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ABSTRACT Topology-transparent scheduling policies do not require the maintenance of accurate network
topology information and therefore are suitable for highly dynamic scenarios in self-organized wireless
networks. However, in topology-transparent scheduling, it is a very challenging problem to make individual
nodes efficiently select their transmission slots in a distributed manner. It is desirable for individual nodes,
through time slot selection, to avoid collision on the one hand and utilize as many time slots as possible
(i.e., minimize the number of redundant slots) on the other. In this paper, learning-based approaches are
employed to solve the time slot scheduling problem. Specifically, the proposed method uses a temporal
difference learning approach to address the collision issue and use a stochastic gradient descent approach
to reduce the number of redundant slots. Unlike previous works, this learning approach is trained through
self-play reinforcement learning without incurring communication overhead for the exchange of reservation
information, thereby improving the network throughput. Extensive simulation results validate that our
proposal can achieve better efficiency than the existing approaches.

INDEX TERMS Topology-transparent scheduling, reinforcement learning, collision avoidance, redundant
slot utilization.

I. INTRODUCTION
The time-division multiple access (TDMA) scheme has
been widely used in Internet of Things (IoT) applications
to support large and dense networks [1]–[6]. It is a bet-
ter solution for achieving fair and collision-free scheduling
than competition-based schemes (e.g. CSMA/CA) because it
allows interfering nodes to transmit in different time slots.
To allocate different time slots to interfering nodes, TDMA
scheduling schemes usually require the topological informa-
tion of the network [7], [8]. However, in a dynamic, large
and dense network, acquiring this information may incur
massive computational complexity and communication over-
head [9]–[11]. Consequently, topology-transparent schedul-
ing schemes have recently attracted considerable research
interest [12], [13].

In topology-transparent scheduling, each node selects a
time slot in a distributed manner without requiring topolog-
ical information [17]. The main objective is that interfering

nodes (i.e., destination node and its neighbors select the trans-
mission slot which has been selected by source node) should
select different slots in which to transmit. This is a non-
trivial problem due to the lack of topological information.
Therefore, this problem has attracted extensive investigation
over the past decade [14]–[20], and the related proposals
can be broadly divided into two categories: reservation-based
schemes [16], [18], [20] and polynomial-based schemes [14],
[15], [19]. The basic idea of reservation-based schemes is to
reserve different slots for interfering nodes and thus avoid
collision. However, these schemes require reservation infor-
mation to be exchanged among nodes, and the exchange
of a large amount of reservation information may result in
excessive communication overhead. The polynomial-based
approach can achieve considerable improvements in effi-
ciency and robustness in mobile environments [19] by tak-
ing advantage of the multi-packet reception capability. This
capability allows the collision problem to be resolved even
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when two nodes are transmitting in the same time slot.
However, this approach introduces complicated polynomial-
based algorithms and requires each node to have the capa-
bility of multi-packet reception. Another important problem
faced by schemes in both categories is that to avoid potential
collisions, the time slots are usually only sparsely occupied
by nodes; i.e., redundant slots exist that are not efficiently
utilized.

In this paper, we propose an intelligent topology-
transparent scheduling policy that can learn and optimize
rules for avoiding collisions and utilizing redundant slots.
This work requires neither central control nor information
exchange among nodes. Most importantly, we make use
of artificial intelligence techniques, e.g. temporal difference
learning and the experience replay approach, to address the
slot selection issue for collision avoidance and redundant slot
utilization.

The remainder of this paper is organized as follows.
Section II describes the system model. In Section III,
we explain the details of the proposed topology-transparent
scheduling policy. Section IV reports the validation of the
proposal via simulation. Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM DEFINITION
There are N nodes in the considered self-organized wireless
network. The network can be represented by a directed graph
G(V ,E), where V and E are the sets of nodes and edges,
respectively [14]. Let Su denote the neighbors of node u
(∀u ∈ V ). Du = |Su| is the degree of node u. The maximum
node degree is defined as Dmax = max

u∈V
Du. The nodes do

not need to support multi-packet reception, and we assume
that unsuccessful transmission is caused only by collisions.
Suppose that node u is within the interference range of
node v; then, for a transmission from node u to node v in
slot i, a collision occurs when node v or another neighbor of
node v simultaneously intends to transmit in slot i. Therefore,
the interfering node set for transmission from u to v is repre-
sented by Sv ∪ {v} − {u}.

FIGURE 1. The topology-transparent frame structure. [12], [13].

The conventional topology-transparent scheduling policy
is based on Galois field theory [21]. Consider a single-
channel TDMA network, for which the frame has the struc-
ture shown in Fig. 1 [12], [13]. Specifically, each frame
is divided into a number of subframes of equal duration;
accordingly, each node has multiple transmission opportuni-
ties within a frame. Moreover, each subframe further consists
of multiple time slots, and a node can select one of these time
slots in which to transmit.

The method of selecting transmission slots is a key issue
for topology-transparent scheduling. In [12] and [13], the fol-
lowing slot selection function was proposed:

f (x) =
k∑
i=0

aix i(modp), (1)

where k is the maximum number of collisions between two
arbitrary nodes in one frame; ai ∈ 0, 1, . . . , p− 1 is a coef-
ficient parameter that randomizes the slot selection (different
nodes will select different ai values); x is the index of the
current subframe; p is the number of slots in one subframe;
and q is the number of subframes in one frame. In accordance
with (1), all selected slots for an arbitrary node constitute the
following set:

GF(x) = {xq+ f (x), x = 0, 1, . . . , q− 1}. (2)

This function indicates the position in the frame of the
transmission slot selected for each node. The randomness of
f (x) will prevent different nodes from choosing the same slot.
This function indicates the position in the frame of the

transmission slot selected for each node. The maximum
degree of the function is equal to k . The set GF(x) should
include all possible functions. The number of functions cov-
ered by GF(x) is pk+1. To guarantee that each node has at
least the minimum guaranteed throughput, each node should
be given a unique slot selection function [13], and thus,
the following constraint should be satisfied:

pk+1 ≥ N . (3)

For each node, slot (f (x) mod p) in subframe x will be
selected in accordance with the slot selection function f (x).
To guarantee that each node has at least one slot in which it
can transmit data to any neighbor during each frame, the fol-
lowing constraint should be satisfied:

q ≥ kDmax + 1. (4)

The basic idea of topology-transparent scheduling is to
ensure that different nodes will select different time slots via
the randomness of (1). However, two major problems arise.
First, collisions still occur. More explicitly, for node u and
node v, if fu(i) − fv(i) = 0 (i.e., node u transmits data in
the fu(i)-th slot in the i-th subframe), nodes u and v will
encounter transmission collision. Second, improper setting
of the parameter k may lead to a highly sparse or crowded
scheduling policy, which means that in some cases, there may
be many redundant slots in the time slot selection process,
whereas in other cases, the selected time slots for different
nodes will be concentrated within a short period.

Motivated by these challenges, we improve the slot struc-
ture to enable a learning process to address the collision issue
and reduce the number of redundant slots. As shown in Fig. 2,
in the improved slot structure, each slot is further divided into
three intervals: Beacon, DATA and ACK.

The Beacon interval enables each node to collect the slot
selection information from its one-hop neighbors during the
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FIGURE 2. The improved slot structure.

redundant slot utilization stage. The information collected
from each node includes its own slot index, and this infor-
mation is obtained by receiving broadcasts from neighbors.
Thus, each node can determine the number of redundant
slots through a simple subtraction calculation. If the value of
|f (x)−fneighbor (x)| is equal to ‘1’, this means that there are no
redundant slots. Otherwise, redundant slots exist in the time
slot selection process. The DATA interval is used to transmit
data packets, and the ACK interval is used to acknowledge
the DATA transmission. Moreover, the nodes can observe
the collision state based on the ACK message. If there is no
collision in current slot, node will receive the ACK message.
If a node does not receive ACK before time expires, it means
collision state.

III. IMPROVED PARAMETER SELECTION
In this section, we propose a flexible and robust time slot
selection function that can increase the randomness of slot
selection and thus alleviate the collision problem.

In previous studies, the frame length has been minimized
by adjusting the parameters p and q while setting k to a fixed
value. However, the maximization of the minimum guaran-
teed node throughput, as introduced in [15] and [20], has not
been considered. As mentioned above, if q ≤ p, then any two
nodes may make the same time slot selection at most k times.
To maximize the minimum guaranteed node throughput and
guarantee that each node has at least one unique slot selection
function during each frame, the parameters p and q should be
selected in accordance with constraints (3) and (4).

A. ALGORITHM DESCRIPTION
Consider the transmission u → v,∀u ∈ V ,∀v ∈ Su, with
a one-frame duration. We use the same method discussed
in [13] and [20], in which the optimal throughput does not
depend on the number of subframes q. Thus, we assume
p = q. If any arbitrary pair of nodes have different slot selec-
tion functions, then each node can occupy p slots during one
frame. Therefore, the minimum guaranteed node throughput
can be expressed as

Tmin =
p− kDmax

p2
, (5)

where kDmax is the maximum number of collisions between
any arbitrary pair of nodes during one frame, p − kDmax
is the minimum number of guaranteed successful transmis-
sions for each node during one frame, and p2 is the overall
frame length. According to the discussed in [13], the equa-
tion (3) and (4) should be satisfied. To maximize Tmin as
the parameter selection criterion of p and k . The maximal
minimum guaranteed node throughput (i.e. upper bound) can
be expressed as
max (Tmin (k)) =

2kDmax − kDmax

(2kDmax)
2 , N 1/(k+1)

≤2kDmax,

max (Tmin(k)) =
N 1/(k+1) − kDmax(

N 2/(k+1)
) , N 1/(k+1)>2kDmax.

(6)

Based on the optimal k and p, each node can obtain a
unique time slot selection function for randomly choosing
transmissions. There are pk+1 available functions covered by
GF(x).
Theorem 1: The optimal parameters k and p should satisfy

the following:
p = 2 dk0eDmax, k = dk0e ;
p = N 1/(bk0c+1), k = bk0c ;
p = N 1/(k+1), k < bk0c .

(7)

Proof: To find the maximum value of Tmin, we should
find a p that satisfies ∂Tmin

∂p = 0. This calculation yields

p−3(2kDmax − p) = 0. (8)

Since p ≥ kDmax ≥ 0, we find from (8) that p = 2kDmax.
Tmin increases with increasing p when kDmax ≤ p ≤ 2kDmax
and decreases with increasing p when p ≥ 2kDmax. From (3)
and (4), it should hold that p ≥ max

{
2kDmax,N 1/(k+1)

}
.

We assume that x = k0 is the unique positive root of

2 xDmax = N 1/(x+1). (9)

From (9), we can observe that 2kDmax increases with
increasing k , while N 1/(x+1) decreases with increasing k .
Since k ≥ dk0e, N 1/(k+1) ≤ 2kDmax should be satisfied.
According to (6), max (Tmin (k)) decreases with increasing k .
Therefore, when k ≥ dk0e, this implies that max (Tmin (k)) ≤
max (Tmin (dk0e)).
In addition, since k ≤ bk0c, N 1/(k+1) ≥ 2kDmax should

be satisfied. If bk0c = 0 and k is a non-negative integer, then
max (Tmin (k)) = max (Tmin (0)). Now, let us consider the
scope of bk0c ≥ 1; if 1 ≤ k ≤ k0, it can be derived from
(6) as shown in (10), as shown at the bottom of this previous
page.

max (Tmin (k))−max (Tmin (k − 1)) =

(
N

3k+1
k(k+1) ·

(
N

1
k(k+1) − 1− kDmaxN

1−k
k(k+1) + (k − 1)DmaxN

−1
k

))
(
N

2
k

) (
N

2
k+1

) (10)
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By taking the derivative with respect to k in (10), we obtain

∂
(
N

1
k(k+1) − 1− kDmaxN

1−k
k(k+1) + (k − 1)DmaxN

−1
k

)
∂k

= N
1

k(k+1) · lnN ·
(
−2k − 1

k2(k + 1)2

)
− kDmax · lnN · N

1−k
k(k+1) ·

(
k2 − 2k − 1

k2(k + 1)2

)
−DmaxN

1−k
k(k+1) + DmaxN

−1
k

+ (k − 1)Dmax · lnN · N
−1
k
·

(
1
k2

)
. (11)

For all k ≤ bk0c, it is found that N 1/(k+1) ≥ 2kDmax, and
we have

N
1

k(k+1) · lnN ·
(

2k + 1

k2(k + 1)2

)
+ kDmax · lnN · N

1−k
k(k+1) ·

(
k2 − 2k − 1

k2(k + 1)2

)
> lnN · N

−1
k
· kDmax ·

(
1
k2

)
. (12)

Because N 1−k/k(k+1) > N−1/k is satisfied, by jointly
considering (10) and (11), we find that

∂
(
N 1/k(k+1)−1−kDmaxN 1−k/k(k+1)+(k−1)DmaxN−1/k

)
∂k

< 0.

As discussed above, when 1 ≤ k ≤ k0, max (Tmin (k)) −
max (Tmin (k − 1)) is decreasing. Therefore, if N 1/(k0+1) =

2k0Dmax, max (Tmin (k)) − max (Tmin (k − 1)) ≥ 0 is sat-
isfied. Thus, for all 1 ≤ k ≤ bk0c, it holds that
max (Tmin (k)) ≤ max (Tmin (bk0c)).

Since N 1/(k0+1) = 2k0Dmax and max (Tmin (k)) −
max (Tmin (k − 1)) ≥ 0, considering (10), we have

max (Tmin (k0))−max (Tmin (k0 − 1))

=


(
N

1
k0(k0+1) − 1−

√
1
/
k0

)(
N

1
k0(k0+1) − 1+

√
1
/
k0

)
2N

1
k0(k0+1)

.
(13)

Then, from (10) and (13), N 1/k0(k0+1) − 1 −
√
1
/
k0 ≥ 0

implies that max (Tmin (k0)) − max (Tmin (k0 − 1)) ≥ 0, and
for all k ≤ bk0c, the inequality expression max (Tmin (k)) ≤
max (Tmin (bk0c)) is satisfied.
To maximize the minimum guaranteed node throughput,

we must select the optimal values of k and p under the given
N and Dmax. Based on the above analysis, the optimal k and
p can be determined as shown in Algorithm 1:

Thus, we find that the optimal parameters k and p are
determined by N andDmax instead of by the specific network
topology.

Algorithm 1 Algorithm for Determining the Optimal
Parameters k and p
1: Obtain k0 by using (9).

2: if N 1/k0(k0+1) − 1−
√
1
/
k0 ≥ 0 then

3: Determine k in the scope of bk0c ≤ k ≤ dk0e from (6).
4: else
5: Find k in the scope of k ≤ bk0c and k ≤ dk0e.
6: end if
7: Calculate the optimal number of slots p by using the

optimal k .

B. THROUGHPUT ANALYSIS
In this subsection, we analyze the normalized average node
throughput that is guaranteed by the proposed time slot selec-
tion algorithm.

The average probability that node u successfully chooses at
least one open slot during one subframe can be formulated as

pu,average =
1

Dmax
. (14)

The probability that node u collides with at least one inter-
fering node v or other neighbor of node v of Sv ∪ {v} − {u} in
slot set GFu(x) can be calculated as

pu,collision(l) =
l∏

k=1

pk − k
pk+1 − k

s.t. l ≤ min(Dmax, pk − 1), (15)

where l is the number of interfering nodes that collide with
node u in the same slot.

The probability that node u does not collide with the other
Dmax − l interfering nodes in slot set GFu(x) can be calcu-
lated as

pu,collisionfree(Dmax − l) =
Dmax−l∏
k=1

pk+1 − pk − k + 1
pk+1 − k − l

s.t. l≤min(Dmax, pk−1). (16)

By jointly considering (14) and (15), the probability that
node u collides with at least one interfering node in slot set
GFu(x) is found to be

Pu =
D∑
l=1

(
Dmax
l

)
·

(
l∏

k=1

pk − k
pk+1 − k

)

·

(Dmax−l∏
k=1

pk+1 − pk − k + 1
pk+1 − k − l

)
s.t. l ≤ min(Dmax, pk − 1),

D = min(Dmax, pk − 1). (17)

Based on (16), the normalized average node throughput is

T =
1
N

N∑
i=1

1
p2
·

(
p (n− 2)

n
·

(
1− Piu

)
+

(
p · Piu + I

i
)
· pu,average ·

(
n− 2
n

))
, (18)
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where I is the number of redundant slots and n is the number
of minislots.

Considering the issues of collision and redundant slots in
the network, we improve upon the conventional topology-
transparent scheduling policy by introducing the proposed
parameter selection scheme and collision probability calcu-
lation. The benefit is that the enhanced policy can be used to
adapt to the current requirements of the communication envi-
ronment. However, the inherent problem of the conventional
scheduling policy is not completely resolved; highly sparse
and conflicting situations still exist. In the following section,
a reinforcement learning model is introduced to address this
issue.

IV. REINFORCEMENT LEARNING FOR
TOPOLOGY-TRANSPARENT SCHEDULING
A. FRAMEWORK OF THE REINFORCEMENT
LEARNING MODEL
Reinforcement learning (RL) is usually adopted to solve
problems in which a learning agent interacts with its envi-
ronment to achieve goals related to the state of the envi-
ronment [22]–[26]. Here, we propose an RL model to allow
nodes to optimally select slots while utilizing more redundant
slots. The RL model is composed of two stages. First, we use
the temporal difference (TD) learning approach to select the
collision-free slots in one subframe. In this stage, we build
a tree-based structure to search for the maximum expected
return. Second, we use the experience replay approach to
further optimize the slot utilization in each subframe. In this
stage, we consider the expected return obtained in the first
stage as a fixed target. Then, we find a slot selection vector
that minimizes the sum-squared error between the approxi-
mate and real values. Several definitions related to the model
are given as follows.

1) STATE
We define St as the state observed by node i at time t . We use
S = {S1, . . . , St } to denote the countable non-empty set
of the state space, St ∈ S. The state transition from St to
St+1 depends on the corresponding action, and accordingly,
the next state St+1 can be observed when the next action
occurs.

2) REWARD
We use r = {r1, . . . , rt } to denote the countable non-empty
set of the reward space. rt is the reward associated with the
(t − 1)-th state transition. The feedback information is stored
in minislot 0. If node i selects a slot with no collision at
time t , then the reward value is ‘1’. Otherwise, the reward
value is ‘−1’. To preserve the throughput performance, it is
desirable for the time slots to be fully utilized. In the second
stage, the negative state is inefficiency slot utilization caused
by highly sparse scheduling policy rather than transmission
failure. It also can be used to keep the slot scheduling pol-
icy working. Therefore, if node i senses that there are no

redundant slots at time t , then the reward value is increased
to ‘100’. Otherwise, the reward value remains equal to ‘1’.

3) ACTION
We define Ai,t as the action taken by node i at time t . We use
A = {Ai,1, . . . ,Ai,t } to denote the countable non-empty set of
the action space.

4) ACTION-VALUE FUNCTION
The action-value function Q(St ,At ) is associated with the
action At and the state St at time t . It is equivalent to the
average node throughput as defined in Section II.

B. TEMPORAL DIFFERENCE LEARNING APPROACH FOR
COLLISION AVOIDANCE
In the reinforcement learning framework introduced above,
each node interacts with the subframe environment. In each
discrete time step t , a node observes the current state St ,
takes an action At , and obtains a feedback reward rt . During
the slot selection phase, each node uses a unique time slot
selection function f (x) to obtain a slot in each subframe.
If fu(x)−fv(x) = 0, this means that the slot selection functions
of node u and its interfering neighboring node v have the same
root. In this case, it is desirable for these interfering neighbor-
ing nodes to select different, collision-free slots in the same
subframe. We use a temporal difference learning algorithm
to evaluate a value function via minimax search [27]–[31].
Fig. 3 shows the search structure. Each child node has a
certain expected return value. The state transition from St to
St+1 has only two possible states: collision or collision-free.

FIGURE 3. Expected slot selection state search structure.

If we assume that node i takes action At to select its
slot in accordance with the slot selection function fi(St ) for
the current subframe state St , then node i receives a scalar

reward rt =
p−1∑
k=0

γ krt+k , which is the total accumulated return

from time step t with a discount factor of γ (γ ∈ (0, 1]).
The goal of the node is to maximize the expected return
from each state St . The optimal value function Q∗(S,A) =
max

π=greedy
Q(S,A) yields the maximum action-value function

for state S and action A. The expected reward from each state
is given by

J∗(S) = E [rt |St = S,A] , t ∈ [0, p− 1]. (19)
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A naive means of achieving optimal slot selection behavior
in the tree structure is to list all behaviors and then identify the
one that results in the highest possible value for each initial
state. However, because the state and action spaces could be
very large and very high dimensional in the forward-looking
search process, such a policy is not viable. To circumvent this
problem, we compute an approximation function to estimate
the value function. More explicitly, a slot selection vector w
that minimizes the mean square error between the approxi-
mate value Ĵ (S) and the real value J∗(S) should be found.

Suppose that S1, . . . , St , . . . , Sp−1 is a sequence of slot
selection states. For a given slot selection vector w, we define
the temporal difference error of the subframe state transition
from St to St+1 as

dt = Ĵ (St+1,w)− Ĵ (St ,w). (20)

Note that dt quantizes the difference between the reward
predicted by Ĵ (·,w) in state St+1 and the reward predicted by
Ĵ (·,w) in state St . The real value function J∗ has the property

ESt+1|St
[
J∗(St+1)− J∗(St )

]
= 0. (21)

This means that if Ĵ (·,w) is a proper approximation of J∗,
then (21) should be satisfied. In other words, node i select a
conflict-free slot in states St and St+1.

For the approximation of a linear function, the establish-
ment of a tabular approach can be a viable choice. We can use
the feature value to indicate the current slot state. If node i
selects a conflict-free slot in state St , then the feature value
will be equal to ‘1’. Otherwise, the feature value will be equal
to ‘−1’. The ideal tabular features can be expressed as

x(S) =

 1(S = s0)
...

1(S = sp−1)

. (22)

The effect of the slot selection vector w on each individual
state can be expressed as

Ĵ (St ,w) =

 1(S = s0)
...

1(S = sp−1)


 w0

...

wp−1

. (23)

In the above discussion, we store the expected reward
values in a feature value table. Similarly, we can apply super-
vised learning to build a set of real values as the ‘training data’
obtained from the time slot selection function. This training
set can be written as

J∗(S) = {< S1, r2 + γ Ĵ (S2,w) >,< S2, r3 + γ Ĵ (S3,w) >,

. . . , < Sp−2, rp−1 + γ Ĵ (Sp−1,w) >}. (24)

The slot selection vector w can be updated by using the
forward-looking linear temporal difference learning algo-
rithm:

1w = α(rt+1 + γ Ĵ (St+1,w)− Ĵ (St ,w))∇wĴ (St ,w)

= α(rt+1 + γ Ĵ (St+1,w)− Ĵ (St ,w))x(S), (25)

Algorithm 2 Algorithm for Collision Avoidance Based on
Temporal Difference (TD) Learning
1: // Initialization
2: Each node initializes its slot selection vector w.
3: Each node executes an initial action A0 in accordance

with the time slot selection function f (x)S0 . Each node
observes the initial state S0 and reward r0.

4: // Learning the collision avoidance rule
5: for i = 1 to N do
6: for t = 0 to p− 1 do
7: if 1w 6= 0 then
8: Node i determines its current action in accordance

with the slot selection vector w.
9: else
10: Node i executes its current action to select a slot.
11: end if
12: end for
13: end for
14: Node i selects a slot based on the updated slot selection

vector w.

where rt+1+γ Ĵ (St+1,w) is a biased sample of the real value
set J∗ and α is a step-size parameter that specifies the update
speed of the slot selection vector w.

Equation (25) is used to update the vector w successively
over time to obtain better predictions of the expected reward
Ĵ (·,w). For a linear Ĵ (·,w), it has been proven that w can con-
verge to a near-optimal solution if the slot selection actions At
are independent of the slot selection vector w [27].
Each node selects its slot in accordance with the slot

selection vector w, which eventually converges to a collision-
avoiding solution. The detailed operations for obtaining w
are summarized in Algorithm 2. In the initialization phase,
each node initializes its slot selection vector w and then
observes the resultant state S0 and reward r0, after which the
initial action A0 is executed in accordance with the time slot
selection function f (x)S0 . During the learning phase, node i
successively updates its slot selection vector w. If the current
slot selection action allows the expected reward value to be
reached, it will be executed by node i. Otherwise, node i
should determine its current slot selection action in accor-
dance with the updated slot selection vector w.

C. STOCHASTIC GRADIENT DESCENT WITH EXPERIENCE
REPLAY FOR UTILIZING REDUNDANT SLOTS
The conventional topology-transparent scheduling policy
described in Section II helps to reduce transmission con-
flicts. However, it is a highly sparse scheduling policy
with many redundant slots. To enable full utilization of
these redundant slots, we use a stochastic gradient descent
approach with experience replay to improve the efficiency
and stability of the topology-transparent scheduling pol-
icy. Experience replay provides a mechanism for the dis-
tribution of reward prediction samples toward rewarding
actions [32]–[36]. A higher reward in each subframe is
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required to avoid sparse scheduling. Unlike in the above dis-
cussion, the state St here represents the number of redundant
slots in subframe t, t ∈ [0, p− 1].
Provided that the approximate collision avoidance value

Ĵ (S) well approximates the real value J∗(S), we obtain a fixed
state value function pair < St , J∗(St ) > without utilizing
redundant slots. The main idea of this approach is to store
state transitions in a replay memory M = {< S1, J∗(S1) >,
< S2, J∗(S2) >, . . . , < Sq−1, J∗(Sq−1) >} and then apply
stochastic gradient descent updates to sample random tran-
sitions from this memory. In such a sampling of transitions
from a fixed replay memory, rewarding target states will be
oversampled and thus will be learned from more frequently.
If we sample sequences directly from the dynamic state value
function pairs, then the update results will become unstable.
Letω denote the redundant slot elimination vector. By resam-
pling the previous fixed experience values and randomly
utilizing the redundant slots over t subframes, an iterative
state value function replay computation is performed that
exploits newly discovered states based on reward prediction.
This approach can be viewed as a simplified subframe-by-
subframe prioritized replay process.

Let J (S,A;ω) be a state value function with the redundant
slot elimination vector ω. The mean square error (MSE)
between the real value Ĵrs(S) and the fixed value J∗rs(S) can
be optimized by iteratively minimizing a sequence of i-th loss
functions, which can be calculated as

LSi(ωi) = ES,A,r,S ′∼M

[
(r + γ max

A′
J∗rs(S

′,A′;ω−i )

− Ĵrs(S,A;ωi))2
]
. (26)

where S ′ is the target state which is a value of expectation.
A′ is the target slot selection action which is a value of expec-
tation. ω−i is the redundant slot elimination vector which
corresponding to the target state.

Applying stochastic gradient descent to update the redun-
dant slot elimination vector ω yields

1ω = α(J∗rs(St )− Ĵrs(St , ω))∇ωĴrs(St , ω), (27)

where (J∗rs(St )− Ĵrs(St , ω)) is the prediction error between the
fixed and real values and ∇ωĴrs(St , ω) is the gradient of the
real state value function.

The target redundant slot elimination vector ω satisfies

LS(ω) =
p−1∑
t=1

(J∗rs(St )− Ĵrs(St , ω))
2

= EM
[
(J∗rs(St )− Ĵrs(St , ω))

2
]
. (28)

The above analysis suggests that each node should find a
redundant slot elimination vector ω that minimizes the sum-
squared error between the real value Ĵrs(S) and the fixed
value J∗rs(S). In the initialization phase, each node first initial-
izes its replay memory M and its redundant slot elimination
vector ω. Next, each node observes the resultant state S0 and

Algorithm 3 Algorithm for Utilizing Redundant Slots Based
on Experience Replay
1: // Initialization
2: Each node initializes its replay memoryM and its redun-

dant slot elimination vector ω.
3: Each node executes an initial action A0 in accordance

with the time slot selection function f (x)S0 and observes
the resultant state S0 and reward r0.

4: // Learning the rule for utilizing redundant slots
5: for i = 1 to N do
6: while (ωπ = argmin

ω
LS(ω)) do

7: Node i stores the state transitions in the replay mem-
ory M .

8: for t = 0 to p− 1 do
9: Node i samples the current state value function pair

< St , J∗(St ) > from M .
10: Node i optimizes the MSE between the current real

value and the fixed value.
11: Node i updates the redundant slot elimination vector

ω via (28).
12: end for
13: Node i periodically updates the replay memoryM .
14: end while
15: end for
16: Node i selects a slot based on the updated redundant slot

elimination vector ω.

reward r0(the state and reward was observed when nodes take
initial slot selection action A0), based on which the time slot
selection function f (x)S0 is computed to specify the initial
action A0, and the triggered state transition is recorded in
the replay memoryM . During the learning phase, node i first
samples a state value function pair < St , J∗(St ) > from the
replay memory M . Next, node i optimizes the MSE between
the sampled fixed value and the current real value, after which
the redundant slot elimination vector ω is updated by using
a variant of stochastic gradient descent. When ω converges
to the least-square solution ωπ = argmin

ω
LS(ω), node i can

select a slot based on the updated result of ω (i.e., π is the
slot selection policy corresponding to ω). Throughout the
entire process, node i should periodically update the replay
memory M . The process described above is summarized in
Algorithm 3.

V. EVALUATION
We first compare the proposed hybrid topology-transparent
scheduling policy with the algorithm proposed by
Ju and Li [13] and the algorithm proposed by Liu et al. [19]
in terms of the normalized average node throughput. We also
compare the performance of the proposed polynomial-based
method with that of the method based on the reinforcement
learning model. Without loss of generality, we fix the number
of nodes toN = 200. Themaximumnode degree is initialized
to 1 and is then incremented by 5 until it reaches 96. A higher
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FIGURE 4. The achieved normalized average node throughput versus the
maximum node degree.

node degree indicates that the network is denser and that more
nodes will encounter more severe conflicts. The two learning
stages are simulated in MATLAB simulation platforms.

Fig. 4 presents the performance comparison in terms of
the achieved normalized average node throughput versus
the maximum node degree. The green line represents the
improved topology-transparent scheduling policy without
the learning model. The red line represents the improved
topology-transparent scheduling policy with the reinforce-
ment learning model. It can be observed that 1) the proposed
learning-based approach achieves the best throughput per-
formance; 2) the performance of the improved scheduling
approach without learning is close to that of Liu’s algorithm
when the maximum node degree exceeds 40, whereas the
performance gap widens when the maximum node degree
increases because the performance of the latter algorithm
depends on the numbers of neighbors and reservation packets,
with more neighbors resulting in more severe interference;
and 3) the performance gap for the improved scheduling
approach with and without the RL model is independent of
the maximum node degree because the learning policy relies
on the updated optimal slot selection behavior based on the
proposed approach without learning.

Fig. 5 shows the variation of the system throughput with
the number of nodes and the maximum node degree under the
RL model. The system throughput dramatically changes with
both the number of nodes and the maximum node degree.
With the RL model, the system throughput is significantly
enhanced. High-level performance is maintained in terms of
the system throughput. This finding can be explained as fol-
lows: 1) the sample space becomes larger as the total number
of nodes and the maximum node degree increase, and 2) the
nodes have accumulated sufficient historical observations and
decision experience with which to train the model.

Fig. 6 presents the cumulative distribution functions
(CDFs) of the system throughput during the different learning

FIGURE 5. Variation of the system throughput with both the number of
nodes and the maximum node degree under the RL model.

FIGURE 6. Convergence performance in different stages of the
reinforcement learning algorithm.

stages. This figure shows that the learning model exceeds
the two learning stages in terms of throughput. In addition,
the convergence performance of the redundant slot utilization
stage is higher than that of the collision avoidance stage.
Specifically, the convergence of the RLmodel exhibits a grad-
ual performance improvement. This behavior is explained by
the following three considerations: 1) during the collision
avoidance stage, the temporal difference learning approach
helps to reduce transmission collisions, but redundant slots
are not eliminated; 2) during the redundant slot utilization
stage, the experience replay approach helps to optimize slot
utilization based on the previous stage; and 3) the RL model
further improves the convergence performance by using real
experience to update the scheduling policy.

VI. CONCLUSION
In this paper, we present a hybrid topology-transparent
scheduling policy that combines the advantages of polyno-
mial based schemes with those of RL-model-based schemes.
The presented policy has two main characteristics. First,
by employing the TD learning approach, it allows time slots
to be allocated to individual nodes in a distributed manner
while avoiding collisions. Second, by employing the RL
model approach, it eliminates redundant time slots and thus
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increases the overall utilization of time slots. The proposed
learning approaches are trained via self-play reinforcement
learning without incurring communication overhead for the
exchange of reservation information exchange and therefore
are suitable for self-organized wireless networks, especially
for next-generation large-scale cognitive wireless networks.
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