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ABSTRACT Traditional transmission line ratings are limited by a set of fixed conservative weather assump-
tions that are also known as static thermal rating (STR). Owing to STR, new line corridors are continuously
required to address increasing electricity demands while minimizing the curtailment of renewable energy
sources (RES). However, the expansion of an electricity network is expansive, long, and limited due to
the scarcity in land and space. To overcome this issue, researchers have proposed a dynamic thermal
rating (DTR) system that can increase the capacity of existing transmission lines. Research has shown that
actual line ratings are higher than STR most of the time. The potential of using the DTR system to increase
the reliability of power systems is therefore significant. Almost every country has begun the process of
increasing the integration of RES, and consequently, the DTR system has become increasingly important.
Exploring and reviewing critical studies on the DTR system are thus beneficial for researchers who are
interested in the developments of DTR technology. This review paper begins by comparing the two main
DTR system standards. Then, monitoring technologies of the DTR system are reviewed. Notable research
on the reliability impacts of the DTR system on electrical networks are surveyed. Interactions with wind
power and other smart grid technologies are also examined, and the concept of power system reliability is
briefly discussed.

INDEX TERMS Dynamic thermal rating systems, standards, power system, reliability, wind power, weather.

I. INTRODUCTION
The ever-increasing level of greenhouse gas emissions is a
current worldwide issue [1]–[7]. Consequently, many coun-
tries committed themselves to the United Nations Framework
Convention on Climate Change (NFCCC) in 1992 to reduce
the amount of greenhouse gases. This international treaty,
which is now known as the Kyoto Protocol, was extended
in 1997 and represents a hallmark of international collabo-
ration because it is supported by nearly every country. An
important means to achieve the aims of the Kyoto Protocol is
to gradually eliminate the use of fossil fuel and adopt renew-
able energy sources (RES) instead. In this regard, the Euro-
pean Commission is striving to fulfil at least 20% of its total
energy needs with renewables by 2020, and these figures have

been revised to 27% by 2030. A large portion of renewables is
expected to be contributed by wind energy. Although the new
revolutionary energy policy is commendable, most existing
power networks need to be strengthened and expanded before
they can accommodate RES. In addition to this obstacle in
RES integration, the longer commissioning time of electrical
networks than that of RES-based power plants is another issue
to be considered. As a result, the capacity of most RES-
based generators, such as wind farms, has to be curtailed.
From the perspective of wind farm owners, this problem can
be overcome with new wind turbine technologies [8]–[11],
including the addition of a control system that regulates reac-
tive power and voltage dips, which are important to power
system operation and the amount of wind power that can be
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integrated. Nonetheless, the effectiveness of this solution is
limited by the insufficient capacity of electrical networks.

The strong consensus to reduce our reliance on con-
ventional fossil fuel generators is also due to the higher
cost of operating fossil fuel generators than wind turbines.
To achieve high integration of wind energy, which has been
identified as a major driver for grid development in Europe,
the European transmission network has devised a decade-
long development plan to enhance electrical networks. To
date, this pan-European project has saved approximately
30–100 TWh of energy spillage stemming from renewable
sources, reducing it to less than 1% of the total energy
supply [12]. The promising result of this European project
reiterates the indirect influence of grid development on the
worldwide effort to reduce greenhouse gas emissions.

However, high population density growth, intensive usage
of lands for various developments and increased rejection
rate of new electrical line projects indicate that only little
space is available for the construction of new transmission
and distribution corridors. The relatively new movement of
‘‘smart grid’’ offers the possibility of using new technologies
to alleviate this issue. The objective of all these technologies,
regardless of the choice, is to always relieve network con-
gestion so that RES-based generators can participate in the
existing power generation portfolio. One of these promising
technologies is the dynamic thermal rating (DTR) system that
can increase the capacity of existing transmission lines. Its
total installation cost, including both hardware and software,
is only a fraction of the total cost of most traditional meth-
ods [13]. Moreover, its short implementation time enables
rapid connection of wind farms so that they remain idle only
for a short period [14]. The DTR system can potentially
avoid or postpone the construction of new lines.

The term ‘‘rating’’ in the DTR system refers to the maxi-
mum allowable conductor current that raises the line tempera-
ture without infringing ground clearance and causing the loss
of conductor tensile strength due to annealing. Traditionally,
electrical lines were given fixed and low rating values known
as the static thermal rating (STR). The implementation of
STR underestimates the full potential of line capacity because
it is calculated based on highly conservative weather assump-
tions, such as low wind speed (0.6 m/s), full solar radiation
(1,000 w/m2) and high ambient temperature (40◦C) [15].
However, actual weather conditions fluctuate continuously
and are usually highly favourable, thereby allowing con-
ductors to experience more cooling than what is expected.
Thus, actual line ratings are usually much higher than STR,
and current transmission line ratings can be increased sig-
nificantly. Considering temporal atmospheric conditions, line
ratings vary dynamically throughout the day, hence the term
DTR system [16]. Owing to the advancement of sensors,
communication systems and the Internet of Things in the last
two decades, the DTR system can now determine line thermal
ratings in real time or at specific time intervals [17].

Line rating is considerably affected by the wind cooling
effect [18]. Several early studies have shown that the DTR

system can increase the line capacity by 10%–30%, with 50%
being possible in windy areas [19]–[22]. In conditions of high
wind speed and high incident wind angle (close to 90◦) with
the line, the line rating increases and vice versa [23]–[26],
indicating a strong correlation between wind power and line
rating [27]. Thus, wind farm integration projects often benefit
from the utilisation of the DTR system [28], [29]. Line rating
is also determined based on the hottest section of the line,
which is known as the critical span and is normally located in
shielded areas exposed tominimal wind [30], [31]. Therefore,
placing DTR sensors on critical spans is sufficient for the
accurate estimation of the line rating [32]–[34]. This condi-
tion can ensure maximum line usage and keep the conductor
temperature within its design limit. The installation of sensors
on all line spans, although ideal for avoiding the need to esti-
mate the line rating, is unnecessary and impossible due to the
excessive costs to be incurred. On the basis of the mechanism
in which the line rating is defined, line sag and temperature
are the two aspects that reflect the line conditions. Hence,
DTR sensors are typically designed for the direct measure-
ment of conductor sag or temperature or other parameters
that can be utilised to determine both. Many common DTR
sensors work by monitoring the weather, line tension, sag and
conductor temperature [35], [36].

The discussion above indicates that the capacity of existing
transmission networks can be enhanced with the DTR system
for integrating wind energy. The DTR system is also advan-
tageous because the expansion of a transmission network can
be delayed or avoided completely. This feature is particu-
larly important in cases where land and space restrictions
or regulatory requirements inhibit network expansion. This
situation and the fact that nearly every country has embarked
on a mission to increase the integration of RES make the role
of the DTR system more important than ever and justify its
increasing popularity. The sensory technology of the DTR
system has recently received a massive upgrade, and its cost
has been reduced due to the large-scale and efficient man-
ufacturing process. Thus, exploring and reviewing critical
studies on the DTR system are beneficial for researchers who
are interested in the developments of DTR technology. The
novelty of this review is ascribed to the following: (1) reviews
and comparisons of the two main international standards of
the DTR system; (2) reviews of all major DTR system moni-
toring technologies; and (3) reviews of notable case studies
and research publications that elucidate the impacts of the
DTR system on the reliability of power networks.

II. DTR SYSTEM
The real-time rating values of components are generally
applicable to power lines, cables and power transformers.
However, this work focused on the application of the DTR
system to overhead lines (OHL) because these lines pro-
vide the most significant form of DTR application. Three
standards can be used to calculate OHL capacity in real
time. These three standards are provided by the Interna-
tional Council on Large Electric Systems (CIGRE) [37],
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FIGURE 1. Heat balance diagram of a conductor.

International Electrochemical Commission (IEC) [38] and
Institute of Electrical and Electronics Engineers (IEEE) [16].
Considering that USA utilises the IEEE standard 738 for
determining line ratings [39] and that the CIGRE standard is
widely adopted elsewhere [14], [15], only IEEE and CIGRE
standards were reviewed in this work.

In both standards, OHL ratings are determined according
to the first law of thermodynamics (Fig. 1) as follows:

Qj + Qs = Qc + Qr (1)

where Qj is conductor joule heating due to current flow, Qs is
solar radiation heating, Qc is convective cooling due to wind
blow and Qr is radiative cooling.

The differences between the two standards in describing
all of the elements in (1) are given in Table 1. The definitions
of all the additional variables are provided in Appendix.
Notably, the IEEE standard 738 provides a highly detailed
modelling of line rating calculations on the basis of weather
conditions. In the IEEE standard, the final line rating is
determined by consolidating all heating and cooling elements
as follows:

Iac =

√
Qc + Qr − Qs

R(Tc)
(2)

In the CIGRE standard, depending on whether the con-
ductor is homogeneous or of the ACSR type, line ratings are
determined according to (3) and (4), respectively.

Idc =

√
Qc + Qr − Qs

KjRdc [1+ αk (Tav − 20)]
(3)

Idc =

√
Qc + Qr − Qs

Rdc [1+ αk (Tav − 20)]
(4)

A. IEEE AND CIGRE STANDARDS
IEEE and CIGRE standards consider joule heating for
homogenous conductors. The CIGRE standard also considers
the ACSR conductor, whereas the IEEE standard does not
(Table 1). In the CIGRE standard, conductor skin effects
are adjusted for ferrous conductors, and this normally leads
to a reduction in the overall line rating by about 0%–3%
depending on the number of wire layers [40].

Heating from solar radiation is affected by the position
of the sun. The three major components that define the

position of the sun are solar declination (height of the sun
depending on the day of the year), hour angle (position of
the sun depending on the time of the day) and line latitude.
In the original version of the IEEE standard 738 created
before 2007 [41], solar heating is determined according to
fixed tabular values. By contrast, the CIGRE standard offers
a highly flexible solar heating calculation because it uses
formulas. However, in the revised version of the IEEE stan-
dard 738 [16], the tabular values are replaced with formulas
as well, and this update makes the solar heating calculations
offered by the IEEE standard as competitive as those of the
CIGRE standard. The IEEE standard considers direct solar
radiation only. Two types of atmospheric conditions are also
considered, and they are grouped into either industrial or clear
atmospheres. In addition to direct solar radiation, the CIGRE
standard also considers reflected and defused radiations but
without the distinction for atmospheric conditions. A unique
feature of the CIGRE standard is that it considers differ-
ent types of ground surfaces when calculating the reflected
radiation. Both standards agree that solar intensity should be
increased as the altitude above sea level increases. With all
factors considered, the solar heating provided by the CIGRE
standard is generally 10%–15% higher than that provided by
the IEEE standard 738 [40].

For convective cooling, IEEE and CIGRE standards have
distinct formulas for natural (due to wind blowing) and
forced (no wind condition) convections. The calculation for
radiative cooling is simple, with only one formula utilised
in both standards. With regard to calculation, no significant
differences can be observed in the cooling elements of the
two standards [40]. Table 1 presents the details of these
formulas.

B. DTR SYSTEM MONITORING DEVICES
The DTR system is implemented with a direct or indirect
measurement system. A direct measurement system mea-
sures weather conditions or conductor temperatures, which
are inputs required by IEEE or CIRGE standards. Therefore,
it is the simplest system to use. If a direct measurement
system is implemented on a continuous basis, real-time line
ratings can be obtained and updated periodically, typically
for 5 min to an hour [42], [43]. The collected weather data
are useful for forecasting future weather conditions and line
ratings [44], [45]. Many studies have reported the successful
usage of weather data for improving line ratings in various
countries, such as the USA [19], [21], [43], [46], Korea [47],
Spain [48], Italy [49], Germany [50], [51], Austria [52] and
the UK [53]–[56]. Fig. 2a shows an example of a weather
monitoring station.

Moreover, conductor temperature can bemeasured, and the
most common commercial sensor for this task is the power
donut (Fig. 2b) [57]. Apart from temperature, conductor sag
and tension can also be measured by the power donut on the
basis of conductor inclination. The device is self-powered by
feeding off the electromagnetic field emitted by the energized
conductor. It can be easily installed by clamping onto the line,
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TABLE 1. Comparison of the equations between IEEE and CIGRE standards.
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FIGURE 2. Various dynamic thermal rating (DTR) sensors. (a) Weather
monitoring station; (b) power donut; (c) FMC-T6; (d) temperature
monitoring system; (e) overhead transmission line monitoring device
(OTLM); (f) Ritherm; (g) CAT-1; and (h) sagometer.

and its applications have been tested and reported [58]–[60].
Other similar devices are FMC-T6 (Fig. 2c) [61], temperature
monitoring system (Fig. 2d) [62], overhead transmission line
monitoring device (OTLM) (Fig. 2e) [63] and easy moni-
toring overhead (EMO) transmission line sensors [64]. Sen-
sors based on revolutionary techniques, such as the surface
acoustic wave-based Ritherm sensor (Fig. 2f) [65], time-
domain reflectometry-based fiberoptic distributed tempera-
ture sensor [66] and radio frequency cavity resonance-based
sensors [67] from Isfahan University of Technology and the
University of Manitoba, have also been utilised to measure
conductor temperature.

In an indirect measurement system, parameters that reflect
the conductor temperature, such as line tension and sag, are
measured and used to estimate the line ratings. The ten-
sion monitoring system is one of the most common indirect

measurement methods. This system operates by mounting a
load cell in series with the insulator strings. Line tension is a
good indicator to be measured because it has a direct relation-
ship with line sag, which is further affected by conductor tem-
perature due to current flow. Hence, determining the line ten-
sion indirectly indicates the line rating as well [34]. A popular
commercial tension monitoring system currently available on
the market is the CAT-1 system (Fig. 2g) [33], [68], [69].
A similar tension monitoring system has also been developed
by the University of Basque Country [70]. Calculating the
line rating based on line tension has also received consid-
erable research interest [71]–[75] and has been applied in
various countries, such as the USA [76], New Zealand [77],
Netherlands [72], Brazil [60], Australia [78], China [79] and
Spain [79].

An alternative to tension measurement is to monitor line
sag by using a sagometer (Fig. 2h) [80]. The advantage
of determining line sag is that it can be used directly
as a reference to avoid ground clearance infringement
imposed by most of the regulators. The line sag method is
accepted worldwide, especially in the USA [81], [82] and
Belgium [83]–[86]. Apart from a sagometer, the elec-
tromagnetic field-based sensors developed by Promethean
Devices [87] can also be used. This type of sensor measures
the three-phase AC magnetic fields radiated from the line
conductor, which are then used to determine line sag and
temperature [88].

III. RELIABILITY EFFECTS OF THE DTR SYSTEM ON
POWER NETWORKS
Studies on the reliability effects of the DTR system on power
networks are reviewed in this section. The basic principles
of power system reliability assessment are explained. Several
popular methods in power system reliability analysis are also
briefly reviewed. Then, current research developments in the
academe and industry are reviewed and explained in detail.

A. BASIC PRINCIPLES OF POWER SYSTEM
RELIABILITY ASSESSMENTS
Evaluation of the reliability of a power system involves deter-
mining the system’s capacity to generate and transport suffi-
cient power and thereby satisfy the power demand [89], [90].
The two main approaches for this task are analytical and
Monte Carlo simulation (MCS) methods [91], [92]. The ana-
lytical method depends on mathematical models, calcula-
tions and the concept of probabilities and frequencies for
the evaluation of power system reliability [93]. By con-
trast, MCS simulates random behaviours of power sys-
tems, and each simulation is considered an experiment in
which the reliability of the power systems is assessed. Then,
average reliability indices are obtained through reiterated
experiments and aggregation of the reliability indices in
each experiment. Despite these analytical methods, the
advancement of computers has allowed the wide application
ofMCS, which has been subsequently proven and accepted to
be a robust technique [94]–[97], consequently leading to an
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FIGURE 3. Three hierarchical levels of the power system

accurate evaluation of reliability indices because MCS can
simulate actual power system operations [98]–[100].

The major obstacle in executing MCS is the expensive
computational requirements due to the large size of power
systems [101]. Even the most advanced computer setups
cannot simulate every possible scenario of power systems
within a reasonable timeframe. Consequently, the power sys-
tem analysis, as shown in Fig. 3, is divided into three subsys-
tems or hierarchical levels (HLs) [102]. The first level (HL I)
is only concerned with the capability of the generation system
to produce adequate amount of power. At this stage, the
transmission and distribution networks are considered fully
reliable. The second level (HL II) extendsHL I by considering
the reliability of the transmission networks. In many cases,
HL II is also known as the composite power system analysis.
In HL II, the capacity of the transmission network is finite,
and the optimal power flow, either AC or DC, is executed to
determine power flows. The electricity transportation capa-
bility of the system is then analysed. In the third and final level
(HL III), the distribution network, along with all the previous
levels, is considered. Regardless of which HL is performed,
the ultimate goal of all the HLs is to assess the capability
of the power systems to satisfy customer load demands [89].
Power system reliability analysis should not be confused with
security analysis, as the latter is the capability of the power
systems to regain a state of equilibrium after being subjected
to physical disturbances [103], [104].

Performing the reliability evaluation of the power sys-
tems requires various methods, the categorisation of which
is shown in Fig. 4. The figure shows that the power system
reliability assessment is performed using either the determin-
istic or probabilistic technique [89]. Furthermore, both of the
previously mentioned analytical method and MCS are classi-
fied under the probabilistic technique. Only the probabilistic
technique is further discussed in this study because it has
been widely agreed to be more useful than the deterministic
technique [105]–[108].

The analytical method is composed of the enu-
meration, population-based and approximation methods.

The enumeration model is normally combined with the
power system load model to form a risk model and it can
be performed in two approaches. The first approach is the
loss-of-load-expectation method, which determines the prob-
ability of power system loads that exceed the generation
capacity. The second approach is the frequency-and-duration
method [109], [110], which covers probability, as well as the
rate and duration at which the power system components are
in the outage mode. The population-based method employs
evolutionary programming, such as the genetic algorithm,
particle swarm optimisation and intelligent state space prun-
ing to optimise and facilitate the calculation of reliability
indices [111], [112]. The advantage of the evolutionary algo-
rithm is that it can discover all or majority of the power
system states to approximate a good calculation of the relia-
bility indices [113]. Notable studies that have demonstrated
this advantage can be found in [114]–[121]. Finally, the
approximate method offers a new approach by using the
continuous probability distribution function to approximate
the reliability indices [122]. Notwithstanding the benefits of
the analytical method, its main limitation is the escalation
of the modelling complexity as the number of power system
components increases.

The MCS imitates the actual random behaviour of power
systems, during which the system component failures are
simulated through the use of random variables and suitable
probability distributions. The main objective of MCS is to
simulate the behaviour of power systems multiple times
until the average reliability indices are obtained. The MCS
can also simulate large and complicated power systems,
rendering the analytical method ineffective. The analytical
method requires a large number of contingency enumerations
before obtaining a reduced representative model. The MCS
avoids this problem by sampling directly the characteristics
of the system states. The MCS is conducted either in sequen-
tial or non-sequential mode depending on the approach
the system states are sampled [94], [123]–[126]. Given the
chronological requirements in sequential MCS, it normally
requires longer simulation time than the non-sequentialMCS.
Pseudo- [127], [128] and quasi-sequential [129], [130] MCS
do not belong to either groups. Generally, all MCS are per-
formed at a fixed number of iterations or until the conver-
gence criteria are achieved [89], [131].

B. CURRENT RESEARCH DEVELOPMENT
This section reviews notable research works that focus on the
reliability effect of the DTR system towards the electrical net-
work.

1) RELIABILITY MODELLING OF DTR SYSTEMS
Amodel for evaluating the reliability of the DTR system was
proposed in [132]. Despite its publication in 2013, it is one of
the earliest studies that has directly investigated the reliability
issue of the DTR system. In this study, a Markov model for
the reliability analysis of transmission lines equippedwith the
DTR system was proposed. The model was also extended to
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FIGURE 4. Power system reliability evaluation methods

include fuzzy line rating calculation in the composite power
system reliability assessment. To achieve this, an interac-
tive resolution technique for solving the fuzzy optimisation
problems was developed. This proposal was suggested by
the same author to be included into the existing IEEE Stan-
dard 738 to capture the uncertainty factors of line rating val-
ues [133]. In the study, the author explained that the sampling
of the weather data is limited due to the selective place-
ments of the DTR sensors on critical spans. Moreover, hidden
calibration issues might exist in the DTR sensors, which
may contaminate weather data with errors and uncertainties.
An alternative solution to the fuzzy method is the identifica-
tion of critical spans in a line for the optimum placements of
sensors [32]–[34]. This method strategically places the DTR
sensors without sacrificing the estimation accuracy of line
ratings. From the operational viewpoint, the reliability of the
DTR system can be improved by using a weather estimation
model based on the regression method [134], [135]. Through
the regression method, the weather conditions at locations
not covered by the DTR system can be estimated using those
sampled by the nearby DTR sensors. This strategy has the
advantage of guarding against the outage of DTR sensors
when weather or line data are not sampled.

2) RELIABILITY EFFECTS OF DTR SYSTEMS IN
WIND-INTEGRATED POWER NETWORKS
The capability of the DTR system to improve the reliabil-
ity of wind-integrated power systems has also been widely
investigated. In [136], common wind simulation standards
in the industry were adopted to estimate line ratings for
network planning and operation. This approach enables the
identification of optimum conductor routes for the estima-
tion of additional wind energy that can be accommodated.
Reliability frameworks for modelling the wind-integrated

power systems were proposed in [27] and [137]. In both
frameworks, the network reliability with variable conductor
ratings was assessed. The effects of failures and uncertainties
in the DTR system were also considered, and the effect of
the correlation between conductor ratings due to common
weather conditions was built into the model. A framework
that employed the weather-based methods to estimate proba-
bilistic line rating forecasts for overhead lines was proposed
in one study [138]. The study can be used by system operators
within a selected risk policy with respect to the probability of
a rating being exceeded.

Aside from academic research, studies on DTR sys-
tems have also received widespread attention in several
practical wind energy-related applications. For example,
the Dungannon–Omagh 110 kV line in Northern Ireland is
equipped with DTR systems, which enhances wind inte-
gration capacity [54], [85], [139]. Meanwhile, according to
the weather and line data from the Dungannon–Omagh and
Kells–Coleraine 110 kV lines in Queen’s University Belfast,
high wind generation certainly corresponds to high line
capacities [140]–[142]. The prospect of the DTR systems on
the Skegness–Boston 132 kV line in the UK was also studied
by Areva T&D, E.ON Central Networks and the Northern
Ireland Electricity [53], [143], [144]. The study indicated that
the maximum line rating was considerably higher than the
STR in most cases and that the efficiency of wind energy
integration could be improved by 20%–50%when the cooling
effect of wind was considered. A consortium consisting of
Alstom Grid, Durham University, Astrium, Parsons Brinck-
erhoff and Scottish Power Energy Networks implemented the
DTR system onto a 132 kV line to facilitate a connection
of over 200 MW of wind power [55]. The DTR system in
this study incorporated over 90 km of overhead lines and
some key learning points from related preceding research;
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strategies for the close-loop control of distributed generation
schemes and wide area implementations of the DTR system
were also presented. Their study shows that the DTR system
can provide 67% upgrade in line ampacity at only 62% of the
re-tensioning cost [145]. From the Twenties Project, which
was funded by the European Union, the DTR system could
uprate line ratings by more than 10% throughout the day and
possibly more than 100% in windy days [140], [146]–[148].
In Sweden, a study revealed that transmission lines in
the country were not maximised for wind power inte-
gration, indicating the need for line uprating by the
DTR system [149]. In the on-shore wind farms in Spain,
a strong correlation between wind speed and line rating was
observed, and this correlation was found to have favourable
effect on the 66 kV evacuation lines of their wind farms [150].

3) JOINT RELIABILITY EFFECTS OF DTR SYSTEMS
WITH OTHER SMART GRID TECHNOLOGIES ON
POWER NETWORKS
Various studies have shown that the reliability benefit of the
DTR system can be further improved when it is combined
with other technologies. A model that uses the probabilistic
framework for optimal demand response scheduling, together
with the DTR system in the day-ahead planning of trans-
mission networks, has been proposed [151]. The demand
response program has also been used before with the DTR
system to increase the utilisation of wind generation [152].
The results from these studies show that considerable ben-
efits can be realised by coordinating the demand response
program and the DTR system. Moreover, the flexibility of
the power system analysis is improved when the DTR sys-
tem is used. This result is possible because the high line
ratings offered by the DTR system relax the constraints of
transmission line capacity and load shedding strategy [153].
Furthermore, the effect of the demand response program
on various levels of load demand, together with the DTR
system, has also been studied [154]. The studies have shown
that applying the demand response program on load sec-
tors is more beneficial than on the system load and that
the DTR system enhances the reliability effect of the pro-
gram. Meanwhile, an optimal real-time transmission con-
gestion management algorithm based on real-time thermal
loading has been proposed for the competitive electricity
market [155].

In [156], energy storage technologies were combined with
the DTR system by utilizing the inherent variability in power
line ratings due to changing weather conditions. As a result,
power system reliability was enhanced, conventional network
reinforcement was deferred and the availability of energy
storage in commercial service markets was increased. A reli-
ability framework that considers the DTR system, overhead
line technologies and their associated ageing risk has also
been proposed [157]. In a related study, the effect of the DTR
system on the ageing failure probability of transmission line
has also been addressed through the use of the Arrhenius
model [158].

4) OTHER RELIABILITY STUDIES ON DTR SYSTEMS
A comprehensive assessment of the potential of the DTR sys-
tem in the Finnish distribution network for the proliferation
of electric vehicles (EVs) and distributed generations was
performed in [29]. The study confirmed that the application
of the DTR system was more suitable for overhead lines than
underground cables. It also concluded that the DTR system
was most useful when networks were highly loaded by either
demand or generation. The modelling approach of the DTR
system according to the USA standard has more sophisticated
wind model compared with the UK standard, whereas the UK
standard has better uncertainty model [39]. Nonetheless, both
of these novel strengths have been suggested to be carried
forward into future developments of weather-based DTR sys-
tems. A case report for the application of the DTR systems
on the 138 kV line running from Columbia Power Plant Sub-
station to the Portage Substation was provided in [159]. The
report covered conductor temperature measurement systems,
real-time interface, monitoring and handling of raw data, rat-
ing process, thermal transient conductor response, suppressed
rating during the transient period, thermal transient response
display and alarm processing. The DTR system has also been
investigated together with the system integrity protection
scheme, such as the operational tripping scheme (OTS) [160].
The desirable features of the DTR system have been used
to enhance the existing OTS, thereby reducing the likelihood
of premature generation tripping. Finally, a new probabilistic
method for accounting the variable ratings due to the DTR
system during network planning was proposed in [161]. The
result of the study shows that the proposed method allows
additional loads to be connected to the network at a quantified
level of risk.

IV. CONCLUSION
DTR systems can increase the line rating safely and securely
without sacrificing engineering and social requirements.
DTR systems regulate line ratings based on real-time weather
conditions and line physical properties; thus, line ratings
can be improved without causing annealing or infringing
ground clearance. Furthermore, the use of DTR systems
avoids/delays the construction of new lines. Accordingly,
DTR systems can satisfy the needs of power system operators
and country regulators that need to protect the interests of
other parties. The literature reviews form the consensus that
DTR systems are beneficial for wind power integration due
to the positive correlation of wind power generation and
line ratings; high wind speed produces further wind power
and provides considerable conductor cooling. DTR systems
have also been utilised with other smart grid technologies,
such as demand-side management (DSM), energy storage
and conductor technologies, to improve the power system
reliability. In the present review paper, a literature review is
performed, focusing on the current standards used by DTR
systems, the development of the DTR sensor technology and
the effects of DTR systems towards the reliability of the
power system.
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The review on the current reliability modelling of the DTR
system reveals that the IEEE Standard 738 is preferred over
the CIGRE Standard. The survey shows that the reliability
modelling of DTR systems has been performed using the
Markov model, Event tree analysis (ETA) and fuzzy method,
and the choice of the method depends only on the mod-
elling requirement because all these methods are equally
applicable. For example, if time factor is important and
is required, then the Markov model is suitable; otherwise,
the ETA is sufficient.Meanwhile, the fuzzymethod is deemed
the most appropriate if the uncertainty factors of the line
ratings and weather data are highly significant to be ignored.
This review paper also collected recent experience of DTR
system applications by various institutions in the industry and
the academia. All the reported experiences agree that DTR
systems are beneficial for increasing the ratings of existing
lines and that the STR largely underestimates the potential
of the actual line capacity. The several promising field pilot
studies of DTR systems indicate that a wide usage of DTR
systems is possible. Nonetheless, caution should be exercised
because DTR systems also interact with other conditions
and technologies in actual power system applications. In this
aspect, the reviews on the reliability effects of DTR systems
in consideration of the DSM, transmission network manage-
ment and expansion, energy storage, line conductor material
technology and ageing process are also presented in this
paper. These considerations indicate that the reliability effects
of DTR systems are complicated and their prudent usage
should be enforced. Despite the aforementioned components
in evaluating the reliability of DTR systems, several emerging
topics, such as the cyber-physical interaction of the power
system, electric vehicles (EVs) and the combination of EVs
and RES, are still lacking in the literature. Hence, the authors
of this paper recommend that future works on the reliability
assessment of DTR systems should focus on these topics
while advancing existing research for DTR systems.

APPENDIX
A. DEFINITION OF IEEE STANDARD 738 VARIABLES
Iac Conductor current.
Tc Conductor operating temperature.
R(Tc) Conductor AC resistance as a function of Tc.
Thigh, Tlow Defined high and low temperature values

of a conductor as stated in the Aluminium
Electrical Conductor Handbook.

R(T high) Conductor AC resistance at high tempera-
ture.

R(T low) Conductor AC resistance at low tempera-
ture.

R(Tc) Conductor AC resistance as a function of Tc
α Solar absorptivity.
Qse Corrected total heat flux rate.
θ Solar radiation angle between the incident

ray and overhead line.

A′ Projected area of the conductor per unit
length.

Ksolar Solar altitude correction factor.
qs Total solar- and sky-radiated heat flux rate.
A,B,C,D, Constant values for clear or
E,F and G industrial atmospheric conditions.
Hc Altitude of the sun.
Lat Latitude.
ω Number of hours from local sun noon times

at 15 ◦C.
δ Solar declination.
Zl Azimuth of the line (constant).
Zc Azimuth of the sun.
C Constant obtained from the solar azimuth

table in IEEE Standard 738.

χ Solar azimuth variable.
D Conductor diameter.
ρf Air density.
Vw Wind velocity.
µf Dynamic viscosity of air.
kf Thermal conductivity of air at Tfilm.
Kangle Wind direction factor.
Ta Ambient air temperature.
Tfilm Average temperature between Ta and Tc.
φ Angle between the wind direction and conductor

axis.
β Angle between the wind direction and perpendic-

ular to the conductor axis.

B. DEFINITION OF CIGRE STANDARD VARIABLES
Kj Resistance correction factor due to skin effects.
αk Temperature coefficient of resistance per

degree Kelvin.
Tav Mean temperature.
Rdc DC resistance at 20 ◦C.
S Global solar radiation measured by the global

solar radiation meter.
(Gr · Pr) Rayleigh number.
σB Stefan–Boltzmann constant.
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