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ABSTRACT Automatic detection of curvilinear structure in images is a challenging task in computer vision
applications. In this paper, we present a novel supervised learning method to identify curvilinear structure
based on a modified Hough forest framework. We regard the curvilinear structure as a special object which
has multiple object centers at centerline points, and construct a multi-centered Hough forest (MCHF) to
cast confidence votes for each image point being a local curvilinear center in generalized Hough space.
Considering the specific properties of curvilinear structure, we modify the classical Hough forest method in
three aspects. First, the features are composed of a set of filter responses, and each filter is a base which is
learned by sparse presentation techniques. Second, the offset of an image patch against its reference center
is represented by a displacement function instead of Euclidean distance used in the classical Hough forest.
Third, the centerline orientation is incorporated into the forest to reflect the local trend, which is considered in
Hough voting.We conduct experiments on retinal vessel, neuron, and aerial road images. Both visualized and
quantitative results demonstrate the good performance of MCHF in detecting complex curvilinear structures
in various images.

INDEX TERMS Curvilinear structure, automatic detection, Hough forest.

I. INTRODUCTION
Curvilinear structure detection is a critical and challenging
problem in image processing and computer vision applica-
tions. Curvilinear structures, also known as wiry or tube-like
structures, widely exist in various images, such as roads and
rivers in aerial or satellite images, neurons and vessels in
medical images, tree branches and vines in nature images.
Fig. 1 shows some typical curvilinear structures in different
images.

Generally, curvilinear structures in images are irregular.
Their curvature and orientation are changeful, and the line
widths of different parts of the curvilinear structure also differ
a lot. Most of the curvilinear structures have fractures and
gaps, and the intensity and contrast varies frequently. Besides,
in most cases, the curvilinear filaments intercross, overlap
and enwind with each other, and multiple wiry objects form
a complex tree or network structure. Therefore, automatic
extraction of curvilinear structure is a difficult job in various
image analyses.

To address this problem, numerous methods have been
proposed and can be roughly grouped into three types.
The first type of methods utilizes some characteristics of
curvilinear structures, such as edges [1], ridges [2]–[4] and
gradient vector flow [5], which are different from the back-
ground and other objects. We call them intuitive detection
approaches. The second type of methods is learning-based.
They regard the curvilinear structure as a special object and
construct a machine learning model [6] to make a decision
for each image unit, i.e., pixel, voxel, or local region. The
third type of methods regards the whole curvilinear as a
special graph and tries to analyze the topological structure
to solve the problem [7]–[9], thus we name them graph-
based approaches. Since the characteristics utilized in the
models are not always peculiar to the curvilinear structure,
the intuitive methods have some inherent shortcomings that
are hard to overcome. Specifically, they tend to confound
the curvilinear structure and other things in the background
when the image context has a lot of ambiguous structures;
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FIGURE 1. Examples of curvilinear structures. (a)-(d) are images of
coronary angiogram, neuron confocal fluorescence, retinal vessel and
aerial suburban roads, respectively.

while the graph-based methods are usually very effective
when the curvilinear network is complicated. However, set-
ting the initial vertices and edges of the graph model is not an
easy job.

Compared with the other two types of methods, the
learning-based methods have more flexibility in modeling
and better performance for detecting complex curvilinear
structures, thus have attracted a lot of research interests in
recent years. Our model also falls into this category, in which
the curvilinear structures are regarded as special objects.
Unlike a normal object, the curvilinear structure consists of
a large number of local line segments. To detect such object,
we build an object recognition framework based on Hough
forest [10], [11]. We extend the classical Hough forest into a
multi-centered version where each centerline point is treated
as an object center. Each tree in the multi-centered Hough
forest (MCHF) is trained similarly as a decision tree in the
random forest. At the detection stage, the patch centered at
each point in the test image or FOV falls into a leaf node
of every tree in the forest. By traversing all the trees in the
forest, each point in the test image contains the accumulated
votes about the probability that a tubular segment exists in this
position. Thus the test image is converted into a voting map in
Hough space. Then a directional non-maximum suppression
is utilized to judge the position of each centerline point, and
corresponding width and orientation can also be estimated by
the accumulated position and orientation information of the
leaf nodes in MCHF.

In summary, we construct a novel MCHF model special-
ized for the detection of curvilinear structure, where a new
offset measure and the orientation information are used to
estimate the position relationship of a patch with the curvilin-
ear structure. The model is evaluated on four publicly avail-
able datasets, including the retinal blood vessels, the nerve
and the aerial road images. The experimental results show
that MCHF has promised performance in handling complex
curvilinear structures in various images.

II. RELATED WORK
In Section I, we summarize the curvilinear detection methods
into three types, intuitive methods, learning-based methods
and graph-based methods. In this section, we describe these
three types of the existing methods in details.

A. INTUITIVE DETECTION METHODS
The intuitive detection methods generally focus on the dif-
ferent characteristics of curvilinear structure and background
in local region. Some of them extract discriminative features
from edge [1], ridge [2]–[4] and gradient vector flow [5]. The
active contour model [12] and threshold segmentation [13]
have also been applied to the recognition of curvilinear
structure. Besides, some researchers found out that the main
difference of curvilinear structure and background come from
second-order derivatives of their cross section [14]. Another
representative method identifies curvilinear structures via the
eigenvalues and eigenvectors of Hessian matrix [14]–[16].
These intuitive methods have laid foundation for many later
studies, but they need Gaussian blur as a pretreatment, which
may lead to confusion between lines and their adjacent
points if the local structure is too wide or located in a
branch region. To overcome this drawback, the optimally
oriented flux (OOF) method [17] was proposed, which local-
izes the spherical region to compute the gradient flux by
minimizing the inward flow. And later, Law and Chung [18]
and Turetken et al. [19] further enhanced the performance.
In addition, there are some other ideas of low-level lin-
ear extraction, such as tensor voting [20] and level sets
variation [21]. They work well for many special applications
but do not really overcome the inherent limitations.

B. LEARNING-BASED METHODS
The second type of methods consider the detection as a
decision problem and employs supervised or unsupervised
learning algorithms. These methods first construct a feature
space, then build a learning or clustering model, and finally
make a decision by classification or regression. Typical algo-
rithms include boosted tree method for detecting the filament
structures [22], [23], random forest model for curvilinear
detection in Berks et al. [24] and higher-order CRFmodel for
road extraction [25]. Becker et al. [26] proposed a gradient
boosting based method that employs weak learners relying
on the filter kernels, which are learned during boosting.
The method obtains high accuracy but is time-consuming.
Sironi et al. [27] considered the linear centerline extraction
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as a regression problem. They trained a regressor in the scale
space, which outperforms classification methods and is gen-
erally applicable to linear structures. However, if the curvi-
linear is dense, the locations of the points near centerlines
may lead to ambiguity. A latest work [23] solves this problem
by integrating structured and contextual features to construct
a supervised learning framework. This method takes into
consideration of local patch structure and the relation of local
region with the whole object.

C. GRAPH-BASED METHODS
Since the wiry structure often looks like a tree or net,
in recent years, some researchers adopted the graph or net-
work topological structure to identify curvilinear structures.
Turetken et al. [19], [28] modeled the task as a quadratic
mixed integer programming problem in a graph of potential
paths with weights. Chai et al. [8] developed a junction-point
process by usingMonte Carlomechanism, and used the nodes
to represent either a connection or an end in the line-network.
De et al. [9] identified the filamentary structures via label
propagation over directed graphs. This method can trace and
separate filamentary structures into disjoint set of filaments.
Most of the graph-based methods have achieved impressive
results in their specific applications. However, almost all of
the graph-based methods need some prior knowledge of the
curvilinear structure before constructing the graph or net-
work. For instance, in Chai’s method [8], the junction of
curvilinear objects must be known prior to defining the graph,
and De’s method [9] needs to segment the curvilinear struc-
ture first in the design of the directed graph.

III. MULTI-CENTERED HOUGH FOREST FOR
CURVILINEAR STRUCTURE DETECTION
Previous work on curvilinear detection have two basic find-
ings: i) the local appearance contains valuable information;
ii) the orientation and multi-scale are helpful for identifying
the structure. Our work is also guided by these two findings.
In this section, the proposed MCHF method is described in
details.

A. PROBLEM DESCRIPTION
As above-mentioned, we treat the curvilinear extraction as a
special object detection problem. For an ordinary object, it is
easy to demarcate the object region and the background by a
bounding box in the image. However, the curvilinear structure
often presents as a tree or network, and it is probably dis-
tributed in the entire image space or the field of view (FOV).
Thus, it is hard to restrict the whole curvilinear into a specific
bounding box.

Our aim is to detect all the curvilinear objects in a given
image. In this study, we propose a multi-centered Hough
forest (MCHF) model to extract curvilinear structures. The
idea is based on the following assumption: no matter how
complexity the curvilinear network is, it is just composed
of many individual curves; and no matter how long or flex-
ible the curves are, they are just composed of linear or

tubular segments. Here, the individual curve means the local
curvilinear structure from one junction or terminal to the
nearest junction or terminal, which is composed of a set
of local tubular segments. Specifically, a whole curvilinear
network structure N consists of N individual curves Ci,
which are partitioned by line junctions or terminals, and an
individual curve is a concatenation of M tubular segments
Sij(o, r, l, θ), i.e.,

N =
N⋃
i=1

{Ci} =
N⋃
i=1

{

M⋃
j=1

Sij(o, r, l, θ)}, (1)

where Sij is a local tubular (we regard it has a rectangle
shape) of center o, width 2r , length l and orientation angle θ .
Apparently, the area of Sij(o, r, l, θ) is approximately
equal to 2rl. Suppose the local tubular is narrow enough,
i.e., l → 0 and M → ∞, then the local tubular segment
center is equivalent to the centerline point at that segment,
i.e., oj ∈ Lo, where Lo is the centerline point set of the whole
curvilinear structureN . Thus, Eq. (1) can be reformulated as,

N =
N⋃
i=1

∫ Li

0
Si(o, r, l, θ)dl, (2)

where Li is the length of the i-th individual curve in the
curvilinear network. Besides, the local tubular segments are
highly similar with each other, after adjusting their position,
direction, and width by translation, scaling, or rotation.

B. SAMPLE COMPOSITION
Extended from the settings of classical HF, a sample in
MCHF is defined by a quadri-tuple P = {F(x, I ),
c,O(d, r), θ}, where F(x, I ) is the feature vector which rep-
resents the local patch appearance, c ∈ C indicates the
label of the patch and C = {0, 1}, O(d, r) is the offset
description function associated with the distance d from the
nearest centerline point whose local tubular segment radius
is r , and θ is the line direction of the nearest centerline
point. The positive samples are the patches whose centers are
located in the curvilinear regions, i.e., x ∈ N ; while negative
samples are the patches whose centers are in the background,
i.e., x /∈ N , as shown in Fig. 2.

1) PATCH APPEARANCE DESCRIPTOR
Here we adopt a set of features to describe the local appear-
ance of curvilinear structure. References [29] and [30] have
demonstrated that learning a set of filters using sparse pre-
sentation can produce good features for representing linear
structure. And, these filters have rotational invariance that
is suitable for curvilinear structure detection [31]. Here we
denote the feature vector by F(x, I ),

F(x, I ) = [(f1 ∗ I1)(x), . . . , (fi ∗ Ij)(x), . . . , (fM ∗ IN )(x)]T ,

(3)

where x is the local position of the image, fi is one of the
learned filter bank via sparse coding, and Ij indicates one of
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FIGURE 2. The positive and negative sample patches. The red rectangles
are positive samples and green ones are negative samples.

the scaled image which is generated by Gaussian smoothing
and sampling. The feature vector of a patch consists of the
convolutional responses at the patch center with a set of
scales. As a set of complete basis, in each feature channel k
(k ∈ {1, 2, . . . ,MN }), the component (fi∗Ij)(x) can represent
an aspect or status of local appearance, and the whole feature
vector characterizes the local appearance from an arbitrary
point with a group of selected scales.

2) OFFSET DESCRIPTOR
Since the curvilinear object centers are set by the centerline
points, the definition of offset needs to be modified corre-
spondingly. Let x, o and d denote a patch center, a centerline
point and the distance between these two points, respectively.
Since the offset estimation only relies on the adjacent center-
line points, as [31] and [32] mentioned, the valid offset d only
depends on the distance between x and its nearest centerline
point ok . In addition, the offset component of d along the
centerline orientation θ is useless for the curvilinear object
detection, thus only the normal orientation component of d is
kept, i.e.,

d? = d cosϑ, (4)

where ϑ is the angle between the local centerline orientation
and the connecting line joining the patch center point and the
centerline point, as Fig. 3 shows. In most cases, the shortest
distance d? from the patch center x to o is the length of the
straight line connecting these two points and perpendicular to
the local centerline orientation θ , i.e., ϑ = 0 and d? = d .
The classical Hough Forest defines the offset of positive

samples as the Euclidean distance between the patch center
and the object center, while the offset of negative samples
is set as 0. However, for a curvilinear structure, we can’t
define the offset in that way. First, d? is very short because the
positive patch is in or cross the curvilinear structure which is
very close to the centerline. And d? could even be equal to 0
if the patch center is located at the centerline. Thus it is hard
to distinguish the offsets for positive and negative samples.
Second, as the width of curvilinear structure varies with
location, the d?s of the thick and thin curvilinear structures

FIGURE 3. Illustration of the offset descriptor.

are different. For measuring the position relationship between
a patch center and its nearest centerline point, we use

O(d, r) = η(1−
d?

r
) (5)

to represent the offset information, where r is half the width
of the local tubular segment S(o, r, l, θ), and η indicates
the coefficient, which is usually greater than 1 to empha-
size the impact of displacement. Eq. (5) can fully represent
the position relationship of the curvilinear structure. First,
d?
r reflects the ratio between the distance d? and the curvi-
linear radius r , which can effectively avoid the error caused
by the direct calculation of Euclidean distance. Second, for
a special tubular segment Sk , r is fixed, and Eq. (5) is a
monotonic decreasing function of d?. The maximum value is
achieved when the patch center is located at the centerline,
and the offset description value decreases as the distance
between centerline point and patch center increases. Third,
it is easy to distinguish the positive and negative samples: for
a positive sample, the patch center is located in the curvilinear
structure, i.e., d? ≤ rk andO(d, rk ) ≥ 0; while for a negative
patch, apparently O(d, rk ) < 0.

3) ORIENTATION DESCRIPTOR
There is a significant difference from the classical Hough
forest (HF) method and the MCHF method. In HF, a specific
object has one and only one center corresponding to it, and
the relative positions of samples are determined by this center
point; while in MCHF, since we assume that the curvilinear
structure is composed by a set of local tubular segments
and each tubular segment has its own center, the relative
positions of samples are determined by their closest tubular
structure centers. Accordingly, the tubular segment Sk which
is centered at ok is arranged in a special direction θ in the
curvilinear structure N . We mark the direction of the patch
with the orientation of its nearest centerline point, i.e., θ ,
since the valid structure part in a positive patch is approxi-
matively parallel to the nearest centerline orientation. And,
for a negative patch, its direction can also be represented
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by the direction of its nearest centerline point, because the
class information of patches is not considered when they are
grouped by the orientation information in the splitting process
in a Hough tree.

Therefore, we incorporate the orientation θ into the sam-
ple to cast a corresponding location vote in the generalized
Hough space. By the way, the normal orientation θ⊥ of the
tubular segment Sk can be an alternative to represent the local
direction of the curvilinear structure.

C. TRAINING
The MCHF is an ensemble of trees, and each tree T is
constructed from a subset of training samples through random
sampling with replacement. As the tree builds up, each node
receives a group of patches from their parent node and are
splitted continuously until they reach a leaf node, where the
leaf node is a node which satisfies either of the following cri-
teria: i) the depth of the node reaches the maximal depth dmax ,
ii) the number of samples assigned to this node is no more
than a pre-defined value, i.e., the minimum number of leaf
node samples Nmin.
The binary test at a splitting node is defined in Eq. (6),

B(fi(x, I )) =
{
1, if fi(x, I ) ≥ τ,
0, otherwise,

(6)

where fi(x, I ) is a channel feature, and τ is the threshold. The
key issue is how to purify the samples of each node during
the training process, in order to minimize the uncertainty of
the samples for selecting the best attribute in each internal
node. According to Gall’s definition [10], suppose S denotes
the sample set {P} in a node, the class uncertainty can be
calculated as,

U1(S) = −|S|
∑
c∈C

p(c|S) ln p(c|S), (7)

where the summation item is the class entropy S and it mea-
sures the impurity of the class. Eq. (8) defines the uncertainty
of offset in the local line segment region,

U2(S) =
∑
p∈S

‖O(dp, rp)−O(dmean, rmean)‖2, (8)

where dmean and rmean are the mean displacement of di and ri
over S in such node. The summation is over all the patches
in the node. To measure the skewing of the local line segment
direction, the direction uncertainty is defined as,

U3(S) =
∑
p∈S

‖θp − θmean‖
2, (9)

where the summation is also over all the patches in the node.
The object of the splitting process is to minimize either of
the three uncertainty measures. Specifically, a binary test T k

is conducted on each node, which minimizes the following
objective function,

argmin
k
(U∗({(pi|tk (Ii)) = 0})+ U∗({(pi|tk (Ii)) = 1})), (10)

where ∗ can take the value of 1, 2 or 3. This process is
conducted on each tree to decrease the class label uncertainty,
offset uncertainty and direction skewing. The training process
is depicted in Fig. 4.

FIGURE 4. The flowchart of the training process.

The training samples are splitted as the tree grows until
the tree reaches a maximum depth or the number of samples
within the group is no more than the minimum number. Once
the samples reach a leaf node, the statistical information of
this node is calculated and stored. The information includes
a class label proportion probability p(c|L), the sample offsets
D = {di|i = 1, 2, . . . ,ML} and offset measures OL =
{O(di, ri)|i = 1, 2, . . . ,ML} and respective orientations
AL = {θi|i = 1, 2, . . . ,ML}, where ML is the number of
the patches in leaf node L. For precisely estimating spatial
distribution of the sample patches in this node, the radius set
for the nearest local tubulars, RL = {ri|i = 1, 2, . . . ,ML},
is also stored. In fact, the samples in each leaf node have
some common characteristics. Take a leaf node with a high
probability of positive label as an example, the patches of
this node tend to be the different tubular segment parts which
have similar orientations, appearances, widths and offsets in
the whole curvilinear structure.
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D. DETECTION
In a test image or FOV, each point x is considered as a patch
center, and the corresponding feature vector f (x, I ) which
represents local appearance can be extracted by convolving
with the same filter bank in the sample construction of the
training process. All samples are passed through every tree
and fall into leaf nodes in MCHF. And such samples are
used to cast votes for their local spatial center in Hough
space. As mentioned in Section III-A, a whole curvilinear
structure is composed of a set of individual curves, and each
individual curve is composed of a set of tubular segments.
According to local linearity, a tubular segment S(o, r, l, θ)
can be regarded as a rectangle. It means that S is bounded
in a box of size 2rl (width r and length l) and orientation θ ,
where we assume that the width r is fixed and the length l
is very small. Thus, regardless of the orientation, the only
parameter crucial for defining a tubular segment (or bounding
box) is the location of its center. What’s more, since each
patch has a closest centerline point, each sample patch has
a corresponding object bounding box.

Considering a patch P = {F(x, I ), c,O(d, r), θ} centered
at x in the test image, whereF(x, I ) denotes the feature vector,
c is the hidden class label, O(d, r) is the offset against the
hidden local centerline point, and θ is the hidden object ori-
entation. Our primary concern is the conditional probability
p(E(y)|f (x, I )), where E(y) denotes the random event of the
local tubular segment object (bounding box) centered at y,
with the condition that the patch feature f (x, I ) exists. As [10]
and [11] mentioned, this probability can be expressed as,

p(E(y)|f (x, I )) = p(E(y), c = 1|f (x, I ))

= p(E(y)|c = 1, f (x, I )) · p(c = 1|f (x, I ))

= p(O(d, r)|c=1, f (x, I )) · p(c=1|f (x, I )),

(11)

where p(E(y)|f (x, I )) is factorized into two terms, both of
which can be estimated through the information stored at the
leaf nodes L in MCHF. The first item can be approximated
using the Parzen-window with the offset vector setDL which
is collected from the training leafs. And the second item is
estimated to be the proportion of the object patches, denoted
by CL). For a single tree, the probability is expressed as,

p(E(y)|f (x, I );L)

=
p(c|L)
|DcL|

∑
d∈DcL

1
2πσ 2 exp(

‖(O(d, r)−O(dmean, rmean))‖2

2σ 2 ),

(12)

where σ 2 denotes the variance of the Gaussian Parzen-
window, |DcL| is the number of the offsets inDcL. For the entire

MCHF {Tt }Tt=1, the probability is averaged over all trees,

p(E(y)|f (x, I ); {Tt }Tt=1) =
1
T

T∑
t=1

p(E(y)|f (x, I ); {Tt }).

(13)

Eq. (13) represents the probabilistic votes of a single patch
existing in the curvilinear structure. In order to aggregate
the votes cast from different patches, the votes can be
accumulated in the Hough space V (y) through each pixel
location y, i.e.,

V (y) =
∑
x∈S

p(E(y)|f (x, I ); {Tt }Tt=1). (14)

To make the computation efficiently, we also employ the
strategy used in [10], i.e., passing every sample f (x, I ) to each
tree in Hough Forest, and accumulating the value CL

|DL|
to all

pixels {O(d, r)|O(d, r) ∈ DL} on each Hough image V (y).
Considering the various widths of the curvilinear structure,
we extend the original HF into a multi-scale version, MCHF.
To handle different scales, we employ a range of scales
{r1, r2, . . . , rQ}, whereQ is the number of scale factors. Thus
each leaf node in the MCHF votes in all voting spaces to get
the offset measures in re-scaled space. A final voting map
can be constructed by accumulating the multi-scale offsets,
which are weighted by the object probability of each leaf
node, andGaussian filtering. The value of a special location in
generalized Hough space is directly proportional to the prob-
ability of a local object centered here. The local peak values
in the voting space can be regarded as the most probable local
tubular segment centers.

In the classical HF, an ordinary object center can be readily
located through the non-maximum suppression operation in
the voting space, but a curvilinear object has a large num-
ber of connective center points, thus it is impracticable to
get the centerline point through the ordinary non-maximum
suppression directly. In our model, additional information
is stored on each leaf node during training, including
offsets D = {di|i = 1, 2, . . . ,ML}, offset measures OL =
{O(di, ri)|i = 1, 2, . . . ,ML}, their nearest tubular segment
radii RL = {ri|i = 1, 2, . . . ,ML}, and orientations AL =
{θi|i = 1, 2, . . . ,ML}. The properties of a test patch in a
leaf node can be approximately expressed through the mean
values of these properties.While a patch traverses all the trees
in MCHF, the corresponding mean value of the properties
can be used to represent the patch properties, denoted by
dmean, O(dmean, rmean), rmean and θmean, respectively. There-
fore, a whole test image can be mapped into four additional
spaces. In order to specify the centerline, we just consider the
patches which are located in curvilinear structure with high
probability, i.e., O(dmean, rmean) ≥ 0. Then we use the direc-
tional non-maximum suppression to get the centerline points.
The directional non-maximum suppression is akin to classical
non-maximum suppression. The only difference is that the
former just compares the maximum value along the profile
direction, while the latter considers the maximum value of the
whole local patch. Once the location of a centerline point o
is determined, the only problem is to estimate the width and
orientation of the local tubular segment (the length of the
tubular is very small, which is usually set as 1). The radius
rmean can be approximated as half thewidth of the tubular seg-
ment, and the orientation can be approximated by the mean
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orientation θmean. Thus the location, shape and orientation of
the tubular segment are determined. The whole curvilinear
structure is the concatenation of all of these tubular structures.
The detection process is shown in Fig. 5.

FIGURE 5. The flowchart of the detection process.

IV. EXPERIMENTS
A. DATASETS AND CONFIGURATION
To evaluate the proposed method, we have conducted a
series of experiments on several tasks of curvilinear structure
detection, including retinal vessel segmentation, aerial road
extraction and 2D neuronal delineation.

1) THE RETINAL VESSEL IMAGES
Retinal vessel images consist of two widely used benchmark
datasets, namely STARE [33] and DRIVE [2]. The DRIVE
dataset includes 40 retinal images, half of which are used for
training and others for test. Each image in the dataset has two
manually segmented results of vessels as well as masks that
delineate the FOV. The STARE dataset consists of 20 color
images of retinal fundus, half of which contain signs of
pathologies, while others are healthy. This dataset also pro-
vides two groups of manually segmented images. Generally,
in both the two datasets, the first observer’s manual labelling
is considered as the ground truth for assessment, while the
segmentation results of the second observer are used as the
comparison benchmark. In our experiment, we use the green
channel of the image of the two datasets because it has
the highest contrast [34]. We preprocess the data as [6] sug-
gested, i.e., removing the central light reflex, homogenizing
the background of the FOV, and whitening the images as the
classic sparse presentation procedure [30]. Our filter bank
has 121 filters and each filter size is 21 × 21, following
the settings in [30]. We use 3 × 105 positive and 3 × 105

negative examples for training and validation for both the
two datasets respectively. Unlike the standard Hough forest,
which only trains a small amount of regression trees, here we
train 300 trees to construct the forest, where each tree has a
maximum depth of 6, and the minimum number of samples
stored at a leaf node (Nmin) is equal to 30. However, these

two datasets have no information of the centerline location,
thus we need to skeletonize the ground truth images to get
approximate locations.

2) THE 2D NEURONAL IMAGES
The microscopic neuronal image dataset was collected by
IMB and IMCB of A*star [9], [22]. This dataset includes
210 confocal fluorescence images of mouse embryonic neu-
ral stem cells and corresponding labels. Neurons are stained
for neurite channel (GFP) marker and for nuclei chan-
nel (DAPI) marker, respectively. The dateset is composed by
2 batches, namely NeuB1 and NeuB2, including 112 images
and 98 images respectively. Images of the second batch have
more noticeable noise in the background and aremore blurred
in the foreground. In our experiment, for both NeuB1 and
NeuB2, we select 1/3 of the images for training and the rest
2/3 for test as in [9]. We set the learned filter sized s =
21×21. For training a forest, we extract 1×105 positive sam-
ples and the same number of negative samples. To construct
Hough forest, we use 200 trees with the maximum depth of 6,
and Nmin = 30.

3) THE AERIAL ROAD IMAGES
This dataset contains 26 color aerial images of road networks
in rural area [28]. We also use half of them as training set and
the other half as test set. The ground truth of each image is a
list of centerline points with their corresponding radii. Before
the experiments, we preprocess the dataset as Sironi et al.
suggested [27], i.e., discretizing the coordinates of centerline
points into integers, and converting the swc file into a binary
image file according to the centerline locations and their
corresponding radii. There are 220 trees in the Hough forest,
while other settings are the same as the experiments for
2D Neuronal images.

For all the experiments, the Gaussian kernel size σ 2
= 9

is adopted, and for multi-scale setting, the scale dimension
is filtered with σ 2

= 1, which follows Gall’s setting [11].
The scale range R is {r1, r2, . . . , rM }, which varies for dif-
ferent datasets: on DRIVE and STARE, M = 4 and R =
{1, 2, 4, 4

√
2}; on neuronal dataset, M = 4 and R =

{1, 2, 4, 4
√
2}; on aerial road dataset, there is only one scale,

i.e. M = 1, and R = 6.

B. EVALUATION CRITERIA
To evaluate the curvilinear structure detection results, mul-
tiple criteria are employed, including sensitivity, specificity
and accuracy, as defined in Eq. (15), (16) and (17), respec-
tively,

Sensitivity =
TP

TP+ FN
, (15)

Specificity =
TN

TN + FP
, (16)

Accuracy =
TP+ TN

TP+ FN + TN + FP
, (17)
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where true positive (TP) is the number of curvilinear points
correctly detected; false positive (FP) is the number of non-
curvilinear points detected as curvilinear points; true nega-
tive (TN) is the number of non-curvilinear points that are not
detected as curvilinear points; and false negative (FN) is the
number of curvilinear points that are not detected.

C. EXPERIMENTAL RESULTS AND COMPARISON
In this section, we show both visual and statistical detec-
tion results on the above-mentioned datasets respectively.
To access the performance of MCHF, we compare it with
the state-of-the-art curvilinear structure detection methods,
including Eigen [15], Optimally Oriented Flux (OOF) [17],
Kernel Boost [29], B-COSFIRE [35], and LSF [22] as well
as its modified version [23]. Eigen uses eigenvalues and
eigenvectors of multi-scale Hessian to identify the local point
position and orientation of curvilinear structure [15]. Opti-
mally Oriented Flux (OOF) is a widely used detector of
curvilinear structures, which uses the second derivatives of
an image convolved with the intensity indicator function of
a local circular area or spherical volume in the image [17].
Kernel Boost learns discriminative convolutional filters from
images based on the gradient boosting framework [29].
B-COSFIRE extracts curvilinear structure through calculat-
ing the weighted geometric mean of the Gabor filters by
applying a pool of Difference-of-Gaussians filters [35]. LSF
learns structured and contextual features with tree structured
classifiers to segment the curvilinear structures [22]. And the
modified version, SF+dist, incorporates local spatial label
patterns into the feature space [23].

FIGURE 6. Detection results on retinal vessel images. (a) and (d) are two
original retinal images in DRIVE and STARE respectively, (b) and (e) are
the manual segmentation results of the first observer, and (c) and (f) are
the detection results.

We provide the visualized results in Figs. 6-8. Fig. 6 shows
the segmentation results of retinal images on DRIVE and
STARE datasets. As can be observed, the detection results
are highly consistent with the manual segmentation results.
Fig. 7 shows two examples of the detection results of neuronal

FIGURE 7. Detection results on 2D neuron images. (a) and (d) are the
original neuron images, (b) and (e) are the ground truth of the nervus,
and (c) and (f) are the detection results.

images from NeuB1 and NeuB2, respectively. Fig. 8 shows
an example of the delineation on aerial road image, where
the test results of our method are almost consistent with the
ground truth from the observer’s point of view.

FIGURE 8. Detection results on aerial road images. (a) and (d) are the
original images, (b) and (e) are the ground truth of the roads, and
(c) and (f) are the detection results.

Apparently, most of the curvilinear structures can be accu-
rately detected, but some of the detection results are sus-
ceptible to small targets. In Fig. 8, it can be found that the
detected results are not exactly matched to the ground truth
roads. This means that our approach still suffers interference
of some small objects such as houses. There may be two
reasons for this deviation. First, it is difficult to distinguish
between the local curvilinear segments and some of the house
parts. Some of the local curvilinear segments and house parts
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have similar feature vectors representing the appearance. And
they even have similar relative position relationship. Second,
the curvilinear structure region and background region holds
different proportions in the image. The negative sample has
a variety of appearances, and the area of background is much
larger than the area of the curvilinear object. Yet during
the training process, we have selected the same number of
positive and negative samples. This setting may lead to the
insufficient number of negative samples during training, and
further increase the detection error in the process of Hough
forest testing.

TABLE 1. Detection accuracies of 7 methods on DRIVE dataset.

TABLE 2. Detection accuracies of 7 methods on STARE dataset.

TABLE 3. Detection accuracies of 7 methods on 2D neuron images.

Besides, Tables 1-4 present the statistical results of differ-
ent detectors on the four data sets, respectively. The reported
accuracies are averaged over all images. For the retinal
vessel images, MCHF generally achieves the best perfor-
mance on both DRIVE and STARE dataset among all the
7 methods. Especially, MCHF enhances the sensitivity more
significantly than other two criteria, indicating that it can

TABLE 4. Detection accuracies of 7 methods on aerial road images.

effectively detect more curvilinear structure points. For the
neuron images, KernelBoost and the structure feature based
methods obtained better results than other methods; while for
the aerial road images, MCHF and KernelBoost rank top two
among all the methods. Compared with KernelBoost, MCHF
has better sensitivity (81.56%vs. 79.15%) but worse accuracy
and specificity (∼2% lower).

From these tables, we can draw the following conclusions.
First, performance of the intuitive detection approaches is
much worse than the learning-based methods. It is because
that Eigen and OOF algorithms just analyze the local profile
property of curvilinear structure, both of which are imple-
mented by solving the eigenvalues of elliptic equations.
In a real image, such analytical models often encounter a
considerable interference in the heterogeneous background.
Furthermore, the curve structure itself is complex and can-
not be completely simulated by these analytical models. For
instance, there is a significant difference on the orientation
flux property between the junction and the ordinary curvi-
linear local region. If the eigenvalues and eigenvectors are
calculated, it is hard to determine whether the junction region
belongs to the curvilinear structure. These shortcomings can
be effectively avoided by learning-based methods. These
methods avoid the direct analysis of local characteristics
and detect the curvilinear object through the learned classi-
fier or the retractor. Second, our approach is superior to most
other learning-based methods. It is partly because that most
of the existing learning-based methods tend to focus solely
on the local appearance other than the spatial distribution
patterns of curvilinear structure. Thus, they just consider the
curvilinear structure as a common classification problem,
and discriminate the foreground and background. We note
that [23] also takes the context distance into consideration,
and improves the performance, which treats the context dis-
tance as a group of feature vectors for identifying the curvilin-
ear structure. Our approach also takes advantage of the spatial
relationship of local part in training and voting. Compared
with the structural feature learning-based methods, MCHF
performs better on three datasets. These results demonstrate
the advantages of MCHF in identifying complex curvilinear
structures in various types of images. In addition, the MCHF
method performs slightly worse than Kernel Boost and struc-
tural feature learning-based methods in neural image dataset.
The visual results show that a small number of the scattered
cell nuclei were detected as linear structures. Errors may
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occur during training. The nucleus of a neuron is a part of the
whole curvilinear structure. Obviously, it’s a blob-like local
object, while we consider it as the local tubular segment in
the training stage. This process results in a blob-like structure
in the MCHF leaf nodes after learning. Then the scattered
nucleus centers voted as a high probability centerline points
of curvilinear structure. By contrast, the two best existing
method, Kernel Boost and structural feature learning-based
methods do not divided the whole curvilinear object into
many parts. These treatments can effectively avoid the error
of which sees the scattered nuclei as the curvilinear structure.

D. DISCUSSION
In the field of image detection, an object is usually con-
sidered as a combination of many different parts arranged
with a certain spatial position relationship. Based on this
idea, the generalized Hough transform (GHT) [36] detects
an arbitrary-shaped object through a mapping which consists
of the relative position between an edge point and an object
reference point. The implicit shape model (ISM) [37] con-
siders the local appearance parts as a visual codebook, then
uses it to index votes of object position in Hough space. The
classical Hough forest (HF) [10], [11] originates from ISM,
which vots the object center location through a random forest
framework [38], and determines the whole object through the
displacement of local object parts (codebook). In the classical
HF model, a visual object has an explicit center (reference
point), and the whole object can be restricted into a bounding
box. Each part cast probabilistic votes for possible positions
of the object center. Accordingly, the final object center is
equal to the maxima of the Hough image which accumulates
all of the votes.

However, because of the difference between curvilinear
object and ordinary foreground, classical HF method for
object detection is not directly applicable to the extraction of
curvilinear structures. First, it is hard to determine the bound-
ing box center or the location and size of the bounding box,
thus the displacement/offset defined in the classic HFmethod
is meaningless. Second, because the curvilinear structure has
limited width, the local patch often exceeds the local object
region. Hence the appearance of a local patch often includes
both curvilinear and background factor. The proposedMCHF
method aims to address the curvilinear detection problems,
and it is significantly different from the classical HF. More
over, the object and its center are one to one correspondence
in the classical HF; while in MCHF, the relationship of curvi-
linear structure and its centers are one to many mapping.
In addition, the sample composition, training and detection
are also unlike classical HF method.

V. CONCLUSION
In this paper, we propose a new method for the detection of
curvilinear structure in images. The fundamental idea of this
framework is regarding the curvilinear structure as a special
object, which has multiple object centers, and each centerline

point can be considered as a local center of such object. Based
on this idea, we extend the original Hough forest into a multi-
centered version specialized for curvilinear structure detec-
tion. The MCHF model generates the voting map in Hough
space through accumulating the offset of each leaf node of
all the trees. For constructing the MCHF model, each sample
is represented by a quadri-tuple, including feature vector,
class label, offset factor and orientation. By using directional
non-maximum suppression, each center point of a tubular
segment is determined, and the whole curvilinear structure
can be detected through its width and orientation estimation.
We perform our method on several publicly available datasets
and compare with the state-of-the-art methods. Experimental
results demonstrate that the proposed method is capable to
detect various curvilinear or tubular structures, and achieves
competitive performance in different types of images.
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