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ABSTRACT Text features in topographic maps are important for helping users to locate the area that
a map covers and to understand the map’s content. Previous works on the optical detection of map text
from topographic maps have used geometric features, the Hough transform, and segmentation. However,
these approaches still face challenges when detecting map text in complicated contexts, especially when
the map text is touching other map features, such as contours or geographical features. Thus, state-of-the-
art techniques for map text and feature recognition and manual interpretation and correction are always
required to produce accurate results when optically converting topographic maps into a readable format.
This paper proposes a methodological framework called the intelligent map reader that enables the automatic
and accurate optical understanding of the content of a topographic map using deep learning techniques in
combination with a gazetteer. The intelligent map reader framework includes the detection of map text via
deep learning, the separation of text units via graph-based segmentation and clustering, optical character
recognition (OCR) via anOCR engine, and digital-gazetteer-basedmap content understanding. Experimental
results validate the efficiency and robustness of our proposed methodology for map text recognition and map
content understanding. We expect the proposed intelligent map reader to contribute to various applications
in the GeoAI field.

INDEX TERMS Optical character recognition, deep convolutional neural network, map feature detection,
gazetteer, topographic map understanding.

I. INTRODUCTION
Topographic opographic maps are a commonly used form
of data for characterizing the physical origins of natural
landforms, the locations where various human activities
occur, and how these natural and manmade (or cultural)
elements are organized. Due to the rapid progress achieved
in Earth observation systems and GIS techniques, massive
topographic maps related to various topics and themes are
now available for public use. These topographic maps can
be accessed from a variety of sources, which include atlases,
scanned paper maps, commercial map services (e.g., Google
Earth, Google Maps), repositories of volunteered geograph-
ical information (e.g., OpenStreetMap), and geo-referenced

cyberinfrastructures. The U.S. Geological Survey provides
the largest topographic maps, which are generated from a
digital GIS database and cover the entire territory of the U.S.
In addition to the U.S. Geological Survey, other institutes
alsomake topographic maps available to the public, including
the SVG Topographic maps of Europe, the Great Britain
AMS Topographic Maps, and the maps available through
Tianditu. These digital topographic maps contain text infor-
mation, such as river names, street names, and place names,
that is important for helping users to locate the area that a
map covers and to understand its content. However, further
investigations are still urgently needed to build an automated
and robust approach for recognizing such map text from
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topographic maps. A crucial challenge in map text recogni-
tion is that the text features of many topographic maps are
not directly readable by computers [1]–[3]. Currently, most
topographic maps are accessed as Portable Document Format
(PDF) files, digital images, or paper maps rather than as files
that include machine-readable text. The laborious conversion
from scanned or digital topographic maps into data in a
readable format is very time-consuming, and it can become
impossible when large-scale maps require conversion and
interpretation [3]. Moreover, the state-of-the-art techniques
for map text and feature recognition still require manual
interpretation and correction to produce accurate results.

Map text recognition consists of two main tasks [1], [3],
[4]: text units separation and text recognition. The main goal
of text unit separation is to extract text units from the com-
plicated map background, which may include colour mixing,
linear features, overlapping, aliasing, and blurring [5]. Early
efforts to separate text units from maps included clustering
analysis [6], [7], morphological operations [8], [9], segmenta-
tion [10]–[12], connected component labelling [6], [13], and
the image pyramid method [14]. However, these approaches
do not enable the extraction of map text displayed at multiple
angles. Moreover, it is impossible for these approaches to
separate text units when they are overlapped or connected to
other features in a topographic map [2], [3]. Reference [15]
presents an interactive tool for text extraction that allows
the user to define rules for colour separation and character
clustering. However, such an approach that requires user
intervention cannot support text recognition in massive topo-
graphic maps that cover large-scale areas. Several attempts
to address the problem of separating text and other graphical
features in topographic maps have been reported. In ref-
erence [16], map text and other map features were sepa-
rated based on the differences in their constituent strokes.
Tembre et al. [17] proposed an approach for locating overlap-
ping text by searching for seed strings. Zhong [18] proposed
a circle scanning strategy for detecting character-connected
regions. However, these two methods fail when all letters
in a string intersect with other graphical features. A method
called V-lines [19] can be used to remove some non-text
features connected to map text. Roy et al. [20] claimed that
the text units and linear features in topographic maps have
distinct widths, which could be useful for separating text
from other connected features. Considering the advantages
of object-based image analysis (OBIA) in handling remote
sensing data, the application of segmentation to topographic
maps has been reported. Pouderoux et al. [21] extracted
text through segmenting topographic maps and performing
connected component analysis. Kerle and Leeuw [22] used
OBIA techniques to extract map text from sub-regions iden-
tified through object-based segmentation. Segmentation on
multiple scales might also be useful for resolving the inter-
sections of text with other graphical features. Pezeshk and
Tutwiler [3] integrated two hidden Markov models (HMMs)
to recognize map text based on its features in the horizon-
tal and vertical dimensions. However, for the case of text

oriented in other directions, this method requires further
processing and improvements. Overall, the development of
an approach that can enable the automatic detection of the
positions of text units from the complicated background of
topographic maps remains an open problem.

Once text units are available as a result of text unit separa-
tion, the task of text recognition consists of text localization
and text classification [2], [3], [16], [12]. A direct and sim-
ple approach is to exploit optical character recognition (OCR)
engines, as reported in many previous works on topographic
map text recognition [15], [16], [21]. In particular, the emer-
gence of deep learning approaches has greatly facilitated
OCR tasks [24]–[27]. To address the existing challenges
facing the recognition of map text from optical topographic
maps, this paper proposes a methodological framework that
combines deep learning techniques with the use of a gazetteer
to enable the automatic and accurate understanding of the
content of an optical topographic map. The remainder of this
paper is organized as follows. Section 2 discusses previous
works related to the topic of this paper. Section 3 introduces
the details of the proposed methodological framework, which
includes map text detection via deep learning, text unit sep-
aration via graph-based segmentation and clustering, OCR
via an OCR engine, and digital-gazetteer-based map con-
tent understanding. Section 6 presents experimental results
obtained for twenty topographic maps. Section 7 summarizes
the contributions of this paper and the prospects of automatic
map text detection.

II. RELATED WORK
A. FASTER RCNN
As an approach designed for localization and classification
based on a cutting-edge deep convolutional neural network
(DCNN), Faster R-CNN has become the state of the art in
object detection according to the results obtained the PAS-
CAL VOC 2007 and 2012 Test Sets [28]. Faster R-CNN is
a deep convolutional neural network developed based on the
architecture of fast R-CNN by adding RPN. RPN is a novel
fully convolutional network, which refers to a key component
of Faster RCNN. Compared with two similar approaches,
namely, Region CNN (R-CNN) and Fast R-CNN, Faster R-
CNN more efficiently addresses three main challenges of
object detection: 1) the prediction of region proposals at
multiple scales and ratios, 2) training on regional proposals
for object detection, and 3) the unification of the Region
Proposal Network (RPN) approach with the convolutional
network (Fast R-CNN) approach. Faster R-CNN has been
applied for a number of object detection tasks, such as face
detection [29], individual recognition [30], target detection
from satellite images [31], and urban scene analysis [32].

Figure 1 shows the architecture of Faster R-CNN [28],
which consists of two modules: an RPN and a Fast
R-CNN detection network. Both networks share a convolu-
tional network, which is labelled as ‘‘conv layers’’ in Figure 1.
This convolutional network uses a DCNN approach (such as
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FIGURE 1. Architecture of Faster R-CNN [28].

ZF [33] or VGG-16 [34]) to produce feature maps from the
original image.

Then, based on the feature maps, the RPN generates region
proposals that may contain target objects. It enables end-to-
end training to achieve an appropriate trade-off between the
accuracy and computational efficiency with which the region
proposals are generated. Moreover, in Faster R-CNN, anchor
boxes and aspect ratios are used to optimize the positions and
shapes of the region proposals. An anchor boxwill be selected
as a positive sample of a region proposal if it has the highest
Intersection-over-Union (IoU) overlap with the ground-truth
box. The loss function is defined as follows [28]:

Floss (Pi,Bi) =
1

Ndim

∑
i

Ldim(Pi,WPi)+λ
1
Nreg

∑
i

WPi

·Lreg(Bi,WBi) (1)

where i denotes the index of the anchor box andPi denotes the
probability that anchor box iwill be predicted to be an object.
WPi is equal to 1 when anchor box i is a positive sample;
otherwise, WPi is equal to 0. Ndim and Nreg denote the mini-
batch size and the total number of anchor boxes, respectively.
Bi and WBi are the vectors of the four corner coordinates
of the predicted bounding box and the ground-truth bound-
ing box, respectively. Ldim() is the logistic loss between the
object class and the non-object class, and Lreg(Bi,WBi) is
a robust loss function, the details of which can be found in
Reference [35].

Finally, the Fast R-CNN detection network is used to
determine whether a region proposal belongs to any one of
a set of predefined categories. In Figure 1, region of interest
(ROI) pooling is a neural network layer for determining

FIGURE 2. Architecture of the proposed methodological framework.

the probability of each region proposal being a predefined
category. Since the RPN and the Fast R-CNN each fine-
tune the architecture of the convolutional layer, an alternating
training strategy is used to enable feature sharing between two
convolutional layers. This alternating training strategy serves
as the basis for an iterative fine-tuning process that alternates
between the RPN and the Fast R-CNN.

B. GOOGLE TESSERACT OCR ENGINE
The success of deep learning techniques in OCR raises the
potential for achieving automated text recognition for optical
topographic maps. However, several characteristics of map
text hinder the application of OCR for map text recogni-
tion. First, most OCR models and engines are designed to
recognize text that is unaffected by noise, which is never
the case in topographic maps. Moreover, unlike the text in
typical text documents, the text units in topographic maps are
typically rotated at a variety of angles. Most state-of-the-art
OCR models and engines are incapable of recognizing such
oblique text.

The Google Tesseract OCR engine is an open-source
engine that supports the recognition of text information from
binary images. It was first developed by Google in 2006
[36], [37]. The Tesseract OCR engine follows a process that
includes text line detection, word extraction, and word recog-
nition. The process of text line detection and word extraction
consists of three steps: 1) the detection of text lines via blob
filtering and line construction, 2) the fitting of baselines with
quadratic splines, and 3) the division of each line of text
into characters. The word recognition process in Tesseract
consists of the classification of characters derived from the
detected lines of text using an adaptive classifier. Additional
operations are also implemented to handle jointed characters
and broken characters.

Version 2 of Tesseract enables the recognition of text
in more than 100 languages and supports a variety of for-
mats, including images and plain text. Moreover, Tesseract
also offers an interface for conducting further training when
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FIGURE 3. Illustrations of training text samples.

additional training text data become available. More details
can be found at https://github.com/tesseract-ocr/tesseract.
As one of the most accurate OCR engines currently
available [37], Tesseract OCR has been used in a number
of applications for natural language processing (NLP), text
recognition and document analysis [38]–[40].

III. METHODOLOGY FRAMEWORK
A. FRAMEWORK OF THE INTELLIGENT TOPOGRAPHIC
MAP READER
Figure 2 illustrates the proposed methodological framework.
The first part of the framework is designed to fine-tune the
Faster R-CNN architecture based on training samples ori-
ented at different angles and printed by different colors. from
different backgrounds, which are manually selected from the
optical topographic map. Moreover, data augmentation is
used to increase the diversity of the training samples and
further boost the performance of the neural network. In the
second part of the framework, based on the fine-tuned Faster
R-CNN architecture, the regions of the topographic map
that contain map text are detected, and the text units are
then separated from other graphical features via graph-based
segmentation [41] and DBSCAN clustering [42], [43]. In the
third part of the framework, we use a pre-trained OCR engine,
namely, Google Tesseract, to identify map text as geographi-
cal names. In the last part of the framework, the Geographical
Names Information System (GNIS), which was developed
by the United States Geological Survey (USGS) as a stan-
dard repository of domestic geographical name data [44],
is accessed via geospatial semantic queries to determine the
content and coverage of the topographic map. The details of
each part of the framework are introduced in the following
subsections.

B. TRAINING DATA SELECTION AND DATA
AUGMENTATION
To our knowledge, text datasets for topographic maps are
not yet available. Thus, we first selected text samples for
training from several optical topographic maps. These topo-
graphic maps can be accessed via the portal for the US Topo
dataset on the National Map website: https://nationalmap.

gov/ustopo/index.html. Additionally, since the dimensions
of the original topographic maps are too large for efficient
training, we partitioned each entire topographic map into sub-
images with dimensions of 600∗600. Then, we used a tool
named LabelImg [45] to label the positions of words and
terms. Figure 2 illustrates some examples of our selected
training samples.

The total number of labelled samples was 10200. Then, we
conducted data augmentation on each labelled sample. The
data augmentation process included rotations and random
cropping. Intensity stretching and modification were not con-
sidered since the colours assigned to the map text are fixed.
After data augmentation, we had a total of 1673 samples from
12 topographic maps with which to complete the training
process.

C. MAP TEXT DETECTION WITH FASTER R-CNN
In this paper, each map text unit is regarded as an object in
a topographic map, and Faster R-CNN is exploited for the
localization and recognition of topographic map text units.
The DCNN used in this study was a pretrained VGGNet
model. In the first module, the key parameters include the
dimensionality of the anchor boxes, the aspect ratios and the
IoU in the loss function. The details of the anchor boxes,
aspect ratios, and IoU can be found in [28]. Several previous
papers have also discussed the influences of the box sizes and
aspect ratios in localization with Faster R-CNN [29], [46],
[47]. In the original Faster R-CNN, the anchor box sizes are
128∗128, 256∗256 and 512∗512, and the aspect ratios are
1:1, 1:2 and 2:1. Considering the typical geometric shapes,
scales and positions of map text units, we adopt three box
sizes: 64∗64, 128∗128, and 256∗256. This means that the
anchor scales are 4, 8 and 16, respectively. The box size of
512∗512 is discarded because the sizes of map text units are
always relatively small compared with the entire topographic
map.

In addition to the changes in box sizes, we adopt eight
aspect ratios: 1:4, 2:5, 1:2, 1:3, 2:1, 5:2, 3:1, and 4:1. The
original aspect ratio of 1:1 is discarded because single let-
ters are rarely observed in digital maps and because the
minimal bounding box of most map text units has a long
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and narrow geometric shape. We also tested other aspect
ratios of the forms 1:∗ and ∗:1 (∗ ≥ 5) with respect to
the anchor boxes; however, we observed that including these
aspect ratios yielded little improvement in the accuracy of the
generated region proposals while significantly increasing the
computational load. Moreover, in this study, a positive label
was assigned to an anchor box with an IoU overlap greater
than 0.7, which is similar to the value adopted in the original
model, as reported in [28].

After obtaining the region proposals with the RPN,
we apply the alternating training strategy to complete the
sharing of the convolutional layers between the Fast R-CNN
and the RPN. The Fast R-CNN is pretrained with ImageNet,
the details of which can be found in [35].

Figure 4 illustrates an example of the results gener-
ated by this stage of the proposed intelligent map reader.
Figure 4(A) shows the original topographic map. Specifi-
cally, the map name and map extent are not available here.
Figure 4(B) shows the detection results on the entire map.
The red boxes indicate correct detection results, whereas
the purple and green boxes indicate false negative results
and false positive results, respectively. Only one word,
‘‘Ramanda’’, is not completely detected and is instead
detected as two separate text units: ‘‘Raman’’ and ‘‘a’’. The
false negative results include US Route numbers, which
are mistakenly classified as map texts units rather than as
components of the US Route symbols in the topographic
map.

D. TEXT UNIT SEPARATION WITH SEGMENTATION AND
CLUSTERING
For the identification of text information, the text units
in the detection results should be separated from the map
background and map noises. We propose an approach that
combines graph-based segmentation and spectral unmixing.
Considering that the colours and shapes of text units are gen-
erally distinct from the background in topographic maps, it is
efficient to perform graph-based segmentation by creating a
graph to represent the relationships among the meaningful
image regions throughout the entire image. Moreover, most
of noises have smaller area and a distance to text units in
the result of map text detection. Thus, these noises can be
removed based on the area of segmented sub-regions. Such
a graph-based segmentation for the detection area can be
represented as follows:

G = (V ,E) (2)

where G, V and E denote the graph (or detection area), the
set of nodes in the graph, and the set of undirected edges that
connect nodes in the graph. We also define wi,j as the weight
of the edge between nodes vi and vj.

The graph-based segmentation partitions G into regions
gk = (V ,Ek ), where Ek ⊂ E and k is the index of the
segmented regions.

FIGURE 4. Illustration of the detection results. (A) Original topographic
map. (B) Detection results.

For each pair of segmented regions, a function called f () is
used to predict whether there is a boundary between them:

f (Ek1,Ek2) =
{
true, if dif (Ek1,Ek2) > int_dif (Ek1,Ek2)
false, otherwise

(3)

where dif (Ek1,Ek2) is the difference between Ek1 and Ek2
and is calculated as follows:

dif (Ek1,Ek2) = min
(
wi,j

)
, vi ∈ Ek1, vj ∈ Ek2 (4)

Another element in Equation (2), int_dif (Ek1,Ek2), is the
internal difference between Ek1 and Ek2 and is calculated
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FIGURE 5. Illustration of text units separation.

using the following equation:{
true, if dif (Ek1,Ek2) > int_dif (Ek1,Ek2)
false, otherwise

(5)

We assume that the image regions after graph-based seg-
mentation are Rx , x ∈ N , where N is the total number of
segmented image regions.

Then, we cluster all segmented regions into multiple mean-
ingful groups. First, the HSV colour space is normalized as
a new three-dimensional space. Second, we use DBSCAN
to perform clustering on this new three-dimensional space.
The DBSCAN clustering process depends on two parameters,
eps and minPts. eps defines the maximal distances in terms
of the hue, saturation and value for which two samples can
be considered part of the same group. minPts defines the
minimal number of samples that must be included in the
neighbourhood for a sample to be considered a core point.
Finally, we select the group that is closest to the map text
in the colour space. We illustrate some separation results for
detected map texts in Figure 5.

E. MAP TEXT IDENTIFICATION WITH GOOGLE TESSERACT
OCR ENGINE
After text detection and text unit separation, we have an
image that includes map text alone. However, in practice,
the OCR results of Google Tesseract are sensitive to rotation
and irrelevant noise. In Subsection 3.4, we described the
removal of irrelevant noise with our proposed method for
text unit separation. Additionally, to address oblique text,
we propose an approach based on the creation of a minimal
bounding box (MBB), as shown in Figure 6.

Figure 6(A) illustrates an oblique text unit derived from a
topographicmap. The blue and green rectangles represent this
oblique text unit’s MBB and its rotated MBB, respectively.

FIGURE 6. The proposed approach for addressing oblique text.
(A) Illustration of the proposed approach. (B) Examples of rotation.

2 denotes the angle between the horizontal dimension and the
long edge of the rotated MBB. Using the following equation,
we rotate the oblique text unit into an upright orientation.

[xnew, ynew, z]T =

 cosθ,−sinaθ, 0sinθ, cosθ, 0
0, 0, 1

⊗ [x, y, z]T (6)

where x, y and z denote the horizontal coordinate, the vertical
coordinate and the intensity of the corresponding pixel in the
original bounding box, respectively, whereas xnew and ynew
denote the horizontal and vertical coordinates, respectively,
of a pixel in the bounding box after rotation. Generally, in a
topographic map, the angle of each character in the same
place name may be slightly different. For example, each
character of the word ‘‘River’’ in Figure 3 is placed at a
different angle. We ignore this issue since in practice, the text
will be sufficiently close to upright after rotation for correct
identification by Tesseract OCR.

Then, we exploit the Google Tesseract OCR engine to iden-
tify the detected map text units. The identification results are
machine-readable text units that can be subjected to natural
language processing (NLP) and imported into a database.
Based on the example text units shown in Figure 6, the results
ofmap text identification are given in the column titled ‘‘OCR
results’’ in Figure 7.

F. DIGITAL GAZETTEER-BASED MAP CONTENT
UNDERSTANDING
Digital gazetteer is a tool for organizing knowledge and
information about named places for the standardization of
place names and spellings, or toponyms [48]. Due to the
growing number of data acquisition and cartography tech-
niques, conflations of place names are commonly observed
in digital maps generated at different times, with different
focuses, or with other differences [49]. Thus, gazetteers that
enable the searching and retrieval of place names are receiv-
ing increasing attention from government agencies, educa-
tional institutions, and commercial enterprises. Generally, the
information and knowledge included in a gazetteer consist
of [48] place names, geographic locations, place descriptions,
and geographical features and/or place types.

A topographic map is regarded as an important type of map
that characterizes the details of the terrestrial surface over a
large area. To facilitate the use of topographic maps, the U.S.
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FIGURE 7. Illustration of map text identification with the Google
Tesseract OCR engineer.

Board on Geographic Names has established an adminis-
trative gazetteer service called the GNIS to standardize the
places named in topographic maps. In GNIS, all place names
and geographic features printed in topographic maps have
been semantically organized and defined. Moreover, names
in the GNIS are organized as a hierarchy, which might be
useful to support semantic queries. The impacts of the GNIS
on information sharing and management have been reported
in a previous study [48]–[50]. In the framework proposed
in this paper, the contents of the map text units recognized
from topographic maps are used as keywords to access
relevant geo-information and knowledge from the GNIS
(https://geonames.usgs.gov/apex/f?p= 138:1:114581617701
45). The useful information for automatic map understand-
ing that is available by querying the GNIS is listed as
follows:

• Basic information, including IDs, place names, place
types, citations, entry data, and elevations.

• Variant names, including all names by which a place
is or has been known, regardless of whether this name
is used currently.

• County information, including the area in which a
named place is, such as the county name, county code,
state name, state code, and country name.

• Geographical coordinates, including the latitude and
longitude of a place.

Figure 8 illustrates how the information accessed from
the GNIS supports map understanding. Figure 8(A) lists the
information obtained by accessing the GNIS with respect
to the detected map text. Figure 8(B) shows the contents
of this topographic map, which are organized in a hierar-
chy based on the contents of the map text recognized from
the topographic map. The text phrases enclosed in purple

rectangles are those detected from the topographic map,
the text phrases enclosed in blue rectangles are those obtained
through reasoning based on the detected text, and the text
phrases enclosed in grey rectangles are the detected text
for which no descriptions or attributes are available in the
GNIS. Based on the names Tempe Butte and Arizona State
University, we can deduce that this map covers part of Tempe.
Additionally, based on the names Marlborough Park, Papago
Peak Village, and others, we can deduce that this map also
covers part of Scottsdale. Finally, by combining the names
Tempe, Scottsdale and Salt River, we can conclude that the
coverage of this map includes the southern areas of Scottsdale
and the northern areas of Tempe where it touches the Salt
River. Additionally, we can further estimate the coverage
of this map based on the geographical coordinates of each
detected feature (or map text unit).

However, the information accessed from the GNIS still
seems inadequate to support semantic understanding based
on timely updates of geographical information. Previous
works [51]–[53] have reported efforts to integrate ontologies
and gazetteers to generate geospatial knowledge. Information
accessed from the GNIS is useful to facilitate knowledge
discovery through the integration of ontologies developed
based on geographical context, such as the Global Change
Master Directory [54], USTopographic [55], SWEET [56],
and other geographical domain ontologies [57]. Based on the
logical reasoning offered by ontologies, the GNIS enabled
information queries can be extended to semantic queries by
means of geoSPARQL [58]. In addition to geo-semantic rea-
soning and ontologies, we can also use linked geodatabases
for knowledge discovery. Linked geodatabases provide mas-
sive amounts of spatial data in a variety of contexts, which
is crucial for enabling geo-semantic queries. Finally, the
emergence of volunteered geographic information [59] offers
an increased potential to integrate detection results for map
text (place names) from topographic maps with other geo-
graphical information, such as population data and disaster
data. The information contained in volunteered data from
social media (e.g., Twitter, Facebook) and digital map tagging
(e.g., Google Maps) carries great potential to facilitate the
understanding of topographic map content.

IV. EXPERIMENTS
A. RESULT OF MAP TEXT DETECTION
As mentioned in Subsection 3.2, 1673 samples selected from
12 topographic maps were used to train the Faster R-CNN
architecture to support map text recognition. In this experi-
ment, an Nvidia TITAN X GPU was used for training and
testing. Then, we use the fine-tuned Faster R-CNN to detect
the map text from twenty topographic maps, which were
selected from different states in the U.S. and included urban
and rural scenes, mountains, coasts, lakes, rivers, and other
features. The differing scenes meant that the contents and
backgrounds of these twenty topographic maps varied signif-
icantly. Table 1 lists the names of the topographic maps used
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FIGURE 8. Illustration of accessing the GNIS for map understanding. (A) Information regarding detected map text accessed from the GNIS.
(B) Relationships created based on GNIS information.

in the experiment and their dimensionalities, which ranged
from 8900×11400 to 9100×11600.

Due to page limitations, we selected one these maps to
present the results of map text detection, text unit separation,
and text recognition. This map is the USGS USTopo 7.5-
minute map for Onego, WV 2016. Figure 9(A) shows the
detection results for the entire map. In Figure 9(A), the red
boxes indicate the correctly detected text units, or the true
positive results. False positive and false negative results are
indicated by purple and green boxes, respectively. Three
text units are detected incorrectly; these three text units
are components of the U.S. Route symbol and indicate the
numbers of U.S. Routes. The only false positive result is
for a place named ‘‘ENTERPRISE’’, for which the text is
curved. The bounding box produced by the Faster R-CNN
only partially covers the entire word because of its length.
Other than this place name, all names in this topographic
map are successfully detected. Figure 9(B) shows the details
of example detection results selected from all twenty topo-
graphic maps. For each detected text unit, the red box repre-
sents the MBB, which contains the majority of the characters
of the map text in each case. Detection with the Faster R-
CNN architecture is robust to variations in colour and texture,
as seen from the fact that the detection results include map
text units of different colours and textures. Moreover, the
detected map text units shown in Figure 9(B) are oriented
at different angles, demonstrating robustness to rotational
variations. Finally, although these map text units touch other
map features, such as contours, map lines, and water bodies,
the Faster R-CNN architecture has the ability to distinguish
true text features from a variety of background features. Thus,
the results shown in Figure 9(A) and Figure 9(B) validate the
capability of the Faster R-CNN approach for detecting map
text from complicated backgrounds.

Moreover, the evaluations of the detection results for the
other topographic maps are given in Table 1. We provide
the average precision (AP) of the detection of map text from
each of the twenty topographic maps, the details of which are

listed in Table 1. Topographic maps of urban scenes contain
significantly more map text. Consequently, the AP values for
map text recognition that are obtained on topographic maps
of urban scenes are lower than those achieved for topographic
maps of natural or rural scenes. Generally, the AP values for
map text recognition range between 87% and 94%, thereby
proving the stability of the Faster R-CNN method in pro-
ducing accurate detection results for map text in topographic
maps.

B. RESULT OF TEXT UNIT SEPARATION
Now, we present the results of using our proposed approach
to separate the text in the detected text units from the back-
ground and other geographic features depicted in the topo-
graphic maps. Figure 10 shows selected separation results for
text units from all twenty topographic maps. In Figure 10,
the original data are the detection results, and the separated
results are the results obtained after text unit separation.
The text to be separated had a variety of characteristics
and appeared against complicated backgrounds. First, these
lines of text were printed in different colours, including
black and blue, and some even included attached shadows
(e.g., CHELAN). Additionally, they were placed at different
angles. For example, the place name ‘‘ENTERPRISE’’ was
arranged on a curve. Finally, the greatest challenge was to
separate map text from complicated background contexts,
especially for text touching other map features, such as
‘‘Columbia’’, ‘‘Smith’’, and ‘‘SKYLINE’’. It can be observed
that all detected map texts were successfully separated from
a variety of backgrounds and other map features.

Before using the Tesseract OCR engine to identify the
detected map text units, we applied the proposed approach
for straightening oblique map text, the results of which are
shown in Figure 11. In Figure 11, the original data are the
map text units at different angles obtained after text unit
separation. The map text samples in Figure 11 have diverse
angles, as is typical of topographic maps. The straightening
results confirm that the proposed approach can effectively
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FIGURE 9. Detection results. (A). The entire map. (B) Detected map text.

straighten map text placed at different angles. Such straight-
ening might be particularly challenging when a place name is

designed with a curved shape. However, place names that are
printed with non-linear shapes are rare in topographic maps.
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FIGURE 10. Illustration of the clustering results.

FIGURE 11. Illustration of the straightening results.

Although some straightened text units might not be exactly
horizontal, our experimental results show that this will not
affect the performance of Google Tesseract OCR engine in
identifying map text.

The reason for this success is that graph-based segmenta-
tion is invariant to rotation. Although graph-based segmenta-
tion is prone to over-segmentation, the over-segmented sub-
regions can subsequently be grouped into meaningful clusters
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FIGURE 12. Illustration of the OCR results.

TABLE 1. Evaluation of the map text detection and identification results from 20 topographic maps, with anchor scales of 4, 8 and 16 and aspect ratios
of 1:4, 2:5, 1:2, 1:3, 2:1, 5:2, 3:1 and 4:1.

by means of DBSCAN based on their intensity similarity.
Thus, the results shown in Figure 11 validate the performance
and robustness of our proposed approach for separating text
units from other map features.

After straightening, we applied the Google Tesseract OCR
engine for map text recognition. The accuracy results for
text identification are listed in Table 1. Tesseract achieved
an accuracy of almost 100% in recognizing the detected,
separated and straightened map text in this experiment.
Figure 11 shows the results of converting the detected map
text into a machine-readable format.

Overall, the robustness and effectiveness of our proposed
approach for map text recognition are validated by the results
shown in Figures 9 to 12 and Table 1. The experimental
results demonstrate that the proposedmethodology, including
map text detection, map text separation and map text recog-
nition, enables the successful recognition of almost all map
text in a topographic map.

C. RESULT OF MAP UNDERSTANDING
Based on the map text recognized from the USGS US Topo
7.5-minute map for Onego, WV 2016, Table 2 lists the

information obtained from the GNIS with respect to each
recognized phrase. Here, we present the class, state, county
and map name information for each phrase of map text
derived from the topographic map. Based on the information
listed in Table 2, we conclude that the location covered by
this map is West Virginia, U.S. The regions contained in this
map mainly cover Pendleton County, which includes dozens
of streams, arroyos, or valleys; four populated places called
Onego, Teterton, Seneca Rocks and Macksville; and Monon-
gahela National Forest. Since no street names or building
names were detected in this topographic map, we can deduce
that this map represents a large-scale landscape in whichmost
areas are natural scenes. Moreover, because of the inclusion
of Monongahela National Forest and the dozens of streams,
the land cover in the area represented by this topographic map
is expected to have rich forest coverage and adequate water
distribution.

In addition to producing series of topographic maps,
the Center of Excellence for Geospatial Information Science
of the USGS has established an ontology called USTopo-
graphic to provide access to formal definitions of classes used
in topographic maps. Moreover, extended attributes of the
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TABLE 2. Information obtained from the GNIS with respect to the detected map text.

TABLE 3. Extended formal definitions and attributes associated with classes and place names listed in Table 2.

places named in Table 2 can be accessed from volunteered
information and linked databases. Table 3 lists the extended
formal definitions and attributes associated with some of the
classes and place names listed in Table 2. In the future, wewill
establish a query system to support semantic queries based on
the information accessed from the GNIS.

V. CONCLUSION
This paper reports our efforts to develop a methodological
framework to support the automatic understanding of the
contents of topographicmaps via deep learning and gazetteer-
supported information queries. The map text recognition
process consists of detecting map text from a map context
based on Faster R-CNN, separating the map text from the
background in the map area associated with each detected
text unit, and recognizing the contents of the text units by
using the Google Tesseract OCR engine. The results of map
text recognition are then converted into a machine-readable
format to facilitate the retrieval of relevant information from
a gazetteer called the GNIS. In the future, the map text recog-
nition results obtained with our proposed methodology may
be combined with ontologies, open linked databases or vol-
unteered geographic information to efficiently support carto-
graphical applications. Our experimental results validate the

efficiency and robustness of our proposed methodology for
map text recognition and map content understanding.

Previous works on the detection of map text from optical
topographic maps have used geometric features, the Hough
transform, and segmentation. However, these approaches
still face challenges when detecting map text from compli-
cated contexts, especially when the map text is touching
other map features, such as contours or geographical fea-
tures. The DCNN approach has markedly outperformed other
approaches in object recognition and OCR [60], [61]. The
investigations conducted in this study prove that the DCNN
approach has great potential to facilitate automatic and effi-
cient map text recognition and map content understanding.
We expect the proposed intelligent map reader to contribute
to a variety of applications in the GeoAI field.

In the future, a number of possible extensions of this
research might be worthy of investigation. In the proposed
intelligent map reader, map text detection and map text
recognition are performed separately. We plan to develop
a new DCNN framework for joint map text detection and
recognition. Moreover, to enable further knowledge discov-
ery from topographic maps, we will explore a methodologi-
cal framework in which the proposed intelligent map reader
is integrated with ontologies. We hope that the proposed
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intelligent map reader will contribute to the implementation
of AI techniques in cartographical applications and geograph-
ical information science.

REFERENCES
[1] A. Pezeshk and R. L. Tutwiler, ‘‘Extended character defect model for

recognition of text from maps,’’ in Proc. SSIAI, Austin, TX, USA,
May 2010, pp. 85–88.

[2] A. Pezeshk and R. L. Tutwiler, ‘‘Improved multi angled parallelism for
separation of text from intersecting linear features in scanned topographic
maps,’’ in Proc. ICASSP, Dallas, TX, USA, Mar. 2010, pp. 1078–1081.

[3] A. Pezeshk and R. L. Tutwiler, ‘‘Automatic feature extraction and text
recognition from scanned topographicmaps,’’ IEEE Trans. Geosci. Remote
Sens., vol. 49, no. 12, pp. 5047–5063, Dec. 2011.

[4] M. P. Deseilligny et al., ‘‘Topographic maps automatic interpretation
: Some proposed strategies,’’ in Proc. GREC, Nancy, France, 1997,
pp. 175–193.

[5] A. Khotanzad and E. Zink, ‘‘Contour line and geographic feature extraction
from USGS color topographical paper maps,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 25, no. 1, pp. 18–31, Jan. 2003.

[6] H. Wang and H. Yan, ‘‘Text extraction from color map images,’’
J. Electron. Imag., vol. 3, no. 4, pp. 390–396, Oct. 1994.

[7] M. Caprioli and P. Gamba, ‘‘Detecting and grouping words in topographic
maps by means of perceptual concepts,’’ in Proc. EUSIPCO, Tampere,
Finland, Sep. 2000, pp. 1–4.

[8] H. Yamada, K. Yamamoto, and K. Hosokawa, ‘‘Directional mathematical
morphology and reformalized Hough transformation for the analysis of
topographic maps,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 4,
pp. 380–387, Apr. 1993.

[9] Z. Lu, ‘‘Detection of text regions from digital engineering drawings,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 4, pp. 431–439, Apr. 1998.

[10] D. Dori and Y. Velkovitch, ‘‘Segmentation and recognition of dimension-
ing text from engineering drawings,’’ Comput. Vis. Image Understand.,
vol. 69, no. 2, pp. 196–201, 1998.

[11] G. K. Myers, P. G. Mulgaonkar, C.-H. Chen, J. L. DeCurtins, and E. Chen,
‘‘Verification-based approach for automated text and feature extraction
from raster-scanned maps,’’ in Proc. GREC, University Park, PA, USA,
1995, pp. 190–203.

[12] A. Pezeshk and R. L. Tutwiler, ‘‘Text segmentation and reorientation from
scanned color topographic maps,’’ in Proc. ICSIP, Kailua-Kona, HI, USA,
2008, pp. 94–97.

[13] R. Cao and C. L. Tan, ‘‘Separation of overlapping text from graphics,’’ in
Proc. ICDAR, Seattle, WA, USA, Sep. 2001, pp. 44–48.

[14] C. L. Tan, and P. O. Ng, ‘‘Text extraction using pyramid,’’ Pattern Recog-
nit., vol. 31, no. 1, pp. 63–72, 1998.

[15] L. Li, G. Nagy, A. Samal, S. Seth, and Y. Xu, ‘‘Integrated text and line-art
extraction from a topographic map,’’ Int. J. Doc. Anal. Recognit., vol. 2,
no. 4, pp. 177–185, 2000.

[16] R. Cao and C. L. Tan, ‘‘Text/graphics separation in maps,’’ in Proc. GREC,
Kingston, ON, Canada, 2001, pp. 167–177.

[17] K. Tombre, S. Tabbone, L. Pélissier, B. Lamiroy, and P. Dosch,
‘‘Text/graphics separation revisited,’’ in Proc. DAS, Princeton, NJ, USA,
2002, pp. 200–211.

[18] D. X. Zhong, ‘‘Extraction of embedded and/or line-touching character-like
objects,’’ Pattern Recognit., vol. 35, no. 11, pp. 2453–2466, 2002.

[19] A. Velázquez and S. Levachkine, ‘‘Text/graphics separation and recog-
nition in raster-scanned color cartographic maps,’’ in Proc. GREC,
Barcelona, Spain, 2003, pp. 63–74.

[20] P. P. Roy, E. Vazquez, J. Lladós, R. Baldrich, and U. Pal, ‘‘A system to
segment text and symbols from color maps,’’ in Proc. GREC, Curitiba,
Brazil, 2007, pp. 245–256.

[21] J. Pouderoux, J.-C. Gonzato, A. Pereira, and P. Guitton, ‘‘Toponym recog-
nition in scanned color topographic maps,’’ in Proc. ICDAR, Curitiba,
Brazil, Sep. 2007, pp. 531–535.

[22] N. Kerle and J. de Leeuw, ‘‘Reviving legacy population maps with object-
oriented image processing techniques,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 7, pp. 2392–2402, Jul. 2009.

[23] D. B. Dhar and B. Chanda, ‘‘Extraction and recognition of geographical
features from paper maps,’’ Int. J. Doc. Anal. Recognit., vol. 8, no. 4,
pp. 232–245, 2006.

[24] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, ‘‘End-to-end text recognition
with convolutional neural networks,’’ in Proc. ICPR, Tsukuba, Japan,
Nov. 2012, pp. 3304–3308.

[25] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Deep features for text
spotting,’’ in Proc. ECCV, Zurich, Switzerland, 2014, pp. 512–528.

[26] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Reading
text in the wild with convolutional neural networks,’’ Int. J. Comput. Vis.,
vol. 116, no. 1, pp. 1–20, 2016.

[27] A. Gupta, A. Vedaldi, and A. Zisserman, ‘‘Synthetic data for text localisa-
tion in natural images,’’ in Proc. CVPR, Las Vegas, NV, USA, Jun. 2016,
pp. 2315–2324.

[28] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[29] H. Jiang and E. Learned-Miller, ‘‘Face detection with the faster R-CNN,’’
in Proc. FG, Washington, DC, USA, May/Jun. 2017, pp. 650–657.

[30] G. S. Cheema and S. Anand, ‘‘Automatic detection and recognition
of individuals in patterned species,’’ in Proc. ECML PKDD, Skopje,
Macedonia, 2017, pp. 27–38.

[31] P. Zhou, G. Cheng, Z. Liu, S. Bu, and X. Hu, ‘‘Weakly supervised target
detection in remote sensing images based on transferred deep features and
negative bootstrapping,’’ Multidimensional Syst. Signal Process., vol. 27,
no. 4, pp. 925–944, 2016.

[32] M. Kampffmeyer, A. B. Salberg and R. Jenssen, ‘‘Semantic segmenta-
tion of small objects and modeling of uncertainty in urban remote sens-
ing images using deep convolutional neural networks,’’ in Proc. CVPR,
New York, NY, USA, Jun./Jul. 2006, pp. 680–688.

[33] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding con-
volutional networks,’’ in Proc. ECCV, Zurich, Switzerland, 2014,
pp. 818–833.

[34] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional
networks for large-scale image recognition.’’ [Online.] Available:
https://arxiv.org/abs/1409.1556

[35] R. Girshick. (2015). ‘‘Fast R-CNN.’’ [Online.] Available:
https://arxiv.org/abs/1504.08083

[36] A. Kay, ‘‘Tesseract: An open-source optical character recognition engine,’’
Linux J., vol. 2007, p. 2, Jul. 2007.

[37] R. Smith, ‘‘An overview of the Tesseract OCR engine,’’ in Proc. ICDAR,
Parana, Brazil, Sep. 2007, pp. 629–633.

[38] L. Vincent, ‘‘Google book search: Document understanding on a massive
scale,’’ in Proc. ICDAR, Parana, Brazil, Sep. 2007, pp. 819–823.

[39] C. Patel, A. Patel, and D. Patel, ‘‘Optical character recognition by open
source OCR tool tesseract: A case study,’’ Int. J. Comput. Appl., vol. 55,
no. 10, pp. 50–56, 2012.

[40] R.Mithe, S. Indalkar, and N. Divekar, ‘‘Optical character recognition,’’ Int.
J. Recent Technol. Eng., vol. 2, no. 1, pp. 72–75, 2013.

[41] P. F. Felzenszwalb and D. P. Huttenlocher, ‘‘Efficient graph-based image
segmentation,’’ Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, Sep. 2004.

[42] Q. Ye, W. Gao, and W. Zeng, ‘‘Color image segmentation using density-
based clustering,’’ in Proc. ICME, Baltimore, MD, USA, Jul. 2003,
pp. II-401–II-403.

[43] J. Jiao, Q. Ye, and Q. Huang, ‘‘A configurable method for multi-style
license plate recognition,’’ Pattern Recognit., vol. 42, no. 3, pp. 358–369,
2009.

[44] J. A. Kelmelis, M. L. DeMulder, C. E. Ogrosky, N. J. Van Driel, and
B. J. Ryan, ‘‘The NationalMap from geography to mapping and back
again,’’ Photogramm. Eng. Remote Sens., vol. 69, no. 10, pp. 1109–1118,
2003.

[45] Tzutalin. (2015). LabelImg. Git Code. [Online]. Available:
https://github.com/tzutalin/labelImg

[46] X. Chen and A. Gupta. (2017). ‘‘An implementation of faster
RCNN with study for region sampling.’’ [Online]. Available:
https://arxiv.org/abs/1702.02138

[47] X. Sun, P. Wu, and S. C. H. Hoi. (2017). ‘‘Face detection using deep
learning: An improved faster RCNN approach.’’ [Online]. Available:
https://arxiv.org/abs/1701.08289

[48] M. F. Goodchild and L. L. Hill, ‘‘Introduction to digital gazetteer research,’’
Int. J. Geograph. Inf. Sci., vol. 22, no. 10, pp. 1039–1044, 2008.

[49] J. T. Hastings, ‘‘Automated conflation of digital gazetteer data,’’
Int. J. Geograph. Inf. Sci., vol. 22, no. 10, pp. 1109–1127, 2008.

[50] M. F. Goodchild, P. Fu, and P. Rich, ‘‘Sharing geographic information:
An assessment of the geospatial one-stop,’’ Ann. Assoc. Amer. Geograph.,
vol. 97, no. 2, pp. 250–266, 2007.

VOLUME 6, 2018 25375



H. Li et al.: Intelligent Map Reader: Framework for Topographic Map Understanding With Deep Learning and Gazetteer

[51] K. Janowicz and C. Keßler, ‘‘The role of ontology in improving gazetteer
interaction,’’ Int. J. Geograph. Inf. Sci., vol. 22, no. 10, pp. 1129–1157,
2008.

[52] C. Keßler, P. Maué, J. T. Heuer, and T. Bartoschek, ‘‘Bottom-up gazetteers:
Learning from the implicit semantics of geotags,’’ in Proc. ICGeoS,
Mexico City, Mexico, 2009, pp. 83–102.

[53] S. D. Cardoso et al., ‘‘SWI: A semantic web interactive gazetteer to support
linked open data,’’ Future Generat. Comput. Syst., vol. 54, pp. 389–398,
Jan. 2016.

[54] L. M. Olsen et al. (2007). NASA/Global Change Master Directory
(GCMD) Earth Science Keywords. Version 6.0.0.0.0. [Online]. Available:
http://gcmd.nasa.gov/Resources/valids/archives/keyword_list.html

[55] E. L. Usery and D. Varanka, ‘‘Design and development of linked data from
the national map,’’ Semantic Web, vol. 3, no. 4, pp. 371–384, 2012.

[56] R. G. Raskin and J. P. Michael, ‘‘Knowledge representation in the seman-
tic Web for Earth and environmental terminology (SWEET),’’ Comput.
Geosci., vol. 31, no. 9, pp. 1119–1125, 2005.

[57] M. K. Kavouras, M. Kokla, and E. Tomai, ‘‘Comparing categories among
geographic ontologies,’’ Comput. Geosci., vol. 31, no. 2, pp. 145–154,
2005.

[58] M. Perry and J. Herring, OGC GeoSPARQL—A Geographic Query Lan-
guage for RDF Data, OGC Implementation Standard OGC 11-052r4,
2012.

[59] D. Sui, M. F. Goodchild, and S. Elwood, ‘‘Volunteered geographic infor-
mation, the exaflood, and the growing digital divide,’’ in Crowdsourc-
ing Geographic Knowledge. Dordrecht, The Netherlands: Springer, 2013,
pp. 1–12.

[60] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[61] Q. Ye and D. Doermann, ‘‘Text detection and recognition in imagery:
A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 7,
pp. 1480–1500, Jul. 2015.

HUALI LI received the B.S. degree from the
School of Remote Sensing and Information
Engineering, Wuhan University, China, in 2007,
and the M.S. and Ph.D. degrees from the State
Key Laboratory of Information Engineering,
Surveying, Mapping and Remote Sensing, Wuhan
University, in 2009 and 2012, respectively.
In 2012, she was an Assistant Professor with
Hunan University. Her research interests include
hyperspectral image processing mainly spectral

unmixing and some related applications.

JUN LIU received the B.S. and Ph.D. degrees
from the School of Remote Sensing and Infor-
mation Engineering, Wuhan University, China,
in 2007 and 2012, respectively. From 2012 to
2015, he was an Assistant Researcher Fellow with
the Chongqing Institute of Green and Intelligent
Technology, Chinese Academy of Sciences. Since
2015, he has been an Associate Researcher Fellow
with the Shenzhen Institute of Advanced Technol-
ogy, Chinese Academy of Sciences. His research

interests include image processing (such as image enhancement and image
fusion), data mining and high-performance computing in remote sensing and
geography fields.

XIRAN ZHOU (S’14) received the B.S. degree
from Ningbo University in 2010 and the M.S.
degree from Wuhan University in 2013. He is
currently pursuing the Ph.D. degree with Arizona
State University. His research interests include
computer vision, machine learning, remote sens-
ing, and GIScience.

25376 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	FASTER RCNN
	GOOGLE TESSERACT OCR ENGINE

	METHODOLOGY FRAMEWORK
	FRAMEWORK OF THE INTELLIGENT TOPOGRAPHIC MAP READER
	TRAINING DATA SELECTION AND DATA AUGMENTATION
	MAP TEXT DETECTION WITH FASTER R-CNN
	TEXT UNIT SEPARATION WITH SEGMENTATION AND CLUSTERING
	MAP TEXT IDENTIFICATION WITH GOOGLE TESSERACT OCR ENGINE
	DIGITAL GAZETTEER-BASED MAP CONTENT UNDERSTANDING

	EXPERIMENTS
	RESULT OF MAP TEXT DETECTION
	RESULT OF TEXT UNIT SEPARATION
	RESULT OF MAP UNDERSTANDING

	CONCLUSION
	REFERENCES
	Biographies
	HUALI LI
	JUN LIU
	XIRAN ZHOU


