stability between generalization and specialization in
the datasets, leading to good results considering the NA.

Naturally, as we are more restrictive at accepting exam-
ples of a given class, we see that SVM-based methods are
better than OSOPFOGP and OSOPFMV when considering the
AKS (Figures 9a, 11a and 10a). On the other hand, for the
considered datasets, the proposed fusion methods show more
stability in the AUS results (Figures 9b, 11b and 10b).

Based on the normalized accuracy, in the ALOI dataset
(Figure 9), unlike the SVM-based methods, our methods
have a stable behavior when the number of unknown classes
increases. In all cases, OSOPFOGP and OSOPFMV classi-
fiers are the winners, exchanging positions within the top
two; there is only a tie in the second place for 3 known

FIGURE 10. Results of the state-of-the-art methods vs OSOPF methods
for COIL dataset. (a) Accuracy on Known Samples (AKS). (b) Accuracy on
Unknown Samples (AUS). (c) Normalized Accuracy (NA).

classes between the OSOPFOGP and WSVMO. Considering
the results of the best SVM approach, the OSOPFOGP reduces
the misclassification in 13.10%, 2.50%, 3.90% and 8.73%
for 6, 9, 12 and 15 known classes, respectively. For its
part, the OSOPFMV reduces the misclassification in 1.42%,
12.63%, 1.51%, 6.10% and 8.46% for 3, 6, 9, 12 and
15 known classes, respectively.

For the COIL dataset (Figure 10), SVM-based methods
have better results in the AKS and AUS. However, consid-
ering the NA, the WSVMO is the best for 3 and 6 known
classes, and the OSOPFOGP and OSOPFMV are the winners
for 9, 12 and 15 known classes.
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FIGURE 11. Results of the state-of-the-art methods vs OSOPF methods
for CALTECH-256 dataset. (a) Accuracy on Known Samples (AKS).
(b) Accuracy on Unknown Samples (AUS). (c) Normalized Accuracy (NA).

For the CALTECH-256 dataset (Figure 11), theOSOPFOGP,
OSOPFMV and SVDDOCBB

O classifiers outperform their
counterparts in all cases when considering the normalized
accuracy (NA). Our methods improve the classification with
respect to the best SVM classifier in 5% for 3 known classes,
in the rest of the experiments, the SVDDOCBB

O reduces
the misclassification with respect to the OSOPFOGP and
OSOPFMV in 1.27%, 2.38%, 1.59% and 1.06% for the
experiments with 6, 9, 12 and 15 known classes, respectively.
However, it is worth mentioning that CALTECH-256 is also
a difficult dataset, comprising regions with some degree of
overlapping of two or more different training classes.

Based on those results, we can see how the fusion of
complementary features (different visual properties) using

either Genetic Programming or Majority Voting for open-
set problems lead to better results than using just one
feature set. In most experiments, the OSOPFOGP and
OSOPFMV methods significantly improved the recognition
rates over SVM-based methods. At last, we summarize
the best results (normalized accuracy and standard devi-
ation) in Tables 5, 6, 7, corresponding to ALOI, COIL,
and CALTECH-256 datasets, respectively. In these tables,
we considered only the OSOPFOGP, OSOPFMV, and two
state-of-the-art classifiers whose obtained the best results in
each dataset. Please refer to Appendix C-A for statistical tests
for all these comparisons.

TABLE 5. Aloi dataset - Summary results.

TABLE 6. Coil dataset - Summary results.

TABLE 7. Caltech dataset - Summary results.

V. CONCLUSION
A myriad of problems in real-world applications must be
modeled under the open-set scenario yet there are still few
inherently multiclass methods for open-set recognition setups
in prior art. As such, there exists an increasing demand for
classifiers with the capability of properly rejecting samples
that belong to classes for which no representative was seen
during training phase.

The main goal of our work herein was to leverage different
characterization methods when solving a visual classification
problem with different image descriptors that offer com-
plementary views for a given problem and integrate them
for open-set recognition problems. The main contribution of
this work was the introduction of innate multiclass meth-
ods for open-set recognition problems that combine different
features using Genetic Programming (GP) and a Majority
Voting (MV) schemes. To the best of our knowledge, this is
the first work to assess the performance of information fusion
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FIGURE 12. Results for the ALOI dataset. (a) Micro-averaging open-set
f-measure OSFMµ. (b) Macro-averaging open-set f-measure (OSFMM ).

FIGURE 13. Results for the COIL dataset. (a) Micro-averaging open-set
f-measure OSFMµ. (b) Macro-averaging open-set f-measure (OSFMM ).

approaches considering different types of features (color and
texture) in the context of open-set recognition problems.
The superiority of those classifiers was verified using a
thorough experimental protocol, based on the evaluation of

FIGURE 14. Results for the CALTECH-256 dataset. (a) Micro-averaging
open-set f-measure OSFMµ. (b) Macro-averaging open-set
f-measure (OSFMM ).

Algorithm 5 Training Phase of OPF Classifier
Require: Training set D1, prototypes T ⊂ D1
1: for each x ∈ D1\T do
2: C(x)←+∞
3: end for
4: for each x ∈ T do
5: C(x)← 0;P(x)← nil;L(x)← λ(x)
6: Put x in Q (Cost Priority Queue)
7: end for
8: while Q 6= ∅ do
9: Remove x from Q, where C(x) ≤ C(y), ∀y ∈ Q

10: for each y ∈ D1 and x 6= y do
11: cst ← max{C(x), d(x, y)}
12: if cst < C(y) then
13: if C(y) 6= +∞ then
14: Remove y from Q
15: end if
16: C(y)← cst;P(y)← x;L(y)← L(x)
17: Insert y in Q
18: end if
19: end for
20: end while

different methods using various datasets. We validated the
proposed solutions with the Analysis of Variance (ANOVA)
along with the Tukey-HSD post-test statistical tests. Among
the evaluated methods in this work, the OSOPFMV and
OSOPFOGP stand out with the most promising results. While
the version with MV is an easy-to-implement technique,
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TABLE 8. Statistical test for the ALOI dataset. kc denotes the number of known classes.

the genetic programming is a technique that allows opti-
mizing a composed distance function among objects, which
might come handy in different setups.

In particular, the OSOPFOGP method (with training phase
simulating an open-set setup using GP) obtained better results
in the AUS, yielding a good specialization/generalization
tradeoff. The OSOPFMV also presented equally appealing
results. While OSOPF takes care of learning decision bound-
aries and is more resilient to unknown classes and outliers,
GP and MV complements that method by bringing together
different visual object properties (e.g., color and texture) to
discover appropriate decision boundaries through early and
late fusion, respectively.

Based on those results, computational cost and simplicity
of OSOPFOGP and OSOPFMV algorithms, the latter stands
out as a better choice to deal with open-set problems.
However, OSOPFOGP is a generic classifier that can accept

alterations in its structure (GP operators, add constants, etc.)
being more powerful to accommodate different sets of fea-
tures and problem formulations and should also be considered
as an option. The choice between them should be based on
specific problem constraints. A drawback of OSOPFmethods
is that, in some cases, samples in overlapping regions of
two or more classes in the feature space (samples of different
classes that have similar feature vectors) are classified as
unknown and not as belonging to one of the overlapping
classes. This is exactly when fusionmethods can bring impor-
tant contributions to the table: when considering different
fusion methods (complementary feature sets), we still keep
the ability of rejecting unknown samples but, at the same
time, we gain more confidence at tagging a sample in a region
of doubt to one of the known classes.

The difficulty of the open-set problem might be reduced
when taking advantage of different views of the problem at
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TABLE 9. Statistical test for the COIL dataset. kc denotes the number of known classes.

hand and information fusion is paramount in this configura-
tion. In the case of image-based problems as we discussed
in this paper, the combination of different visual properties
gives a better separation of the data, helping the classifiers
to reach a good generalization or specialization depending
on the characterization of the methods that are used. When
combining different features, we seek to use descriptors that
contribute with different views for the visual content rep-
resentation, with the objective of exploiting the variability
within available data. This complementary view of the prob-
lemmight be essencial when integrating fusion solutions with
open-set classifiers.

Finally, future work might be devoted to integrating the
confidence of each classifier instead of only the assigned
class, while performing the open-set fusion. Moreover, some
types of pre-selection of descriptors could further improve
the complementarity of the considered methods and boost
the discriminability and robustness of the open-set classifiers
during deployment in a real-world problem. Moreover, given

that the proposed methods have a good capability to reject
unknown samples, another alternative could be exploiting
different forms of fusion using them together with state-of-
the-art closed-set classifiers. In this way, while OSOPF fusion
methods have to deal with samples as known or unknown,
the closed-set classifier would decide the label for the known
ones afterwards.

APPENDIX A
OPTIMUM-PATH FOREST ALGORITHMS
In this appendix, we present the Optimum-path For-
est classifier’s algorithms for the training (Algorithm 5)
and testing (Algorithm 6) stages considering a closed-set
setup.

APPENDIX B
OPEN-SET F-MEASURE RESULTS
This appendix complements Section IV-B’s results for
the macro- and micro-averaging open-set f-measure
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TABLE 10. Statistical test for the CALTECH-256 dataset. kc denotes the number of known classes.

(OSFMM and OSFMµ, respectively) for ALOI, COIL and
CALTECH-256 datasets.

For ALOI and COIL datasets, in most cases, OSFMM
(Figures 12b and 13b) and OSFMµ (Figures 12a and 13a)
are increased when the openness decreases. In contrast, in the
CALTECH-256 dataset, OSFMM (Figure 14b) and OSFMµ

(Figure 14a) are not affected by the openness degree, given
that the recognition rates are not high enough (this dataset is
harder to classify in the open-set setup).

APPENDIX C
STATISTICAL TESTS
In this appendix, we present results for the performed
statistical tests. The statistical test analysis of variance
(ANOVA) [68], [69] and the Tukey Honest Significant Dif-
ferences (HSD) [70] post-test were used considering 95% of
confidence to verify the statistical differences between the

results of the classifiers. Appendix C-A presents the results
of the statistical tests between the existing methods in the
literature and OSOPF. Appendix C-B shows the statistical
results for the OPF and OSOPF and its GP and MV varia-
tions (OSOPFOGP, OSOPFCGP, and OSOPFMV). Results are
presented in tables, in which each cell has the result of the
statistical test between each pair of classifiers according to
the number of known classes (kc). Left ‘←’ and up ‘↑’ arrows
denote the winner while an empty cell refers to ‘‘no statistical
difference between the pair of classifiers’’ defined by that row
and column.

A. STATISTICAL TESTS OF THE BASELINES METHODS
Results of the statistical tests for comparison between
OSOPFOGP, OSOPFMV and existing methods (SVMO,
SVMOC

O , DBCO, 1VSO, WSVMO, PISVMO, SVDDO,
and SVDDOCBB

O ) are presented in Table 8 (ALOI),
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TABLE 11. Statistical test for the ALOI dataset. kc denotes the number of known classes.

TABLE 12. Statistical test for COIL dataset. kc denotes the number of known classes.

Table 9 (COIL) and Table 10 (CALTECH-256). The statis-
tical tests show that OSOPFOGP and OSOPFMV classifiers
outperformmost of the SVM-based classifiers. In some cases,
however, no significant difference are observed.

B. STATISTICAL TESTS FOR OSOPF-BASED METHODS
Results of the statistical tests corresponding to the ALOI and
COIL datasets are presented in Tables 11 and 12, respec-
tively. In the CALTECH-256 (dataset difficult to classify),
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Algorithm 6 Classification Phase of OPF Classifier
Require: D2 validation set.
Require: D′ samples in non-decreasing order of the cost

function.
1: for each x ∈ D2 do
2: i← 1
3: minCost ← max{C(yi), d(yi, x)}, where yi ∈ D′

4: L(x)← L(yi);P(x)← yi
5: while i < |D′| and minCost > C(yi+1) do
6: aux ← max{C(yi+1), d(yi+1, x)}
7: if aux < minCost then
8: minCost ← aux
9: L(x)← L(yi+1)
10: P(x)← yi+1
11: end if
12: i← i+ 1
13: end while
14: end for

there were no statistical differences among the proposed
OSOPF-based classifiers. Each cell has the result of the
statistical test between each pair of classifiers according to
the number of known classes (kc). In general, the statistical
tests show that in the ALOI (Table 11) and COIL (Table 12),
the OSOPFOGP and OSOPFMV are the best ones but there is
no statistical difference between both.
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