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ABSTRACT This paper proposes a novel approach for the solution of optimal power flowwith consideration
of uncertainties caused by wind generation and various factors in the power grid. Regarding the uncertainties
studied here, multiple types of uncertainty modeling techniques are applied during research. Evidence
theory and extended affine arithmetic are employed and mixed as the framework of uncertainty propagation
to fuse probability distributions, possibility distributions, and intervals so as to obtain the best possible
probability bounds, and the dependence among variables is handled by copula theory and affine arithmetic.
Moreover, the uncertainty of wind farm active power and the characteristic of wind farm reactive power
are modeled and integrated into the power flow calculation. An enhanced particle swarm optimization
algorithm with introduction of fitness comparison and constraint handling techniques under the evidence
theory framework is applied to the solution of this problem. The proposed model and method are tested on
the IEEE 30-bus standard test system and a real-sized 183-bus power system to demonstrate the validity and
effectiveness.

INDEX TERMS Affine arithmetic, evidence theory, optimal power flow, particle swarm optimization.

I. INTRODUCTION
The development of renewable energy has received a great
boost in recent years due to depletion of fossil fuels and envi-
ronmental concerns. Wind power, being abundant, widely
distributed, clean and increasingly cost-effective, rises among
the fastest growing renewable energy resources. But it is
intermittent and fluctuant in nature and brings uncertainties
to power systems. Besides, other elements in power systems
like loads are also variable and would not be accurately rep-
resented by deterministic values. As wind power penetration
reaches to a high level, the corresponding uncertain factors
should be elaborately considered for power system planning
and operation.

Optimal power flow (OPF) is considered as one of the
most important tools to study and improve power system
security and reliability. The most common branch of OPF
incorporating uncertainties is the probabilistic OPF. Numeri-
cal approaches like Monte Carlo simulation (MCS) [1] have
been adopted to solve OPF problem and further improved
by some techniques like quasi-random sequence and ninth-
order polynomial normal transformation [2]. The sampling-
based algorithm can provide highly accurate results, but at

the cost of heavy computational burden due to the repeated
deterministic OPF calculations, making it unattractive for
large-scale power systems. In comparison, analytical
approaches to the probabilistic OPF are computationally
more efficient via linearization of power flow equations.
In this aspect, some notable examples including the first-
order second-moment method [3], the cumulant method [4],
and the Gaussian mixture model method [5] etc., have been
tried with varying degrees of success. However, the accuracy
of solution obtained by an analytical approach depends on
whether the uncertainty propagation can be well represented
by linear functions. Given that a probability distribution
is easier to be approximated than a nonlinear transforma-
tion, some approximate approaches like the point estimation
method [6] and the unscented transformation method [7]
have been developed to obtain the properties of probability
distributions of output variables.

The possibility theory can be used to describe the uncer-
tain quantities when the available information is insufficient
to construct appropriate probability distributions, and it has
been successfully applied to study OPF problem. In this
paradigm, input variables, objective function values, and
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constraint violations are all represented by fuzzy converted
to crisp linear programming [8], [9] or applyingmetaheuristic
optimization algorithms with fuzzy techniques [10].

If only the ranges of uncertain variables are known, the
interval-based methods can be utilized for OPF to calcu-
late the lower and upper bounds of variables. The bound-
ary OPF solution can be obtained by primal-dual interior
point method [11]. Another approach is to employ the
self-validated affine arithmetic (AA) and treat the uncertain
variables in OPF problem as affine forms [12]. A generic
mathematical programming problem and a knowledge-based
noise symbol reduction technique under this framework have
been proposed in [13].

The aforementioned research methods have been applied
to study the uncertain OPF problem with different intentions.
However, the available statistics associated with a power
system might not be consistent enough for all uncertain
factors to be accurately represented by only one type of
mathematical model. In this case, applying probabilistic, pos-
sibilistic, or interval methods to the solution of OPF could
lead to an inaccurate or even incorrect result. This paper
aims to propose a hybrid approach, allowing each uncertain
variable to be described by themost suitablemodel and fusing
their probability distributions, possibility distributions, and
intervals to obtain the best possible probability bounds for
the OPF problem integrated with wind generation and power
grid uncertainties. In this work, the evidence theory (ET),
being compatible with probability theory, possibility theory,
and interval analysis, and AA, extended to quadratic terms
for second-order correlations, are combined for the uncer-
tainty propagation. An enhanced particle swarm optimiza-
tion (EPSO) incorporating uncertainty handling techniques
under ET is applied to the solution of the uncertain OPF. The
validity of the proposed model and method is verified on the
IEEE 30-bus standard test system and a real-sized 183-bus
power system.

The remaining of the paper is organized as follows.
Section II introduces the deterministic model and solution of
power flow with wind generation integration. In Section III,
the modeling of uncertain OPF with wind generation and
power grid uncertainties under the mixed ET and AA frame-
work is addressed. An EPSO method is applied for the
solution of the uncertain OPF problem, and the details can
be found in Section IV. Case studies are carried out to
demonstrate the validity of the proposed model and method
in Section V, and finally, Section VI draws the concluding
remarks.

II. DETERMINISTIC POWER FLOW WITH
WIND GNERATION
A. WIND FARM ACTIVE POWER WITH CONSIDERATION
OF THE WAKE EFFECT
Awind farm consists of tens or even hundreds of wind turbine
units. Due to the wake effect, a turbine located downwind of
another turbine captures a reduced wind speed and produces
less active power. This paper adopts a single active power Pwf

versus wind speed v curve [14], instead of summing up all
wind turbine power outputs, to calculate the wind farm active
power with consideration of the wake effect:

Pwf =


0 v < vci/ξwf, v ≥ vco

(ξwfv)3 − v3ci
v3r − v

3
ci

Pwfr vci/ξwf ≤ v < vr/ξwf

Pwfr vr/ξwf ≤ v < vco

(1)

where Pwfr is the installed capacity of wind farm; vci, vr,
and vco are the cut-in, rated, and cut-out wind speeds respec-
tively; ξwf is the wake effect attenuation coefficient of wind
farm and can be obtained by aggregating the attenuation
coefficients of all wind turbines:

ξwf =
3

√√√√ 1
nwt

nwt∑
i=1

ξ3i (2)

where ξi is the wake effect attenuation coefficient of wind
turbine i, calculated from the specific wake effect model of
wind farm; nwt is the number of wind turbines.

B. CHARATERISTIC OF WIND FARM REACTIVE POWER
Each type of wind turbine has its unique reactive power
characteristic, which should be reflected in power flow
calculation. In this paper, the doubly-fed induction genera-
tor (DFIG) and the permanent magnet synchronous genera-
tor (PMSG) are examined to take into account the reactive
power exchange between the wind farm and the power sys-
tem. Here, a wind farm is represented by an equivalent wind
turbine model for simplicity.

For a DFIG-based wind farm, the simplified equivalent
circuit model proposed in [15] is applied, of which the stator
side power factor is maintained constant by controlling the
magnitude and phase angle of the voltage supplied to the rotor
winding. Neglecting the rotor side reactive power, the wind
farm reactive power Qwf can be calculated via the following
quadratic equation:

aQ

(
Qwf

nwt

)2

+ bQ
Qwf

nwt
+ cQ = 0 (3)

where the corresponding coefficients of the equation are
expressed as below:

aQ =
rr (xs + xm)2

x2mV 2

(
1

tan2 ϕs
+ 1

)
bQ =

1− s
tanϕs

+
2rr (xs + xm)

x2m

cQ =
rrV 2

x2m
−
Pwf
nwt

(4)

where V is the bus voltage; rr, xs, and xm are the rotor resis-
tance, stator reactance, and magnetizing reactance of wind
turbine respectively; ϕs is the stator side power factor angle;
s is the slip and can be obtained according to the relationship
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between slip and rotor speed, which is given as below:

s =
nsyn − n
nsyn

=



1−
nmin

nsyn
0 <

Pwf
nwt
≤ P1

1−
1
nsyn

3

√
Pwf/nwt
kopt

P1 <
Pwf
nwt
≤ P2

0 P2 <
Pwf
nwt
≤ P3(

1−
nmax

nsyn

)
Pwf/nwt−P3
Pmax−P3

P3 <
Pwf
nwt
≤ Pmax

(5)

where n is the rotor speed; nmin, nsyn, and nmax are the min-
imum, synchronous, and maximum speeds of rotor respec-
tively; kopt is the active power versus wind speed conversion
parameter; P1, P2, and P3 are the active power thresholds;
Pmax is the maximum active power.
For a PMSG-based wind farm, it is assumed to be oper-

ated in constant power factor control mode [16]. Therefore,
the reactive power is the product of the active power and the
tangent of power factor angle ϕ:

Qwf = Pwf tanϕ (6)

C. SOLUTION TO POWER FLOW WITH
MULTIPLE WIND FARMS
In the aforementioned DFIG-based wind farm model,
the reactive power is the function of the active power and
the bus voltage magnitude. Therefore, these buses connected
to DFIG-based wind farms are considered as PQ buses with
variable reactive power. To solve power flow integrating mul-
tiple wind farms, the joint iteration method [17] is employed
in this paper, and the power injections of wind farms are
moved to the right side of power flow equations to keep the
left side constant:{

Pg − Pd = e ◦ (Ge− Bf )+ f ◦ (Gf − Be)− Pwf

Qg − Qd = f ◦ (Ge− Bf )− e ◦ (Gf − Be)− Qwf
(7)

where Pg, Pd, and Pwf are the column vectors of active
power of conventional generation units, loads, and wind
farms respectively; Qg, Qd, and Qwf are the column vectors
of reactive power of conventional generation units, loads,
and wind farms respectively; e and f are the column vectors
of bus voltage rectangular components; G and B are the
conductance and susceptancematrices respectively; ◦ denotes
the Hadamard product of matrices. For each DFIG-based
wind farm, the following terms are subtracted from their
corresponding elements in the Jacobian matrix during the
Newton-Raphson iteration process:

∂Qwf,i

∂ei
=

2ei
V 2
i

(
Qwf,i −

Pwf,i√
1Q,i

)
∂Qwf,i

∂fi
=

2fi
V 2
i

(
Qwf,i −

Pwf,i√
1Q,i

) (8)

where 1Q,i is the discriminant of the quadratic equation
for DFIG-based wind farm at bus i, and 1Q,i = b2 Q,
i – 4aQ,icQ,i.

III. OPF WITH WIND GENERATION AND POWER
GRID UNCERTAINTIES
A. THE MIXED ET AND AA UNCERTAINTY
PROPAGATION FRAMEWORK
In ET, a Dempster-Shafer structure (DS) simultaneously rep-
resents aleatory and epistemic uncertainties of a variable,
identified with its basic probability assignment m:

m : 2�→ [0, 1] , m (Ø) = 0,
∑
a∈2�

m (a) = 1 (9)

where � is the universe; 2� is the power set of all subsets
of �; the sets in 2� with non-zero masses are called focal
elements. Each DS corresponds to a plausibility measure Pl
and a belief measure Bel:

Bel (a) =
∑
b⊆a

m (b)

Pl (a) =
∑

b∩a 6=Ø

m (b)
(10)

These measures bound the probability P of any set a in 2�:

Bel (a) ≤ P (a) ≤ Pl (a) (11)

Hence the cumulative plausibility and belief of a DS on the
real line form a probability box (p-box), and conversely,
a p-box corresponds to an equivalence class of DSs [18].
Namely, DSs and p-boxes are interconvertible. With possi-
bility theory being a special branch of ET with nested focal
elements, a possibility distribution can be interpreted as a
family of probability distributions with the possibility and
necessity measures as its bounds [19]. In this work, a DS
of a real-valued variable X has a finite number nX of closed
intervals as focal elements and can be defined as a set of
pairs of intervals xi and masses mX (xi), i.e., {(xi, mX (xi))
|i = 1, . . . , nX}. Thus, probability distributions, possibil-
ity distributions, and intervals can be encoded into finite
DSs [18], [20].

When a binary arithmetic operation � performs on two
variables X and Y , convolution takes place between their
DSs, {(xi, mX (xi)) |i = 1, . . . , nX} and {(yj, mY (yj)) |j =
1, . . . , nY }, to produce the DS of the arithmetic result Z .
For independent variables, the result is a Cartesian product
of the operands, denoted by {(zij,mZ (zij))|i = 1, . . . , nX ,
j = 1, . . . , nY }, and the associated masses are the products
of corresponding masses [21]:

Z = X�Y : zij = xi�yj,mZ
(
zij
)
= mX (xi)mY

(
yj
)

(12)

For variables with dependence modeled by a copula C fit-
ted to historical statistics, the result is also a Cartesian
product, with the associated masses calculated using the
copula [21]:

Z = X�Y : zij = xi�yj,
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mZ
(
zij
)
= C

(
Xi,Yj

)
− C

(
Xi−1,Yj

)
−C

(
Xi,Yj−1

)
+ C

(
Xi−1,Yj−1

)
(13)

where xi and yj are sorted or transformed without altering
the cumulative plausibility and belief to satisfy inf(xi−1)
≤ inf(xi), sup(xi−1) ≤ sup(xi), inf(yj−1) ≤ inf(yj), and
sup(yj−1) ≤ sup(yj); Xi and Yj are the cumulative masses:

Xi =
i∑

k=1

mX (xk)

Yj =
j∑

k=1

mY (yk)

(14)

For variables with extreme dependence, the conversions
between DSs and p-boxes are utilized to calculate the con-
volution in the form of p-boxes. Regarding the p-boxes of
X , Y , and Z denoted by [F̄X ,F_X ], [F̄Y ,F_Y ], and [F̄Z ,F_Z ]
respectively, the convolutions under perfect and opposite
dependence can be expressed in (15) and (16) respectively
(0 ≤ p ≤ 1) [21]:

F̄−1Z (p) = inf
FX∈

[
F̄X ,F_X

]
FY∈

[
F̄Y ,F_Y

]
[
F−1X (p)� F−1Y (p)

]
F−1_Z (p) = sup

FX∈
[
F̄X ,F_X

]
FY∈

[
F̄Y ,F_Y

]
[
F−1X (p)�F−1Y (p)

] (15)



F̄−1Z (p) = inf
FX∈

[
F̄X ,F_X

]
FY∈

[
F̄Y ,F_Y

]
[
F−1X (p)� F−1Y (1− p)

]
F−1_Z (p) = sup

FX∈
[
F̄X ,F_X

]
FY∈

[
F̄Y ,F_Y

]
[
F−1X (p)�F−1Y (1− p)

] (16)

For variables with unknown dependence, the pointwise
tightest probability bounds guaranteed to enclose the actual
probability distribution are calculated according to the
Fréchet-Hoeffding limits [21], [22]:

F̄Z (z) = inf
z=x� y

FX∈
[
F̄X ,F_X

]
FY∈

[
F̄Y ,F_Y

]
min [FX (x)+ FY (y) , 1]

F_Z (z) = sup
z=x�y

FX∈
[
F̄X ,F_X

]
FY∈

[
F̄Y ,F_Y

]
max [FX (x)+ FY (y)− 1, 0]

(17)

The number of focal elements is limited via approximations
of DSs to avoid its exponential growth and keep the compu-
tation tractable [22].

Variables in a nonlinear system of equations have
complex dependencies that cannot be determined easily.
Uncertainty propagation with unjustified assumption of inde-
pendence or total ignorance about dependence in the arith-
metic process can result in probability bounds much narrower
or wider than actual quantities [21]. Here, an extension of
AA [23], is introduced to record the first and the second order
correlations between variables and noise symbols, which

are the normalized uncertain inputs of the system, and add
structure to DS arithmetic. In this mixed framework, a quan-
tity is represented by a quadratic form (QF) with DS noise
symbols:

x̂ = x0 + x1ε + εTx2ε (18)

where x0 is the central value; x1 and x2 are the matrices of
partial deviations representing the first and the second order
correlations with noise symbols respectively; ε is the column
vector of DS noise symbols. The omission of error-related
terms from conventional AA costs QF the self-validation
feature but reduces computational burden significantly whilst
still being adequately accurate in the practice of power flow
calculation. Arithmetic operations on QFs are described as
below:

α ± x̂ = (α ± x0)± x1ε ± εTx2ε

α · x̂ = αx0 + (αx1) ε + εT (αx2) ε

x̂ ± ŷ = (x0 ± y0)+
(
x1 ± y1

)
ε + εT

(
x2 ± y2

)
ε

x̂ · ŷ = x0y0 +
(
y0x1 + x0y1

)
ε

+ εT
(
y0x2 + x0y2 + x

T
1 y1

)
ε

(19)

where α is a real number. A QF with DS noise symbols
can be converted into a corresponding DS with the help of
summing up the QF terms via convolution, which is called
concretization [24] and denoted by DS

(
x̂
)
.

B. INCORPORATING WIND FARMS INTO
UNCERTAIN POWER FLOW
A general framework of uncertain power flow based on ET
and AA has been proposed in [25]. Based on the framework,
an ad-hoc probabilistic model of wind farm active power [14],
derived from the wind speed probability distribution
(two-parameter Weibull distribution is used here) and the
wind farm active power versus wind speed curve, is adopted
to represent the uncertainty of wind generation, in the form of
cumulative distribution function (CDF) as described below:

F (Pwf) =



0 Pwf < 0

− exp

{
−

1

(ξwfλ)
k ·

[
Pwf
Pwfr

(
v3r−v

3
ci

)
+v3ci

]k/3}
+ exp

[
−

(vco
λ

)k]
+ 1 0 ≤ Pwf < Pwfr

1 Pwf ≥ Pwfr

(20)

where k and λ are the shape and scale parameters of Weibull
distribution respectively. Calculating the DFIG-based wind
farm reactive power involves the slip, of which the expression
is a piecewise function across the range of active power
output. Being non-affine, the slip function needs to be approx-
imated as an affine operation on QFs, and the Remez algo-
rithm is used to obtain the minimax approximation:

ŝ = sa2P̂2wf + sa1P̂wf + sa0 + ŝerr (21)
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where sa2, sa1, and sa0 are the coefficients of the approximat-
ing polynomial; ŝerr is the approximation error, added to the
expression to bound the actual slip and taken as an additional
uncertain input:

ŝerr = smax
err εerr (22)

where smax
err is the maximum approximation error; εerr is an

interval with a range of [−1, 1].
Let the column vector u denote the uncertain inputs,

namely wind farm active power and other variable parameters
of the power grid, then the noise symbols can be obtained via
normalization:

ε = 1u−1
(
u− u0

)
(23)

where u0 is the column vector of the range midpoints of
the uncertain inputs, forming the central operating point;
1u is the diagonal matrix of the range radiuses of the uncer-
tain inputs. Utilizing Taylor series expansion at the central
operating point, the expressions of the QFs of bus voltage
rectangular components are given below:
êi = e0i +

(
∂ei
∂uT

∣∣∣∣
0
1u
)

ε + εT
(
1
2
1u

∂2ei
∂u2

∣∣∣∣
0
1u
)

ε

f̂i = f 0i +
(
∂fi
∂uT

∣∣∣∣
0
1u
)

ε + εT
(
1
21u

∂2fi
∂u2

∣∣∣
0
1u
)

ε

(24)

The central values can be obtained by solving the power
flow at the central operating point. Obviously, the partial
derivatives for the slack bus are zero. For other buses, the par-
tial derivatives are calculated by solving the following linear
systems derived from the power flow equations. Now suppose
that buses 1 to M , M + 1 to N − 1, and N are PQ buses, PV
buses, and slack bus respectively, and u and w denote any of
the uncertain inputs. For the first-order partial derivatives:

J ·

 ∂e
′

∂u
∂f ′

∂u


=

[
ηP1 , . . . , η

P
N−1, η

Q
1 , . . . , η

Q
M , η

V
M+1, . . . , η

V
N−1

]T
(25)

where J is the Jacobian matrix; e′ and f ′ are the column
vectors of bus voltage rectangular components sans the slack
bus; the constant terms of the linear system are expressed as
below: 

ηPi =
∂Pg,i
∂u
−
∂Pd,i
∂u
+
∂Pwf,i
∂u

η
Q
i =

∂Qg,i

∂u
−
∂Qd,i

∂u
+
∂Qwf,i

∂u

ηVi =
∂Vi
∂u

(26)

and the partial derivative of wind farm reactive power
depends on the type of wind farm connecting to bus i:

∂Qwf,i

∂u
=



1√
1Q,i

(
Qwf,i

tanϕs,i

∂si
∂Pwf,i

+ 1
)
∂Pwf,i
∂u

+
Qwf,i√

1Q,i tanϕs,i

∂serr,i
∂u

DFIG

tanϕi
∂Pwf,i
∂u

PMSG

(27)

For the second-order partial derivatives:

J ·


∂2e′

∂u∂w
∂2f ′

∂u∂w

 = [µP1 , . . . , µPN−1, µQ1 , . . . , µQM ,
µVM+1, . . . , µ

V
N−1

]T
(28)

where the constant terms of the linear system are expressed
as below:

µPi = −
∂ei
∂u
∂Ire,i
∂w
−
∂ei
∂w

∂Ire,i
∂u
−
∂fi
∂u
∂Iim,i
∂w
−
∂fi
∂w

∂Iim,i
∂u

µ
Q
i = −

∂fi
∂u
∂Ire,i
∂w
−
∂fi
∂w

∂Ire,i
∂u
+
∂ei
∂u
∂Iim,i
∂w
+
∂ei
∂w

∂Iim,i
∂u

+µ
Q,wf
i

µVi =
1
Vi

(
∂Vi
∂u

∂Vi
∂w
−
∂ei
∂u
∂ei
∂w
−
∂fi
∂u
∂fi
∂w

)
(29)

where Ire,i and Iim,i are the real and imaginary parts of nodal
current injection at bus i respectively, and their partial deriva-
tives are given below:

∂Ire,i
∂u
=

N−1∑
j=1

(
Gij
∂ej
∂u
− Bij

∂fj
∂u

)
∂Iim,i
∂u
=

N−1∑
j=1

(
Gij
∂ej
∂u
+ Bij

∂fj
∂u

) (30)

The termµQ,wfi has the following expression if a DFIG-based
wind farm is connected to bus i, which otherwise equals zero:

λ
Q,wf
i =

2

V 2
i

(
Qwf,i −

Pwf,i√
1Q,i

)(
∂ei
∂u
∂ei
∂w
+
∂fi
∂u
∂fi
∂w

)

+
Qwf,i√

1Q,i tanϕs,i

[
∂2si
∂P2wf,i

∂Pwf,i
∂u

∂Pwf,i
∂w

+
1

V 2
i

(
∂V 2

i

∂u
∂si
∂w
+
∂V 2

i

∂w
∂si
∂u

)]

−
2aQ,i

nwt,i1
3/2
Q,i

(
Pwf,i
V 2
i

∂V 2
i

∂u
−
∂Pwf,i
∂u

)

×

(
Pwf,i
V 2
i

∂V 2
i

∂w
−
∂Pwf,i
∂w

)
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−
bQ,i

1
3/2
Q,i tanϕs,i

[(
Pwf,i
V 2
i

∂V 2
i

∂u
−
∂Pwf,i
∂u

)
∂si
∂w

+

(
Pwf,i
V 2
i

∂V 2
i

∂w
−
∂Pwf,i
∂w

)
∂si
∂u

]
−

2nwt,icQ,i

1
3/2
Q,i tan

2 ϕs,i

∂si
∂u
∂si
∂w

(31)

where 
∂V 2

i

∂u
= 2ei

∂ei
∂u
+ 2fi

∂fi
∂u

∂si
∂u
=

∂si
∂Pwf,i

∂Pwf,i
∂u
+
∂serr,i
∂u

(32)

The uncertain power flow is then solved by calculating
the QFs of variables using AA according to the power flow
equations and converting them into DSs.

C. PROBLEM FORMULATION
Based on the aforementioned uncertain power flow method,
an OPF model incorporating multiple wind farms and other
uncertain factors (e.g. loads) in a power system is proposed
in this paper. Here, the objective function is minimizing the
active power loss Ploss of the power system:

min DS
(
P̂loss

)
= DS

(∑
i

P̂g,i + P̂wf,i − P̂d,i

)
(33)

The control variables include the active power outputs of con-
ventional generation units Pg,i at PV buses, and the voltage
magnitudes Vi of PV buses and slack bus. The power flow
equations, expressed in QFs, are the equality constraints:P̂g − P̂d = ê ◦

(
Gê− Bf̂

)
+ f̂ ◦

(
Gf̂ − Bê

)
− P̂wf

Q̂g − Q̂d = f̂ ◦
(
Gê− Bf̂

)
− ê ◦

(
Gf̂ − Bê

)
− Q̂wf

(34)

The inequality constraints include: lower and upper limits
on the active and reactive power outputs of conventional
generation units,Pmin

g,i ,P
max
g,i ,Q

min
g,i , andQ

max
g,i ; lower and upper

limits on the bus voltage magnitudes, Vmin
i and Vmax

i ; upper
limits on the apparent power of branches, Smax

ij . The control
variables in these constraints are expressed in real numbers:{

Pmin
g,i ≤ Pg,i ≤ P

max
g,i

Vmin
i ≤ Vi ≤ Vmax

i

(35)

The state variables in these constraints are expressed in DSs:

Pmin
g,i ≤ DS

(
P̂g,i

)
≤ Pmax

g,i

Qmin
g,i ≤ DS

(
Q̂g,i

)
≤ Qmax

g,i

Vmin
i ≤

√
DS

(
ê2i + f̂

2
i

)
≤ Vmax

i√
DS

(
P̂ij
)2
+ DS

(
Q̂ij
)2
≤ Smax

ij

(36)

IV. SOLUTION METHODOLOGY
A. PSO
The existing OPF algorithms are incapable to handle uncer-
tain variables described byDSs. The PSO, with its advantages
being easy implementation, low number of parameters, and
relative computational efficiency, is therefore combined with
the following techniques of fitness comparison and constraint
handling for DSs to solve the proposed uncertain OPF model.
The local best model with the von Neumann neighborhood
topology is employed, and the PSO algorithm is further
enhanced by a stability-based adaptive inertia weight strat-
egy [26], where the social and cognitive scaling parameters
are also adjusted accordingly. The initial velocities are set to
be zero to reduce roaming particles [27], and infeasible parti-
cles are brought back into the feasible region by mirroring the
positions and setting the velocities to be zero in the violated
dimensions [28].

B. FITNESS COMPARISON
A ranking method in ET based on the probability bounds
of the difference for fitness comparison has been proposed
in [29]. However, in practice a good number of solutions
will be classified as equivalent ones when there are large
overlaps among the fitness DSs. In this work, a quantile-based
method of comparing DS fitness for optimization problem is
proposed.

Wefirst take a look at the probabilistic fitness. Suppose that
X and Y are the fitness to be compared, and their quantile
functions are QX and QY respectively. For a minimization
problem, X is deemed better than Y if the following statement
is true:

(∀p ∈ [0, 1],QX (p) ≤ QY (p))

∧ (∃p0 ∈ [0, 1],QX (p0) 6= QY (p0)) (37)

Please note that X and Y are deemed equal only if their
quantile functions are exactly the same. If QX is less than
QY at some probability levels and greater than QY at others,
X and Y are considered as ‘‘no better no worse’’ rather than
equal.

A DS fitness is converted into a p-box and interpreted
as the bounds on the quantile at any probability level. As a
p-box represents a class of probability distributions,
the bounds are essentially quantile functions and can be
compared using the aforementioned method. The principle
of comparison is to get the fitness minimized in its entirety.
That is, the better fitness has either 1) a better left bound
and a better or equal right bound, or 2) an equal left bound
and a better right bound. Therefore, the comparison is purely
based on the relations between the bounds of p-boxes and not
hindered by overlapping.

C. CONSTRAINT HANDLING
In the constraints, a DS is also converted into a p-box but
interpreted differently as the bounds on the cumulative prob-
ability associated with any quantity value. Then the lower and
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upper probabilities of a variable X satisfying an inequality
constraint can be obtained:{

F_X (x) ≤ P (X ≤ x) ≤ F̄X (x)
1− F̄X (x) ≤ P (X ≥ x) ≤ 1− F_X (x)

(38)

where F̄X and F_X are the CDFs of the left and right bounds
of X respectively. Thus an inequality constraint is taken as
a chance constraint: it is considered satisfied as long as the
lower probability is no less than its predetermined threshold.
For violated constraints, the absolute differences between
lower probabilities and thresholds are summed up as the
constraint violation. In this way, the constraints and the objec-
tives are handled separately. When comparing two solutions,
the onewith a smaller constraint violation is always preferred.
If the solutions have equal constraint violations, the one with
a better objective function value is preferred.

FIGURE 1. Flowchart of the enhanced PSO.

The flowchart of the enhanced PSO (EPSO) is shown
in Fig. 1.

V. CASE STUDY
The proposed uncertain OPF model and the corresponding
solution method are tested on the IEEE 30-bus standard test
system and a real-sized 183-bus power system. All wind
farms consist of either 1.5 MW DFIGs or 2MW PMSGs.
The parameters of wind turbines can be referred to [16].
For the case studies, the parameters of Weibull distribution
for wind speed probability distribution are assumed to be
k = 2.49 and λ = 6.85 m/s. DSs in the uncertain power flow
consists of 100 equiprobable focal elements. The thresholds
for constraints on Pg,i, Qg,i, Vi, and Sij are set to be 1, 1,
0.9, and 0.9 respectively. All calculations are performed in
the MATLABTM environment on a PC equipped with Intel
Core i7-3770 3.4 GHz CPU and 8 GB RAM.

A. IEEE 30-BUS STANDARD TEST SYSTEM
Two wind farms are connected to the IEEE 30-bus standard
test system at bus 6 and bus 28. The uncertain inputs of the
test system and their dependencies are given in Table 1:

TABLE 1. Uncertain inputs in IEEE 30-bus standard test system.

The uncertain loads are modeled by triangular fuzzy num-
bers and intervals, varying around the center value with
a certain load deviation. In this benchmark, the numbers
of particles and iterations for EPSO are set to be 25 and
50 respectively.

In the first scenario, the optimal active power losses under
different wind penetration levels are compared. The configu-
rations of wind farms are shown in Table 2:

TABLE 2. Wind farms in IEEE 30-bus standard test system under different
wind penetration levels.

The active and reactive loads at each bus increase at
the same rate as the total generation capacity. With a 15%
load deviation, the expressions of uncertain loads are listed
in Table 3:

The optimal active power losses under 10%, 20%, and 30%
wind penetration are presented as p-boxes shown in Fig. 2.
As the wind penetration level increases, the p-box stretches
towards higher active power loss. Even in the best case sce-
nario where the actual probability distribution of active power
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TABLE 3. Uncertain loads in IEEE 30-bus standard test system under
different wind penetration levels.

2

FIGURE 2. P-boxes of optimal active power losses of IEEE 30-bus
standard test system under different wind penetration levels.

loss coincides with the left bound of p-box, the growth in
wind generation makes the potential active power loss higher,
more volatile, and thus more difficult to be managed.

In the second scenario, the optimal active power losses
under different load deviation levels are compared. With a
20% wind penetration level, the expressions of uncertain
loads are listed in Table 4:

TABLE 4. Uncertain loads in IEEE 30-bus standard test system under
different load deviation levels.

The optimal active power losses under 10%, 15%, and
20% load deviation are presented as p-boxes shown in Fig. 3.

FIGURE 3. P-boxes of optimal active power losses of IEEE 30-bus
standard test system under different load deviation levels.

TABLE 5. Uncertain inputs in real-sized 183-bus power system.

TABLE 6. Wind farms in real-sized 183-bus power system under different
wind penetration levels.

The increase of load deviation has a different effect on the
p-box: it gets wider, with the bounds seemingly moving
towards both directions and keeping the shape. Therefore,
a p-box of optimal active power loss is enclosed by another
one under higher load deviation. This is due to the application
of fuzzy numbers and intervals to modeling of uncertain
loads, both of which bring epistemic uncertainty. As the
potential active power loss is raised by a high load deviation,
it is always desirable to reduce such uncertainty, by means of
improving the accuracy of load forecast.

B. REAL-SIZED 183-BUS POWER SYSTEM
The real-sized power system consists of 183 buses,
308 branches, and 30 conventional generation units. The total
generation capacity of conventional units is 9735 MW, and
the active and reactive loads of the entire system are 6903.17
MW and 2637.17 Mvar respectively. Two wind farms are
added at bus 69 and bus 156. The uncertain inputs of the
system and their dependencies are given in Table 5:
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TABLE 7. Uncertain loads in real-sized 183-bus power system under
different wind penetration levels.

TABLE 8. Uncertain loads in real-sized 183-bus power system under
different load deviation levels.

FIGURE 4. P-boxes of optimal active power losses of real-sized 183-bus
power system under different wind penetration levels.

In this benchmark, the numbers of particles and iteration
for PSO are set to be 64 and 100 respectively.

The same scenarios as in the previous case are studied. The
configurations of wind farms under different wind penetra-
tion levels are shown in Table 6:

For the first scenario, the expressions of uncertain loads
with a 15% load deviation are listed in Table 7:

For the second scenario, the expressions of uncertain loads
with a 20% wind penetration level are listed in Table 8:

The optimal active power losses under different wind pen-
etration levels and load deviation levels are presented as

FIGURE 5. P-boxes of optimal active power losses of real-sized 183-bus
power system under different load deviation levels.

p-boxes shown in Fig. 4 and Fig. 5 respectively. The results
match the findings from the previous case, but the p-boxes
obviously differ in shape. In the IEEE 30-bus standard test
system, the probability masses of both the left and right
bounds of optimal active power loss p-box lean to the right
tail. Meanwhile, in the real-sized 183-bus power system,
the probability masses are heavier on the right side with the
left bound and on the left with the right bound.

VI. CONLUSION
A novel optimal power flow model incorporating wind gen-
eration and power grid uncertainties based on ET and AA
is proposed in this paper. The properties of the active and
reactive powers of wind farm are modeled and integrated into
the power flow. With correlations and dependence handled in
the DS arithmetic, the fusion of probabilistic, possibilistic,
and interval uncertainties makes the most out of the available
statistics to produce an accurate approximation of aleatory
and epistemic uncertainties in the form of p-boxes at the opti-
mal operating point, for a better understanding of the effect
of uncertain factors on power systems. The validity of the
proposed OPF model and solution are verified on the IEEE
30-bus test system and a real-sized 183-bus power system.
It has to be pointed out that while the cases studied have only
two wind farms and a low amount of uncertain parameters,
the proposed approach can be generalized tomore wind farms
and more uncertain loads with high-dimensional dependen-
cies and remain tractable by applying cost-saving techniques
described in [1]. This proposed framework has the potential
for broader applications in future power systems with high
renewable penetration.
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