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ABSTRACT This paper addresses H∞ synchronization for uncertain chaotic systems with one-sided
Lipschitz nonlinearity under the output and intrinsic state delays. By utilizing the one-sided Lipschitz
condition and quadratic inner boundedness, constructing an appropriate Lyapunov–Krasovskii (LKF), robust
controller design conditions based on Lyapunov stability theory are derived for synchronization of chaotic
systems under disturbances or perturbations bounded by L2 norm. By introducing the delay-derivative limits
and delay-interval bounds into LKF, the intrinsic state time-varying delay can be tackled by the delay-
range-dependent strategy. Less conservative stability condition can be obtained by the further improved
inequality of Jensen inequality and reciprocally convex approach, which can lead to the tighter upper bound
for integral inequality. Numerical simulations are provided to verify the validity of the proposedmethodology
for synchronization of chaotic systems.

INDEX TERMS Chaos synchronization, one-sided Lipschitz nonlinearity, delay-range-dependency,
reciprocally convex approach.

I. INTRODUCTION
Owing to the appealing properties of chaotic system like
unpredictability, strange attractors and sensitivity to ini-
tial conditions, chaos synchronization has flourished as an
appealing research area in various applications, such as image
encryption, communication security, biomedical engineering,
chemical reaction, brain disorder and so on [1]–[5]. The main
purpose of chaos synchronization is to realize the identical
behavior between the drive and response systems by means
of feedback control. In the several past years, all sorts of
nonlinear control methods [6]–[10] have been focused on
the synchronization of chaotic systems, such as impulse con-
trol [11], adaptive control [12] and fuzzy control [13], etc.

Recently, a novel finite-time synchronization scheme
aimed at the hybrid systems with lags has been presented
in [14], in which a point of view on synchronization is set
forth on the proposed system model.Based on the receding
horizon control and Takagi-Sugeno (TCS) fuzzy model,a
new H∞ synchronization method is proposed for chaotic
systems with external disturbance in [15]. By applying a

sliding mode control approach with the time-varying switch-
ing surface, the synchronization control law has been derived
in [16], which can synchronize two fractional-order chaotic
systems precisely at a pre-specified time without concerning
about the initial conditions. In terms of time-delay chaotic
systems under the unknown and determined parameters,
Ahmad et al. [17] put forward an original robust synchroniza-
tion controller design law to investigate the reduced-order
chaos synchronization behaviour. In [18], the synchroniza-
tion behaviour for the chaotic systems with the coupling and
intrinsic state time-varying delays has been investigated.

Although some achievements have been obtained in the
above-mentioned works, there are still many problems little
studied to be worthy of attention in the field. In practical
applications of chaos synchronization theory, there inevitably
exist some factors affecting the system performance, such
as the time-delay, perturbations, disturbances and external
uncertainties [19]–[21]. For instance, time-delay can bring
about inaccurate feedback control behaviours, and then result
in the instability and non-synchronous phenomena of chaotic
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systems. In addition, some efforts should be still made to
reduce the conservatism in order to synchronize the chaotic
systems more accurately and efficiently. Motivated by the
above discussions, the paper addresses the robust H∞ con-
troller design for synchronization of chaotic systems sub-
jected to the time-delay and external uncertainties. Based
on the one-sided Lipschitz condition and the quadratic inner
boundedness [22], we design a robust feedback controller
for synchronization of time-delay chaotic systems against
disturbances bounded by the L2 norm [23]. By introducing
the delay-interval bounds and delay-derivative limits into
LKF, the intrinsic state time-varying delay is handled by the
delay-range-dependent strategy. Rather than the Jensen and
Wirtinger inequalities, the tighter upper bound for inequal-
ity can be obtained by employing the reciprocally con-
vex approach [24], the improved method based on Jensen
inequality [25].

Major contributions of the study lie are summarized in
following points. (i) Rather than most studies that use the
conventional Lipschitz condition for deriving synchroniza-
tion controller design condition [18], [26], [27], in the paper,
we employ the one-side Lipschitz condition [28] for deriva-
tion, which has less conservatism and a wide range of
applications with the smaller value than Lipschitz constant.
(ii) To implement easily and control precisely in practi-
cal engineering, the robust H∞ mixed output time-delay
feedback controller is proposed in contrast to the conven-
tional state feedback controller [2], [5], [17], [18]. That is,
the past state information as well as the current is employed,
and the suppression control of external uncertainties can be
achieved by regulating the disturbance attenuation parameter.
(iii) To reduce the conservatism, the reciprocally convex
approach, improved method based on Jensen inequality, one-
sided Lipschitz condition and quadratic inner boundedness
are employed for the derivation of synchronization control
condition in comparison with the aforementioned works.

The rest of the paper is as shown as follows: Section II
exhibits the problem description and the preliminaries. The
proposed robust synchronization controller design condition
is provided in Section III. Simulation results are detailed in
Section IV, Section V presents conclusions.
Notation: In addition to usual notations, A+ is the pseudo-

inverse matrix of A, 〈·〉 denotes the inner product, || · ||
and || · ||2 represent the Euclidean norm and the L2 norm,

where || · ||2 =
√∫
∞

0 || · ||
2dt . The column vector and block

diagonal matrix are expressed by col{·} and diag{·}. eTi =
col{0n∗(i−1)n, In∗n, 0n∗(10−i)n} shows the block entry matrix
for i = 1, 2, . . . , 10. For simplicity, the notation x(t) can be
abbreviated as x.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the following drive-response systems:

ẋ(t) = Ax(t)+ A1x(t − τ (t))+ ϑ(x(t), t)

+h̄(x(t − τ (t)), t)+ Hωx(t),

zx(t) = Cx(t), x(t) = `x(t), (1)

ẏ(t) = Ay(t)+ A1y(t − τ (t))+ ϑ(y(t), t)

+h̄(y(t − τ (t)), t)+ Hωy(t)+ Bu(t),

zy(t) = Cy(t), y(t) = `y(t), (2)

where x, y ∈ Rn, zx , zy ∈ Rm, u ∈ Rp and ωx , ωy ∈
Rq represent the state vectors, output vectors, control input
vector and external disturbances respectively. A,A1,B,C
and H having appropriate dimensions denote the constant
matrices. The term τ represents the time-varying delays
caused by the inherent modeling of drive-response systems,
satisfying

0 ≤ τm ≤ τ (t) ≤ τM , τ̇ (t) ≤ µ. (3)

In addition, ϑ(x, t), ϑ(y, t) and h̄(x(t − τ ), t), h̄(y(t − τ ), t)
represent the nonlinear dynamics of drive-response systems
in the absence and presence of time-delay. The initial condi-
tions are described by `x and `y respectively.
Define e = x − y, and the error system is derived as

ė = Ae+ A1e(t − τ )+ ϑ(x, t)− ϑ(y, t)

+h̄(x(t − τ2), t)− h̄(y(t − τ2), t)

+H (ωx − ωy)− Bu. (4)

Construct a mixed output time-delay feedback controller
as

u = K
(
(zx − zy)− ε1

(
zx(t − d)− zy(t − d)

)
−ε2

∫ t

t−d

(
zx(ϕ)− zy(ϕ)

)
dϕ
)
, (5)

where K represents the gain matrix of appropriate dimen-
sions, ε1 and ε2 are regulatory factors which can regulate the
strength of delayed feedback, τ1 denotes the constant output
delay.

Combining (4) and (5), we can obtain

ė = (A− BKC)e+ A1e(t − τ )+ ε1BKCe(t − d)

+Φ(x, y, t)+ Υ (x, y, τ, t)+ Hω

+ε2BKC
∫ t

t−d
e(ϕ)dϕ, (6)

where

Φ (x, y, t) = ϑ (x, t)− ϑ (y, t) ,

Υ (x, y, τ, t) = h̄ (x(t − τ ), t)− h̄ (y(t − τ ), t) .

To derive the robust H∞ synchronization control
condition, following assumptions and lemmas need be
satisfied.
Assumption 1: Nonlinear terms ϑ and h̄ are one-sided

Lipschitz if there exist

〈ϑ(x, t)− ϑ(y, t), x − y〉 ≤ ν1||(x − y)||2,

〈h̄(y(t − τ ), t)− h̄(x(t − τ ), t), y(t − τ )− x(t − τ )〉

≤ ν2||(y(t − τ )− x(t − τ ))||2,

where ν1, ν2 ∈ R are the one-sided Lipschitz constants.
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Assumption 2: For ϑ and h̄, there exist the quadratic inner
boundedness conditions given by

(ϑ(x, t)− ϑ(y, t))T (ϑ(x, t)− ϑ(y, t))

≤ κ1||(x − y)||2 +$1〈x − y, ϑ(x, t)− ϑ(y, t)〉,

(h̄(y(t − τ ), t)− h̄(x(t − τ ), t))T

(h̄(y(t − τ ), t)− h̄(x(t − τ ), t))

≤ κ2||(y(t − τ )− x(t − τ ))||2

+$2〈y(t−τ )− x(t−τ ), h̄(y(t−τ ), t)−h̄(x(t − τ ), t)〉,

for scalars κ1, κ2 ∈ R and$1,$2 ∈ R.
Assumption 3: The error system satisfies the H∞ perfor-

mance indexwith the zero initial condition, if there exists [18]∫
∞

0
eT (t)e(t)dt ≤ γ 2

∫
∞

0
ωT (t)ω(t)dt,

where γ represents the disturbance attenuation rate.
Lemma 1: For the positive-definite matrices Z1 = ZT1 ∈

Rm×m and Z2 = ZT2 ∈ R
n×n, there exists the matrix S ∈ Rm×n

satisfying
[
Z1 S
∗ Z2

]
≥ 0. If β ∈ (0, 1), the following inequality

holds [24] [
1
β
Z1 0
∗

1
1−β Z2

]
≥

[
Z1 S
∗ Z2

]
.

Lemma 2: For the continuously differentiable function x(t),
assume that a < b and Y = Y T > 0. Then, there exists [25]

−

∫ b

a
ẋT (ϕ)Y ẋ(ϕ)dϕ ≤ −

1
b− a

=
T
0 (a, b)Y=0(a, b)

−
3

b− a
=
T
1 (a, b)Y=1(a, b)−

5
b− a

=
T
2 (a, b)Y=2(a, b).

where

=0(a, b) = x(b)− x(a),

=1(a, b) = x(b)+ x(a)−
2

b− a

∫ b

a
x(ϕ)dϕ,

=2(a, b) = x(b)− x(a)−
12

(b− a)2

∫ b

a
(ϕ −

a+ b
2

)x(ϕ)dϕ.

III. ROBUST H∞ SYNCHRONIZATION
CONTROLLER DESIGN
In this section, the robustH∞ control conditions are provided
for synchronization of chaotic systems. Define a vector as

ζ T =
[
eT , eT (t − τ ), eT (t − τm), eT (t − τM ),

eT (t − d), ΦT , Υ T , ωT ,
1
τm

∫ t

t−τm
eT (ϕ)dϕ,

1
d

∫ t

t−d
eT (ϕ)dϕ,

1
τ 2m

∫ t

t−τm
(ϕ −

2t − τm
2

)eT (ϕ)dϕ,

1
d2

∫ t

t−d
(ϕ −

2t − d
2

)eT (ϕ)dϕ.
]
. (7)

Theorem 1: Consider the error system (6) under ω 6= 0
satisfying Assumption 1-3 and condition (3). By application

of the controller (5), the error system asymptotically con-
verges to zero if there exist the positive-definite and symmet-
ric matrices P, Qi, Zj, matrix V of appropriate dimensions

satisfying Θ =
[
Z2 V
∗ Z2

]
≥ 0, and positive scalars εk , εi,

and for i = 1, 2, 3, 4, j = 1, 2, 3, k = 1, 2, such that the
inequality

Π τmΞ
TZ1 τMΞ

TZ2 dΞTZ3
∗ −Z1 0 0
∗ ∗ −Z2 0
∗ ∗ ∗ −Z3

 < 0, (8)

is satisfied, where

Π = eT1 PΞ +Ξ
TPe1 +Λ+ eT1 e1 − γ

2eT8 e8
−Γ T

1 ΘΓ1 − Γ
T
2 W1Γ2 − Γ

T
3 W2Γ3

−eT6 ε1Ie1 + e
T
1 ε2$1Ie6 − eT6 ε2Ie6

−eT7 ε3Ie2 + e
T
2 ε4$2Ie7 − eT7 ε4Ie7

+eT1 (ε1ν1I + ε2κ1I ) e1 + e
T
2 (ε3ν2I + ε4κ2I ) e2,

Ξ = (A− BKC)e1 + A1e2 + ε1BKCe5
+Ie6 + Ie7 + He8 + ε2dBKCe10,

Λ = diag
{
Q1 + Q2 + Q3 + Q4,−(1− µ)Q3,

−Q1,−Q2,−Q4, 0, 0, 0, 0, 0
}
,

Γ1 = col
{
e2 − e4, e3 − e2

}
, τMm = τM − τm,

Γ2 = col
{
e1 − e3, e1 + e3 − 2e9, e1 − e3 − 12e11

}
,

Γ3 = col
{
e1 − e5, e1 + e5 − 2e10, e1 − e5 − 12e12

}
,

W1 = diag {Z1, 3Z1, 5Z1} ,W2 = diag {Z3, 3Z3, 5Z3} .

Proof: Consider the following LKF candidate:

V (e, t) = V1(e, t)+ V2(e, t)+ V3(e, t), (9)

where

V1(e, t) = eT (t)Pe(t),

V2(e, t) =
∫ t

t−τm
eT (ϕ)Q1e(ϕ)dϕ +

∫ t

t−τM
eT (ϕ)Q2e(ϕ)dϕ

+

∫ t

t−τ
eT (ϕ)Q3e(ϕ)dϕ +

∫ t

t−d
eT (ϕ)Q4e(ϕ)dϕ,

V3(e, t) =
∫ 0

−τm

∫ t

t+s
τmėT (ϕ)Z1ė(ϕ)dϕds

+

∫
−τm

−τM

∫ t

t+s
τMmėT (ϕ)Z2ė(ϕ)dϕds

+

∫ 0

−d

∫ t

t+s
dėT (ϕ)Z3ė(ϕ)dϕds.

Taking the derivative of (9) along the trajectory of
(3) and (6) yields

V̇1(e, t) = 2eTP
[
(A− BKC)e+ A1e(t − τ )

+ε1BKCe(t − d)+Φ(x, y, t)+ Υ (x, y, τ, t)

+Hω + ε2BKC
∫ t

t−d
e(ϕ)dϕ

]
,

= ζ T
{
eT1 PΞ +Ξ

TPe1
}
ζ, (10)
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V̇2(e, t) ≤ eTQ1e− eT (t − τm)Q1e(t − τm)+ eTQ2e

−eT (t − τM )Q2e(t − τM )+ eTQ3e

−(1− µ)eT (t − τ )Q3e(t − τ )+ eTQ4e

−eT (t − d)Q4e(t − d)

= ζ TΛζ, (11)

V̇3(e, t) = ζ TΞT
(
τ 2mZ1 + τ

2
MmZ2 + d

2Z3
)
Ξζ

−

∫ t

t−τm
τmėT (ϕ)Z1ė(ϕ)dϕ

−

∫ t−τm

t−τM
τMmėT (ϕ)Z2ė(ϕ)dϕ

−

∫ t

t−d
dėT (ϕ)Z3ė(ϕ)dϕ. (12)

According to Assumption 1-2, we have

ε1ν1eT e− ε1ΦT

e = ζ T
(
eT1 ε1ν1Ie1 − e

T
6 ε1Ie1

)
ζ ≥ 0,

ε2κ1eT e+ ε2$1eTΦ − ε2ΦTΦ

= ζ T
(
eT1 ε2κ1Ie1 + e

T
1 ε2$1Ie6 − eT6 ε2Ie6

)
ζ ≥ 0, (13)

and

ε3ν2eT (t − τ )e(t − τ )− ε3Υ T e(t − τ )

= ζ T
(
eT2 ε3ν2Ie2 − e

T
7 ε3Ie2

)
ζ ≥ 0,

ε4κ2eT (t − τ )e(t − τ )+ ε4$2eT (t − τ )Υ − ε4Υ TΥ

= ζ T
(
eT2 ε4κ2Ie2 + e

T
2 ε4$2Ie7 − eT7 ε4Ie7

)
ζ ≥ 0, (14)

where εi represents the positive parameter for adjusting the
range.

Let β1 = (τM − τ )/τMm and β2 = (τ − τm)/τMm. It is
obvious that βk > 0 and β1 + β2 = 1. Introduce a matrix
V such that

[
Z2 V
∗ Z2

]
. For the integral terms in (12), applying

Lemma 1-2 can reveal

−

∫ t−τm

t−τM
τMmėT (ϕ)Z2ė(ϕ)dϕ

= −

∫ t−τ

t−τM
τMmėT (ϕ)Z2ė(ϕ)dϕ

−

∫ t−τm

t−τ
τMmėT (ϕ)Z2ė(ϕ)dϕ

≤ −
1
β1

[e(t − τ )− e(t − τM )]T Z2 [e(t − τ )− e(t − τM )]

−
1
β2

[e(t − τm)− e(t − τ )]T Z2 [e(t − τm)− e(t − τ )]

≤ −ζ TΓ T
1 ΘΓ1ζ, (15)

and

−

∫ t

t−τm
τmėT (ϕ)Z1ė(ϕ)dϕ −

∫ t

t−d
dėT (ϕ)Z3ė(ϕ)dϕ

≤ −ζ TΓ T
2 W1Γ2ζ − ζ

TΓ T
3 W2Γ3ζ. (16)

Combining (10)− (16), we have

V̇ (e, t)≤ζ T
{
eT1 PΞ +Ξ

TPe1+Λ−Γ T
1 ΘΓ1 − Γ

T
2 W1Γ2

−Γ T
3 W2Γ3 +Ξ

T
(
τ 2mZ1 + τ

2
MmZ2 + d

2Z3
)
Ξ

−eT6 ε1Ie1 + e
T
1 ε2$1Ie6 − eT6 ε2Ie6

−eT7 ε3Ie2 + e
T
2 ε4$2Ie7 − eT7 ε4Ie7

+eT1 (ε1ν1I + ε2κ1I ) e1 + e
T
2 (ε3ν2I + ε4κ2I ) e2

}
ζ,

(17)

According to Assumption 3, in order to ensure H∞ perfor-
mance, the quadratic performance index J (e, ω) is defined as

J (e, ω) =
∫
∞

0

[
eT e− γ 2ωTω

]
dϕ, (18)

and under the zero initial condition, we can derive

J (e, ω) =
∫
∞

0

[
eT e− γ 2ωTω + V̇ (e, t)

]
dϕ − V (e, t)

∣∣
t→∞

≤

∫
∞

0

[
eT e− γ 2ωTω + V̇ (e, t)

]
dϕ

≤

∫
∞

0
ζ T1ζdϕ, (19)

where

1 = eT1 PΞ+Ξ
TPe1+Λ−Γ T

1 ΘΓ1−Γ
T
2 W1Γ2−Γ

T
3 W2Γ3

+ΞT
(
τ 2mZ1 + τ

2
MmZ2 + d

2Z3
)
Ξ + eT1 e1 − γ

2eT8 e8

−eT6 ε1Ie1 + e
T
1 ε2$1Ie6 − eT6 ε2Ie6

−eT7 ε3Ie2 + e
T
2 ε4$2Ie7 − eT7 ε4Ie7

+eT1 (ε1ν1I + ε2κ1I ) e1 + e
T
2 (ε3ν2I + ε4κ2I ) e2.

When 1 < 0 holds, J (e, ω) < V (e, t)
∣∣
t→0 = 0 shows

the H∞ performance. By application of Schur complement
to 1 < 0, the inequality (8) can be produced, which is
sufficient for stability analysis. This completes the proof of
Theorem 1.

By employing a known mixed output time-delay feedback
controller (5), the condition in Theorem 1 can be employed
for stability analysis of the error system (4). Now a sufficient
condition is derived for obtaining the controller gain K .
Theorem 2: A sufficient condition for the solution in The-

orem 1 is that there exist the positive-definite and symmetric
matrices X , Q̄i, Z̄j, matrices V̄ and M of appropriate dimen-

sions satisfying Θ̄ =
[
Z̄2 V̄
∗ Z̄2

]
≥ 0, positive scalars εk , εi for

i = 1, 2, 3, 4, j = 1, 2, 3, k = 1, 2, such that the following
condition

Π̄ Ψ eT1 X eT1
√
|η1|X eT2

√
|η2|X

∗ −Ω 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 < 0,

(20)
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is satisfied. where

Π̄ = eT1 Ξ̄X + XΞ̄
T e1 + Λ̄− Γ T

1 Θ̄Γ1 − Γ
T
2 W̄1Γ2

−Γ T
3 W̄2Γ3 − γ

2eT8 e8
−eT6 ε1Ie1 + e

T
1 ε2$1Ie6 − eT6 ε2Ie6

−eT7 ε3Ie2 + e
T
2 ε4$2Ie7 − eT7 ε4Ie7,

Ξ̄ = (AX − BM )e1 + A1Xe2 + ε1BMe5
+Ie6 + Ie7 + He8 + ε2dBMe10,

Λ̄ = diag
{
Q̄1 + Q̄2 + Q̄3 + Q̄4,−(1− µ)Q̄3,

−Q̄1,−Q̄2,−Q̄4, 0, 0, 0, 0, 0
}
,

Ψ =
[
τmΞ̄

T , τM Ξ̄
T , dΞ̄T

]
,

Ω = diag
{
XZ̄−11 X ,XZ̄−12 X ,XZ̄−13 X

}
,

W̄1 = diag
{
Z̄1, 3Z̄1, 5Z̄1

}
, W̄2 = diag

{
Z̄3, 3Z̄3, 5Z̄3

}
η1 = ε1ν1 + ε2κ1, η2 = ε3ν2 + ε4κ2.

Then, the controller gain can be computed byK = MX−1C+.
Proof: For the terms ε1ν1I + ε2κ1I and ε3ν2I + ε4κ2I

of Π in Theorem 1, the inequalities ε1ν1 + ε2κ1 ≤ |ε1ν1 +
ε2κ1| and ε3ν2 + ε4κ2 ≤ |ε3ν2 + ε4κ2| hold. Based on the
Schur complements and congruence transform, by pre- and
post-multiplying opposite sides of the

[
Z2 V
∗ Z2

]
by the matrix

diag{X ,X}, and (8) by the matrix

diag
{ 5︷ ︸︸ ︷
X , ...,X , I , I , I ,X ,X ,Z−11 ,Z−12 ,Z−13

}
(21)

where X = P−1, M = KCX , Q̄i = P−1QiP−1, Z̄j =

P−1ZjP−1, V̄ = P−1VP−1, we can obtain
[
Z̄2 V̄
∗ Z̄2

]
≥ 0 and

(20). This proves the Theorem 2.
Note that the upper bound on ε1ν1 + ε2κ1 and ε3ν2 + ε4κ2

are considered in Theorem 3, which can lead to a relatively
simple condition. However, owing to the utilization of the
upper bound, conservatism inevitably exists in (20). If ε1ν1+
ε2κ1 ≤ 0 or ε3ν2 + ε4κ2 ≤ 0, the condition in (20) can be
infeasible for the larger values −(ε1ν1 + ε2κ1) or −(ε3ν2 +
ε4κ2). To reduce the conservatism, Theorem 3 is provided
based on the sign of ε1ν1 + ε2κ1 and ε3ν2 + ε4κ2.
Theorem 3: A sufficient and necessary condition for the

solution in Theorem 1 is that there exist the positive-definite
and symmetric matrices X , Q̄i, Z̄j, matrices V̄ and M of

appropriate dimensions satisfying Θ̄ =
[
Z̄2 V̄
∗ Z̄2

]
≥ 0, positive

scalars εk , εi for i = 1, 2, 3, 4, j = 1, 2, 3, k = 1, 2, such that
either of the following conditions:
(i) If ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 > 0, then

Π̄ Ψ eT1 X eT1
√
η1X eT2

√
η2X

∗ −Ω 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 < 0, (22)

(ii) If ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 ≤ 0, then
Π̄ − G2 Ψ eT1 X eT1

√
η1X

∗ −Ω 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0, (23)

(iii) If ε1ν1 + ε2κ1 ≤ 0 and ε3ν2 + ε4κ2 > 0, then
Π̄ − G1 Ψ eT1 X eT1

√
η2X

∗ −Ω 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0, (24)

(iv) If ε1ν1 + ε2κ1 ≤ 0 and ε3ν2 + ε4κ2 ≤ 0, thenΠ̄ − G1 − G2 Ψ eT1 X
∗ −Ω 0
∗ ∗ −I

 < 0, (25)

is satisfied forG1 = −X (ε1ν1+ε2κ1)X andG2 = −X (ε3ν2+
ε4κ2)X . Then, the controller gain can be computed by K =
MX−1C+.

Proof: Before two successive Schur complements to
(20) in the proof process of Theorem 2, the original inequality
is shown asΠ̄ + Xη1X + Xη2X Ψ eT1 X

∗ −Ω 0
∗ ∗ −I

 < 0. (26)

On the one hand, if ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 >
0, (22) and (26) are equivalent after two successive Schur
complements. For the inequality (26), if ε1ν1 + ε2κ1 > 0,
ε3ν2 + ε4κ2 ≤ 0 or ε1ν1 + ε2κ1 ≤ 0, ε3ν2 + ε4κ2 > 0,
by substituting G1 and G2 and using the Schur complement,
we can derive (23) and (24). If ε1ν1 + ε2κ1 ≤ 0 and ε3ν2 +
ε4κ2 ≤ 0, (25) and (26) are equivalent by substituting G1 and
G2. On the other hand, suppose that the solution in Theorem 2
exists. For the inequality (20), using two successive Schur
complements can yieldΠ̄ + X |η1|X + X |η2|X Ψ eT1 X

∗ −Ω 0
∗ ∗ −I

 < 0. (27)

If ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 > 0, (20) and (22)
are equivalent. Because ε1ν1 + ε2κ1 ≤ |ε1ν1 + ε2κ1| and
ε3ν2 + ε4κ2 ≤ |ε3ν2 + ε4κ2| hold, we can derive −G1 ≤

|X (ε1ν1 + ε2κ1)X | and −G2 ≤ |X (ε3ν2 + ε4κ2)X |. If (20) is
satisfied, (27)must hold. when ε1ν1+ε2κ1 > 0, ε3ν2+ε4κ2 ≤
0 or ε1ν1 + ε2κ1 ≤ 0, ε3ν2 + ε4κ2 > 0, by using the Schur
complement, we can obtain (23) and (24). If ε1ν1+ ε2κ1 ≤ 0
and ε3ν2+ε4κ2 ≤ 0, (27) can result into (25). This completes
the proof.
Remark 1: Different from the Theorem 2, Theorem 3 is a

sufficient and necessary condition for the solution. By con-
sidering the sign of ε1ν1 + ε2κ1 and ε3ν2 + ε4κ2 instead
of their upper bounds, we can obtain a less conservative
condition. Furthermore, if the condition in Theorem 2 holds,
the solution in Theorem 3 will always exist. That is, if Theo-
rem 2 is satisfied for the real number η1 = ε1ν1 + ε2κ1 and
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η2 = ε3ν2 + ε4κ2, the condition of Theorem 3 will always
be valid for the interval −∞ < ε1ν1 + ε2κ1 ≤ η1 and
−∞ < ε3ν2 + ε4κ2 ≤ η2.
Remark 2: Because nonlinear terms Nj = XZ̄−1j X for

j = 1, 2, 3 exist in Theorems 2-3, we don’t employ the
conventional convex feasibility approach to seek the solution.
To address this, we can convert the problem into a nonlinear
optimal one. According to the presence or absence of the non-
linear terms G1 = −X (ε1ν1 + ε2κ1)X and G2 = −X (ε3ν2 +
ε4κ2)X in (22) − (25), different optimization schemes can
be provided for solution by using the cone complementary
linearization.
(i) If ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 > 0, then

Minimize Trace

PX +
3∑
j=1

(
Z̄jUj + NjFj + PUjPFj

)
,

subject to (22)[
P I
∗ X

]
≥ 0,

[
Z̄j I
∗ Uj

]
≥ 0,

[
Nj I
∗ Fj

]
≥ 0,

[
Uj X
∗ Fj

]
≥ 0.

(28)

(ii) If ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 ≤ 0, then

Minimize Trace
0.5Ḡ2G2 + 0.5Xη2XḠ2 + PX

+

3∑
j=1

(
Z̄jUj + NjFj + PUjPFj

)
,

subject to (23)[
G2 I
∗ Ḡ2

]
≥ 0,

[
−η2 P
∗ Ḡ2

]
≥ 0,

[
P I
∗ X

]
≥ 0,[

Z̄j I
∗ Uj

]
≥ 0,

[
Nj I
∗ Fj

]
≥ 0,

[
Uj X
∗ Fj

]
≥ 0.

(29)

(iii) If ε1ν1 + ε2κ1 ≤ 0 and ε3ν2 + ε4κ2 > 0, then

Minimize Trace
0.5Ḡ1G1 + 0.5Xη1XḠ1 + PX

+

3∑
j=1

(
Z̄jUj + NjFj + PUjPFj

)
,

subject to (24)[
G1 I
∗ Ḡ1

]
≥ 0,

[
−η1 P
∗ Ḡ1

]
≥ 0,

[
P I
∗ X

]
≥ 0,[

Z̄j I
∗ Uj

]
≥ 0,

[
Nj I
∗ Fj

]
≥ 0,

[
Uj X
∗ Fj

]
≥ 0.

(30)

(iv) If ε1ν1 + ε2κ1 ≤ 0 and ε3ν2 + ε4κ2 ≤ 0, then

Minimize Trace
0.5ḠkGk + 0.5XηkXḠk + PX

+

3∑
j=1

(
Z̄jUj + NjFj + PUjPFj

)
,

subject to (25)[
Gk I
∗ Ḡk

]
≥ 0,

[
−ηk P
∗ Ḡk

]
≥ 0,

[
P I
∗ X

]
≥ 0,[

Z̄j I
∗ Uj

]
≥ 0,

[
Nj I
∗ Fj

]
≥ 0,

[
Uj X
∗ Fj

]
≥ 0.

(31)

Algorithm:
1) If ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 > 0,solve

the cone complementary linearization algorithm with

FIGURE 1. The structure plot and model analysis of Chua’s circuit. (a) The
topological graph of Chua’s circuit. (b) Volt ampere characteristics of
Chua’s diode.

(P,X , Z̄j,Uj,Nj,Fj,M ) subject to (28).Set Pc+1 =
P,X c+1 = X , Z̄ c+1j = Z̄j,U

c+1
j = Uj,N

c+1
j =

Nj,N
c+1
j = Nj,F

c+1
j = Fj,M c+1

= M .
If ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 ≤

0,solve the cone complementary linearization algo-
rithm with (G2,P,X , Z̄j,Uj,Nj,Fj,M , η1) subject to
(29).Set Gc+12 = G2,Pc+1 = P,X c+1 = X , Z̄ c+1j =

Z̄j,U
c+1
j = Uj,N

c+1
j = Nj,N

c+1
j = Nj,F

c+1
j =

Fj,M c+1
= M .

If ε1ν1 + ε2κ1 ≤ 0 and ε3ν2 + ε4κ2 >

0,solve the cone complementary linearization algo-
rithm with (G1,P,X , Z̄j,Uj,Nj,Fj,M , η2) subject to
(30).Set Gc+11 = G1,Pc+1 = P,X c+1 = X , Z̄ c+1j =

Z̄j,U
c+1
j = Uj,N

c+1
j = Nj,N

c+1
j = Nj,F

c+1
j =

Fj,M c+1
= M .

If ε1ν1 + ε2κ1 ≤ 0 and ε3ν2 + ε4κ2 ≤

0,solve the cone complementary linearization algo-
rithm with (Gk ,P,X , Z̄j,Uj,Nj,Fj,M , ηk ) subject to
(31).Set Gc+1k = Gk ,Pc+1 = P,X c+1 = X , Z̄ c+1j =

Z̄j,U
c+1
j = Uj,N

c+1
j = Nj,N

c+1
j = Nj,F

c+1
j =

Fj,M c+1
= M .

2) If (22),(23),(24),(25) is feasible for K = MX−1C+,
then exit. Or else, set c=c+1, then go 1).

IV. SIMULATION
To exhibit the effectiveness of the aforementioned control
approach, in the section, we introduce the Chua’s circuit
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FIGURE 2. The phase-space plots of the drive system subjected to the
external uncertainty. (a) Phase plane trajectory without the control.
(b) Phase plane trajectory with the control.

FIGURE 3. The phase-space plots of the response system subjected to the
external uncertainty. (a) Phase plane trajectory without the control.
(b) Phase plane trajectory with the control.

chaotic systems as the simulation example given by

A =

−2.548 9.1 0
1 −1 1
0 −14.2 0

 , h̄(υ, t) =

δυ10
0

 ,

FIGURE 4. The time responses of error system subjected to the external
uncertainty. (a) The time response of error system without the control.
(b) The time response of error system with the control.

ϑ(υ, t) = 9.11

|υ1 + 1| − |υ1 − 1|
0
0

 ,
A1 = B = C = H = diag{1, 1, 1},

τ (t) = 0.1+ 0.02 sin(5t), δ = 0.1+ 0.01 sin(0.1t),

`x(t) = [−0.2, 0.1,−0.4]T , `y(t) = [0.4,−0.1, 0.2]T ,

ωx(t) = [0.10 sin(100t), 0.10 sin(120t), 0.10 sin(110t)]T ,

ωy(t) = [0.12 sin(120t), 0.13 sin(115t), 0.14 sin(110t)]T .

(32)

As can be seen from the Fig. 1(a), Chua’s circuit is a third-
order autonomous circuit composed of resistors, capacitors
and inductors and Chua’s diode.It can produce chaos phe-
nomenon when it satisfies one of the following conditions:
(i) Nonlinear resistance is not less than one. (ii) Lin-
ear effective resistance of not less than one.(iii) Not
less than three energy storage components.The volt
ampere characteristic curve of Chua’s diode is showed
in Fig. 1(b).

The phase-space and error trajectories plots for the chaotic
systems without any control are presented in Fig. 2(a)−4(a),
which indicate that the response system can’t asymptoti-
cally track the drive system under different initial conditions.
To make the systems behave in a synchronous way, we design
a mixed output time-delay feedback controller under the
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conditions

ν1 = 0, ν2 = 0, κ1 = 45, κ2 = 0.25, $1 = 0, $2 = 0,

ε1 = 0.1, ε2 = 0.045, µ = 0.3, d = 0.3, γ = 0.31.

(33)

Because ε1ν1 + ε2κ1 > 0 and ε3ν2 + ε4κ2 > 0 are satisfied
for any positive scalars εi, i = 1, 2, 3, 4, the controller gain
matrix K can be solved through (22) and (28), given by

K =

19.7785 9.1254 0.0002
1.0035 21.3312 1.0017
0.0002 −14.2394 22.3337

 . (34)

By application of controller (34), the response system can
asymptotically synchronize to the drive system, as illustrated
in Fig. 2(b) − 4(b). Therefore, the proposed scheme in the
paper has certain practical and theoretical significance for
synchronization of chaotic systems subjected to the time-
delays, disturbances, perturbations and uncertainties.

V. CONCLUSION
This paper designs a mixed output time-delay feedback con-
troller for addressing synchronization of time-delay chaotic
systems with one-sided Lipschitz nonlinearity under external
uncertainties. Based on the reciprocally convex approach,
improved method for Jensen inequality, one-sided Lipschitz
condition and the quadratic inner boundedness, taking the
output lag and intrinsic state time-varying delays with non-
zero lower bound into consideration, an appropriate LKF is
proposed to derive the controller design condition for syn-
chronization of chaotic systems subjected to external distur-
bances bounded by L2 norm. Because of the existence of
nonlinear terms, we can handle the non-linear optimal prob-
lems converted from the original problem to obtain the solu-
tion by using the cone complementary linearization method.
Numerical simulations of the Chua’s circuit chaotic systems
are demonstrated to verify the effectiveness of the proposed
methodology.
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