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ABSTRACT Mobile ad-hoc networks (MANETs) are pervasive autonomous networks that will play a
vital role in future Industrial Internet-of-Things communication, where smart devices will be connected
in a completely distributed manner. However, due to lack of infrastructure and absence of centralized
administration, MANETs are shrouded with various security threats. Some internal mobile nodes in these
resource constrained networks may compromise the routing mechanism in order to launch denial-of-service
attacks to carry out distinct kinds of packet forwarding misbehaviors. In order to address this issue, in our
previous paper, we devised a trusted routing scheme with pattern discovery (TRS-PD), which identifies
packet dropping adversaries in advance by monitoring and analyzing their behavior during route discovery
phase. In this paper, we perform sensitivity analysis of TRS-PD which is carried out by varying values
of different parameters in distinct network scenarios in the existence of three distinct packet dropping
attacks. In addition, this work summarizes the attack-pattern discovery mechanism, trust model, and routing
mechanism adopted by TRS-PD in order to counter the adversaries which follow certain attack patterns
along with other adversaries. Experiments conducted with network simulator-2 indicate the correct choices
of parameter values for distinct network scenarios.

INDEX TERMS Attack-pattern discovery, industrial Internet-of-Things, mobile ad-hoc networks, packet
forwarding misbehavior, sensitivity analysis, trusted routing.

I. INTRODUCTION
After the success of cellular and Wi-Fi technologies in the
last two decades, wireless communication has become a pop-
ular way of communication in people’s day to day life [2].
Ad-Hoc networks have grown in a thick and fast way as
a result of increased need of eliminating fixed infrastruc-
ture, geographical dependence and complexity of deploy-
ment for critical applications such as Industrial IoT (IIoT),
military operations, disaster relief management, maritime
communications, intelligent transportation systems, wild-life
monitoring, health monitoring and many more [2], [3], [4].
AMobile Ad-hoc Network (MANET) is such an autonomous
distributed network of mobile nodes which supports wire-
less communication in decentralized environment with geo-
graphical independence and impulsive deployment [4]–[6].
A mobile ad-hoc cloud is formed from such aMANETwhich

inherits the merits of cloud computing paradigm such as flex-
ibility, efficient resource utilization and enhanced manage-
ability [7]–[9]. It provides services by exploiting the available
computing resources in the mobile nodes [7].

At one end, where technologies are changing the digital
world, security has still remained as amajor concern for cyber
security researchers [10], [11]. The inherent characteristics
of MANETs along with resource constraints, dynamic topol-
ogy and limited radio range bring new security challenges
for IIoT applications [12] along with other challenges such
as quality-of-service (QoS) improvement, optimal resource
management, reliability and scalability [4], [13], [14].

Secure routing in ad-hoc networks has been one of the
major concerns for researchers as the classical routing pro-
tocols for these networks assume cooperative trusted setting
among the mobile devices [15], [16]. Legitimate internal
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mobile nodes can be easily compromised by attackers in order
to perform various kinds of packet forwarding misbehaviors
to launch DoS attacks. Sequence number attacks (such as
blackhole and grayhole attacks) are such prominent DoS
attacks against classical MANET routing protocols which
may drop data packets during data transmission phase after
breaking protocol rules during route discovery phase [17].
Therefore, it is imperative to prevent protocol malfunctioning
at an early stage (during route discovery) to reduce further
damage [18]. Trust-based secure routing has caught eyes
of researchers in recent past for addressing various security
issues [19], [20]. In our previous work, we proposed a trust-
based scheme (TRS-PD) [1] which aims at detecting and
isolating distinct kinds of packet dropping adversaries in
advance.

To the best of our knowledge, TRS-PD is the first scheme
to manage trust in MANETs which attempts to discover
attack patterns followed bymalevolent nodes during the route
discovery process. This attack pattern discovery mechanism
sits on the top of the trust model and employs the Method
of Common Differences for the recorded field values of route
reply packet to discover attack patterns. As a result, adver-
saries which follow certain attack patterns are identified by
the attack pattern discovery mechanism while other packet
dropping adversaries are identified by the trust model in this
two-tier security scheme. The experimental results shown
in [1] depict that TRS-PD leads to an earlier detection of
packet dropping adversaries that follow specific patterns,
which in turn increases packet delivery rate. In this paper,
we perform sensitivity analysis of TRS-PD under different
network conditions by varying values of distrust threshold,
trust update interval and trust components’ weights. This
analysis provides the correct tuning of values of these trust
parameters in different network settings. Sensitivity analy-
sis of TRS-PD is carried out against three distinct adver-
sary models described in [1] by varying different network
parameters.

The remainder of the paper is organized as follows:
In Section II, we discuss the existing trust-based routing
schemes for ad-hoc networks. In Section III, we provide the
discussion of our previous work, TRS-PD. In Section IV,
we present the simulation results and analyze the per-
formance of TRS-PD. Finally, the paper is concluded
in Section V.

II. RELATED WORK
In this section, we discuss the relevant research works carried
out to address the security requirements of ad-hoc routing
protocols by way of trust management schemes.

Khan et al. [21] proposed a multi attribute trust framework
(MATF), extended from optimized link state routing (OLSR)
protocol, in order to enhance security inMANETs by improv-
ing the bootstrapping time, adversary detection rate, false
positive rate and packet dropping rate. Instead of using sin-
gle trust attribute, MATF uses multiple attributes such as
control packet generation, control packet forwarding and

data packet forwarding in order to expedite trust building
process. Apart from using first-hand information, it uses
second-hand information from watchdog nodes whose trust
values are above threshold. The results depict effectiveness
of MATF against packet dropping, packet modification and
link withholding attacks. Gazdar et al. [22] proposed a
distributed trust computing framework (DTCF) for vehic-
ular ad-hoc networks (VANETs) to calculate the trust of
each vehicle solely by direct observations of neighbors in
order to isolate malevolent nodes. DTCF doesn’t consider
second-hand information; rather it considers message authen-
tication verification as a direct trust metric. A tier-based
broadcasting mechanism is implemented in order to prop-
agate control messages and information about happening
events. Simulation results show the efficiency of DTCF to
detect message modification attacks with lower detection
latency. Thorat and Kulkarni [23] addressed the issue of
packet dropping attack with an uncertainty analysis frame-
work (UAF) extended from ad-hoc on-demand distance
vector (AODV) routing protocol. UAF uses direct and indi-
rect observations in order to calculate network belief, dis-
belief and uncertainty (BDU) metrics based on probability
of packet forwarding for neighbor nodes. Simulation results
show the effect of mobility models, network density and
selfish nodes on BDU values. The results indicate that as
the network converges, UAF provides better knowledge about
performance and security of the network by providing infor-
mation about benign and distrusted nodes. In order to
optimize memory resources and minimize communication
overhead, Sargunavathi and Manickam [24] proposed a Col-
laborative Trust based Secure Routing (CTSR) protocol based
on direct and indirect observations. CTSR adopts Dempster-
Shafer approach for deriving trust values along with a two-
way acknowledgement model. Information about suspicious
nodes is disseminated to all the associated neighbor nodes by
broadcasting a message. The authors also take into account
such fabricated broadcast message propagated by malicious
nodes. Simulation results depict the effectiveness of the pro-
posed scheme under different network parameters. To dis-
cover multiple trusted paths, Li et al. [25] proposed an ad hoc
on-demand trusted-path distance vector (AOTDV) protocol
which is extended from AODV and ad hoc on-demand multi-
path distance vector (AOMDV) protocols. AOTDV provides
two dimensional evaluation of paths based on hop counts
and route trust values. Trust values are calculated from direct
observations based on control packet forwarding ratio and
data packet forwarding ratio. Simulation results show the
effectiveness of AOTDV against blackhole, grayhole and
modifications attacks. Jawhar et al. [26] extended dynamic
source routing (DSR) protocol to devise a trust-based routing
protocol for ad-hoc and sensor networks (TRAS). A route
with highest trust factor is selected for data communication,
while other back-up routes are used after failure of the pre-
liminary route. The trust factor of a node is increased when it
actively participates in the packet forwarding process. At the
same time, the trust factor is also improved when a node
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participating in the data transmission receives positive
acknowledgements from the destination. Simulation results
depict that out of the two evaluated versions of TRAS viz.
TRAS-25 and TRAS-50, TRAS-50 performs better in dif-
ferent scenarios. Kerrache et al. [27] proposed a hybrid
trust-based framework for reliable data delivery and DoS
defense (TFDD) for VANETs. TFDD takes into account
trust weight and link stability to discover most trusted and
nearest neighbor to forward data packets. Verification of
neighbors’ behavior is carried out by observation of the
exchanged messages in order to improve trust relationship
among nodes. Simulation results show that TFDD provides
a high detection rate of dishonest nodes by meeting delay
restrictions of VANET communications, even when high
percentage of attackers are present in the network. A light-
weight trust-based QoS routing algorithm (TQR) extended
from AODV was devised by Wang et al. [28] in order to
mitigate sequence number attacks. TQR aggregates link delay
(includes transmission delay, propagation delay and waiting
delay of a buffered packet) and trust value (direct and indirect
observations for packet forwarding behavior) to establish a
refined routing cost metric to find a quality trusted path
during the route discovery process. Thus, TQR ensures the
forwarding of the packets via trusted and least link delayed
routes in order to support real time audio/video transmissions
in ad-hoc networks. Simulation results show the improved
performance of TQR in most scenarios against an existing
scheme in terms of packet delivery ratio, average end-to-end
delay, routing overhead and detection ratio. Li and Song [29]
proposed an attack-resistant trust management scheme (ART)
to secure VANETs against accidents and to support intelligent
transportation applications. ART uses two distinct metrics for
trust evaluations: data trust and node trust. Data trust is eval-
uated to assess trustworthiness of the traffic data aggregated
from sensed data and collected data from multiple vehicles.
Node trust is used to assess trustworthiness of a node to
infer the capability of the node to fulfill its functionality and
to figure out trustworthiness of the node’s recommendations
for other nodes. Simulation results demonstrate the accuracy
and effectiveness of ART and its capability to cope with
packet dropping attacks, bad mouthing attacks and zigzag
attacks. Sethuraman and Kannan [30] proposed a refined trust
energy-ad hoc on demand distance vector (ReTE-AODV)
scheme which opts reliable and trusted path for sending data
packets which consumes lower energy. The scheme computes
direct and indirect trust values along with computation of
energy value of nodes. The trust model incorporates Bayesian
probability in order to handle ambiguity for acquiring the
refined trust value. This energy efficient scheme promises
to perform better against three existing schemes in terms of
packet delivery ratio and end-to-end delay.

In spite of the presence of several schemes in the literature,
there doesn’t exist any scheme (to the best of our knowledge)
which identifies patterns followed by adversaries (if any)
during route discovery process in order to detect adver-
saries before they actually launch packet dropping attacks.

Therefore, we proposed a scheme in [1] which incorpo-
rates a pattern discovery mechanism with a trust model to
identify the attack patterns followed by adversaries in order
to improve quality-of-service (QoS) in MANETs in hostile
environments. In addition, the security during analysis is
necessary [31]. In future, we may consider combining water-
marking [32] and access control management [33] with ad-
hoc routing protocols in order to strengthen the security along
with enhancing network capacity [34].

III. WORKING OF TRS-PD
TRS-PD [1] is extended from AODV protocol which adopts
a two tier approach in which an attack pattern discovery
mechanism sits on the top of the trust model. In this section,
we summarize the pattern discovery mechanism, the trust
model and the routing process adopted by TRS-PD.

A. ATTACK-PATTERN DISCOVERY MECHANISM
In order to maximize the trust value in neighbor nodes, smart
adversaries may pretend to be benign nodes by forwarding
packets prior to launching packet dropping attacks. How-
ever, sequence number attacks launched by packet dropping
adversaries may generate specific kind of patterns in fabri-
cating some field values (such as sequence number and hop
count)in the control packets during route discovery process.
TRS-PD adopts a pattern discovery mechanism [1] to ana-
lyze the recorded field values from the overheard/received
control packets. The field values are recorded in two
sliding windows:(i) the first sliding window (SL1) records
destination node’s identity, current time, hop count and desti-
nation sequence number (ii) the second sliding window (SL2)
records destination node’s identity, current time and dif-
ference between the destination sequence numbers of the
received reply packet and that of the corresponding request
packet. An algorithm adopting the model of Method of
Common Differences analyzes the recorded data and outputs
whether the neighbor node follows any attack-pattern or not.
Route discovery process is strengthened by this mechanism in
isolating the blacklisted adversaries who may launch packet
dropping attacks later on. However, it should be noted that
malicious nodes may continue to drop packets until the mon-
itoring node fills all slots of its sliding windows and predicts
them as blacklisted nodes.

B. TRUST MODEL
The second tier of the scheme is the trust model [1] which sits
below the attack-pattern discovery mechanism. While adver-
saries following certain attack-patterns may get detected by
the pattern discovery mechanism, the other packet dropping
adversaries (which do not follow any pattern) are identified
by the trust model.

TRS-PD uses direct as well as indirect trust in its trust
framework. A node’s historical distrust value is calculated
by aggregating packet dropping ratios of control and data
packets. If a monitoring node observes a neighboring node
crossing the distrust threshold (η), it is temporarily marked
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FIGURE 1. SendRREQ procedure [1].

FIGURE 2. ReceiveRREQ procedure [1].

FIGURE 3. SendRREP procedure [1].

as a blacklisted node. However, such a node regaining its
trust is removed from the blacklist later on if it does not
follow attack-patterns and trusted neighbors have also not
recommended it as a distrusted node. TRS-PD distributes
responsibility to individual nodes to construct a trusted for-
ward route rather than imposing burden on the source node.

It is to be noted that in the real world, threshold value
should be determined on the basis of the safety requirements
of the application.

C. ROUTING PROCESS
TRS-PD modifies the routing process of AODV: (i) Fig. 1 [1]
represents send request procedure (sendRREQ) (ii) Fig. 2 [1]
represents receive request procedure (receiveRREQ)
(iii) Fig. 3 [1] represents send reply procedure (sendR-
REP) (iv) Fig. 4 [1] represents receive reply procedure
(receiveRREP).

D. PROCEDURES OF TRUST RECOMMENDATION
AND TRUST UPDATE
The trust update procedure incorporates the attack-pattern
discovery mechanism to verify the attack patterns along with

the calculation of distrust values (DTV) of the neighbors.
In the case of finding a distrusted next hop, the monitoring
node initiates a route hand-off mechanism through local route
discovery process to discover an alternate trusted route to the
destination. Fig. 5 [1] represents the trust update procedure
(UpdateTrust) of TRS-PD.

TRS-PD uses the HELLO messages in order to supply
trust recommendations to the neighbor nodes. The supplied
recommendations containing a list of blacklisted nodes are
received from the HELLO message sent by the neighbor.
If the supplier node is a trusted node, the recommendations
are considered. Fig. 6 [1] represents the trust recommendation
procedure (RecommendTrust) of TRS-PD.

IV. SIMULATION RESULTS AND ANALYSIS
The NS-2 network simulator is used to analyze the perfor-
mance of TRS-PD by varying values of distrust threshold,
trust update interval and trust components’ weights (denoted
as w1 and w2 for control packet dropping ratio and data
packet dropping ratio respectively) under different network
conditions. This sensitivity analysis of TRS-PD is carried
out in the presence of malevolent nodes adopting three
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FIGURE 4. ReceiveRREP procedure [1].

FIGURE 5. UpdateTrust procedure [1].

distinct adversary models viz. Attack1, Attack2 and
Attack3 [1]. Attack1 operates in promiscuous mode and gen-
erates attack-patterns by fabricating ‘hop count’ information
while sending a route reply packet during route discovery
process. Meanwhile, Attack2 generates attack-patterns by
fabricating ‘destination sequence number’ while sending a
route reply packet. On the other side, Attack3 carries out
random behavior and doesn’t generate any attack-pattern
during route discovery process. The operations performed
by all three adversary models are discussed in [1] with
pseudo-code.

In an area of 1500 m × 1500 m, benign nodes were ran-
domly distributed which execute TRS-PD or AODV protocol.
Randomly located attacker nodes selectively perform packet
dropping attack by either adopting the first adversary model
(Attack1), the second adversary model (Attack2) or the third
adversary model (Attack3). We use User Datagram Protocol
(UDP) as the transport protocol and Constant-Bit-Rate (CBR)
as the traffic sources where the source nodes send4 packets
per second. The experimental data represent an average value

TABLE 1. Simulation parameters.

resulting from 10 distinct simulations. The major simulation
parameters are represented in Table 1.

In order to find the correct tuning, we vary the values of
distrust threshold (η = 0.4 and η = 0.5), trust components’
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FIGURE 6. RecommendTrust procedure [1].

FIGURE 7. PDR vs mobility with distinct threshold values. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance
under Attack3.

weights (w1 = 0.5, w2 = 0.5 and w1 = 0.3, w2 = 0.7)
and trust update interval (UI = 1 sec and UI = 3 sec). For
evaluating the performance of TRS-PD, the followingmetrics
are used: (i) Packet Delivery Ratio (PDR) (ii) Normalized
Routing Overhead (NRO). In order to test TRS-PD under
various network scenarios, we vary the following network
parameters: (i) Node Mobility (ii) Percentage of attackers
(iii) Packet Size(iv) Simulation time.

A. TEST1: VARYING NODE MOBILITY
In this test, we evaluate the performance of TRS-PD and
AODV under Attack1, Attack2 and Attack3 by varying maxi-
mum speeds of nodes from 5 m/s to 25 m/s and keeping other
simulation parameters fixed: number of malevolent nodes
20%, simulation time 200 sec and packet size 512 bytes.

Fig. 7 depicts the PDR of TRS-PD under the three adver-
sary models with increasing mobility by taking η = 0.4 and
η = 0.5. Fig. 7 (a) shows that, under Attack1, PDR of AODV

varies in the range of 30.15 and 32.95, while PDR of TRS-
PD with η = 0.4 decreases from 70.13 to 53.35 and PDR
of TRS-PD with η = 0.5 decreases from 60.74 to 43.82.
Fig. 7 (b) shows that, under Attack2, PDR of AODV varies
in the range of 54.77 and 50.03, while PDR of TRS-PD with
η = 0.4 decreases from 72.72 to 63.06 and PDR of TRS-PD
with η = 0.5 decreases from 72.68 to 61.13. Fig. 7 (c)
shows that, under Attack3, PDR of AODV varies in the range
of 65.66 and 56.28, while PDR of TRS-PD with η = 0.4
decreases from 78.31 to 69.71 and PDR of TRS-PD with
η = 0.5 decreases from 72.31 to 61.25. We can analyze that
PDR of TRS-PD under distinct adversary models is different
as mode of operations adopted by them is distinct. Mean-
while, under all three adversaries, the average PDR provided
by TRS-PD with η = 0.4 is significantly better than TRS-PD
with η = 0.5.

Fig. 8 depicts the NRO of TRS-PD under the three adver-
sary models with increasing mobility by taking η = 0.4 and

20090 VOLUME 6, 2018



R. H. Jhaveri et al.: Sensitivity Analysis of an Attack-Pattern Discovery Based TRS for MANets in IIoT

FIGURE 8. NRO vs mobility with distinct threshold values. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under Attack3.

FIGURE 9. PDR vs mobility with distinct weights. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under Attack3.

η = 0.5. Fig. 8 (a) shows that, under Attack1, NRO of AODV
increases from 12.25 to 25.45, while NRO of TRS-PD with
η = 0.4 increases from 9.71 to 20.15 and NRO of TRS-PD
with η = 0.5 increases from 13.35 to 27.24. Fig. 8 (b) shows
that, under Attack2, NRO of AODV increases from 4.90 to
9.73, while NRO of TRS-PD with η = 0.4 increases from
8.52 to 14.51 and NRO of TRS-PD with η = 0.5 increases
from 7.54 to 13.85. Fig. 8 (c) shows that, under Attack3,
NRO of AODV increases from 6.25 to 12.20, while NRO
of TRS-PD with η = 0.4 increases from 6.05 to 10.82 and
NRO of TRS-PD with η = 0.5 increases from 6.78 to 12.20.
We can analyze that NROof TRS-PD under distinct adversary
models is different as number of control packets generated
under distinct adversary models are different. Meanwhile,
under Attack1 and Attack3, TRS-PD with η = 0.4 provides
significant improvement in NRO as compared to TRS-PD
with η = 0.5, while under Attack2, TRS-PD with η = 0.5
performs marginally better.

Fig. 9 depicts the PDR of TRS-PD under the three adver-
sary models with increasing mobility by taking w1 = 0.3
(and w2 = 0.7) and w1 = 0.5 (and w2 = 0.5). Fig. 9(a)
shows that, under Attack1, PDR of TRS-PD with w1 = 0.3

decreases from 64.85 to 50.64 and PDR of TRS-PD with
w1 = 0.5 decreases from 70.13 to 53.35. Fig.9 (b) shows that,
under Attack2, PDR of TRS-PD with w1 = 0.3 decreases
from 68.69 to 60.97 and PDR of TRS-PD with w1 = 0.5
decreases from 72.72 to 63.06. Fig.9 (c) shows that, under
Attack3, PDR of TRS-PD with w1 = 0.3 decreases from
76.17 to 69.27 and PDR of TRS-PD with w1 = 0.5 decreases
from 78.31 to 69.71. We can analyzethat, under all three
adversaries, the average PDR provided by TRS-PD with
w1 = 0.5 is significantly better than TRS-PD with w1 = 0.3.

Fig. 10 depicts the NRO of TRS-PD under the three adver-
sary models with increasing mobility by taking w1 = 0.3
and w1 = 0.5. Fig.10 (a) shows that, under Attack1, NRO
of TRS-PD with w1 = 0.3 increases from 11.46 to 21.81 and
NRO of TRS-PDwithw1 = 0.5 increases from 9.71 to 20.15.
Fig.10 (b) shows that, under Attack2, NRO of TRS-PD with
w1 = 0.3 increases from 9.88 to 15.42 and NRO of TRS-PD
with w1 = 0.5 increases from 8.52 to 14.51. Fig.10(c)
shows that, under Attack3, NRO of TRS-PD with w1 = 0.3
increases from 6.57 to 10.98 and NRO of TRS-PD with
w1 = 0.5 increases from 6.05 to 10.82. We can analyze that
TRS-PD with w1 = 0.5 provides significant improvement in
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FIGURE 10. NRO vs mobility with distinct weights. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under Attack3.

FIGURE 11. PDR vs mobility with distinct trust update intervals. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under
Attack3.

NRO as compared to TRS-PD with w1 = 0.3 under all three
adversary models.

Fig. 11 depicts the PDR of TRS-PD under the three adver-
sary models with increasing mobility by taking UI = 1
and UI = 3. Fig.11 (a) shows that, under Attack1, PDR of
TRS-PD with UI = 1 decreases from 61.69 to 52.16 and
PDR of TRS-PD withUI = 3 decreases from 70.13 to 53.35.
Fig.11 (b) shows that, under Attack2, PDR of TRS-PD with
UI = 1 decreases from 64.38 to 56.34 and PDR of TRS-PD
with UI = 3 decreases from 72.72 to 63.06. Fig.11 (c) shows
that, under Attack3, PDR of TRS-PD with UI = 1 decreases
from 69.03 to 64.19 and PDR of TRS-PD with UI = 3
decreases from 78.31 to 69.71. We can analyze that, under all
three adversaries, the average PDR provided by TRS-PDwith
UI = 3 is significantly better than TRS-PD with UI = 1.
Fig. 12 depicts the NRO of TRS-PD under the three adver-

sary models with increasing mobility by taking UI = 1
and UI = 3. Fig.12 (a) shows that, under Attack1, NRO of
TRS-PD with UI = 1 increases from 14.36 to 23.78 and
NRO of TRS-PD with UI = 3 increases from 9.71 to 20.15.
Fig.12 (b) shows that, under Attack2, NRO of TRS-PD with
UI = 1 increases from 13.03 to 20.32 and NRO of TRS-PD

with UI = 3 increases from 8.52 to 14.51. Fig.12 (c) shows
that, under Attack3, NRO of TRS-PD with UI = 1 increases
from 9.26 to 14.40 and NRO of TRS-PD with UI = 3
increases from 6.05 to 10.82. We can analyze that TRS-PD
with UI = 3 provides significant improvement in NRO as
compared to TRS-PD with UI = 1 under all three adversary
models.

B. TEST 2: VARYING PERCENTAGE OF MALICIOUS NODES
In this test, we evaluate the performance of TRS-PD and
AODV under Attack1, Attack2 and Attack3 by varying per-
centage of attackers from 10% to 50% and keeping other
simulation parameters fixed: mobility 10 m/sec, simulation
time 200 sec and packet size 512 bytes.

Fig. 13 depicts the PDR of TRS-PD under the three adver-
sary models with increasing percentage of adversaries by
taking η = 0.4 and η = 0.5. Fig. 13 (a) shows that, under
Attack1, PDR of AODV decreases from 36.51 to 19.60, while
PDR of TRS-PD with η = 0.4 decreases from 70.59 to
37.26 and PDR of TRS-PD with η = 0.5 decreases from
63.70 to 28.99. Fig. 13 (b) shows that, under Attack2, PDR
of AODV decreases from 56.37 to 38.71, while PDR of
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FIGURE 12. NRO vs mobility with distinct trust update intervals. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under
Attack3.

FIGURE 13. PDR vs percentage of adversaries with distinct threshold values. (a) Performance under Attack1. (b) Performance under Attack2.
(c) Performance under Attack3.

TRS-PD with η = 0.4 decreases from 74.12 to 44.82 and
PDR of TRS-PD with η = 0.5 decreases from 73.66 to
44.14. Fig. 13 (c) shows that, under Attack3, PDR of AODV
decreases from 67.93 to 42.02, while PDR of TRS-PD with
η = 0.4 decreases from 77.04 to 57.71 and PDR of TRS-PD
with η = 0.5 decreases from 73.53 to 47.08. We can analyze
that PDR of TRS-PD under distinct adversary models is
different due to the aforementioned reason.Meanwhile, under
all three adversaries, the average PDR provided by TRS-PD
with η = 0.4 is significantly better than TRS-PD with
η = 0.5.
Fig. 14 depicts the NRO of TRS-PD under the three

adversary models with increasing percentage of adversaries
by taking η = 0.4 and η = 0.5. Fig.14 (a) shows that,
under Attack1, NRO of AODV varies between 16.11 and
20.11, while NRO of TRS-PD with η = 0.4 increases
from 12.51 to 21.44 and NRO of TRS-PD with η = 0.5
increases from 14.61 to 32.81. Fig.14 (b) shows that, under
Attack2, NRO of AODV increases from 6.63 to 7.70, while
NRO of TRS-PD with η = 0.4 increases from 11.22 to
17.26 and NRO of TRS-PD with η = 0.5 increases from

10.10 to 14.59. Fig.14 (c) shows that, under Attack3, NRO of
AODV varies between 8.92 and10.72, while NRO of TRS-PD
with η = 0.4 decreases from 9.43 to 6.20 and NRO of
TRS-PDwith η = 0.5 varies between 9.41 and 12.37.We can
analyze that NRO of TRS-PD under distinct adversary mod-
els is different as per the aforementioned reasons.Meanwhile,
under Attack1 and Attack3, TRS-PD with η = 0.4 provides
significant improvement in NRO as compared to TRS-PD
with η = 0.5, while under Attack2, TRS-PD with η = 0.5
performs marginally better.

Fig. 15 depicts the PDR of TRS-PD under the three adver-
sary models with increasing percentage of adversaries by
taking w1 = 0.3 (and w2 = 0.7) and w1 = 0.5 (and
w2 = 0.5). Fig. 15 (a) shows that, under Attack1, PDR of
TRS-PD with w1 = 0.3 decreases from 66.98 to 36.69 and
PDR of TRS-PD with w1 = 0.5 decreases from 70.59 to
37.26. Fig. 15 (b) shows that, under Attack2, PDR of TRS-PD
with w1 = 0.3 decreases from 68.90 to 43.42 and PDR
of TRS-PD with w1 = 0.5 decreases from 74.12 to 44.82.
Fig. 15 (c) shows that, under Attack3, PDR of TRS-PD with
w1 = 0.3 decreases from 76.29 to 55.97 and PDR of TRS-PD
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FIGURE 14. NRO vs percentage of adversaries with distinct threshold values. (a) Performance under Attack1. (b) Performance under Attack2.
(c) Performance under Attack3.

FIGURE 15. PDR vs percentage of adversaries with distinct weights. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance
under Attack3.

FIGURE 16. NRO vs percentage of adversaries with distinct weights. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance
under Attack3.

withw1 = 0.5 decreases from 77.04 to 57.71.We can analyze
that, under all three adversaries, the average PDR provided by
TRS-PD with w1 = 0.5 is significantly better than TRS-PD
with w1 = 0.3.

Fig. 16 depicts the NRO of TRS-PD under the three adver-
sary models with increasing percentage of adversaries by
taking w1 = 0.3 (and w2 = 0.7) and w1 = 0.5 (and
w2 = 0.5). Fig. 16 (a) shows that, under Attack1, NRO of
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FIGURE 17. PDR vs percentage of adversaries with distinct trust update intervals. (a) Performance under Attack1. (b) Performance under Attack2.
(c) Performance under Attack3.

FIGURE 18. NRO vs percentage of adversaries with distinct trust update intervals. (a) Performance under Attack1. (b) Performance under Attack2.
(c) Performance under Attack3.

TRS-PD with w1 = 0.3 increases from 13.88 to 21.02 and
NRO of TRS-PD with w1 = 0.5 increases from 12.51 to
21.44. Fig. 16 (b) shows that, underAttack2, NRO of TRS-PD
with w1 = 0.3 increases from 12.92 to 17.01 and NRO
of TRS-PD with w1 = 0.5 increases from 11.22 to 17.26.
Fig. 16 (c) shows that, under Attack3, NRO of TRS-PD with
w1 = 0.3 decreases from 9.89 to 6.67 and NRO of TRS-PD
with w1 = 0.5 decreases from 9.43 to 6.20. We can analyze
that, under all three adversaries, the averageNROprovided by
TRS-PD with w1 = 0.5 is considerably better than TRS-PD
with w1 = 0.3.

Fig. 17 depicts the PDR of TRS-PD under the three adver-
sary models with increasing percentage of adversaries by
taking UI = 1 and UI = 3. Fig. 17 (a) shows that, under
Attack1, PDR of TRS-PD with UI = 1 decreases from
63.45 to 36.97 and PDR of TRS-PD with UI = 3 decreases
from 70.59 to 37.26. Fig. 17 (b) shows that, under Attack2,
PDR of TRS-PD with UI = 1 decreases from 65.15 to
40.20 and PDR of TRS-PD with UI = 3 decreases from
74.12 to 44.82. Fig. 17 (c) shows that, under Attack3, PDR

of TRS-PD with UI = 1 decreases from 67.45 to 51.08 and
PDR of TRS-PD withUI = 3 decreases from 77.04 to 57.71.
We can analyze that, under all three adversaries, the average
PDR provided by TRS-PDwithUI = 3 is significantly better
than TRS-PD with UI = 1.
Fig. 18 depicts the NRO of TRS-PD under the three

adversary models with increasing percentage of adversaries
by taking UI = 1 and UI = 3. Fig. 18 (a) shows that,
under Attack1, NRO of TRS-PD with UI = 1 increases
from 17.56 to 25.29 and NRO of TRS-PD with UI = 3
increases from 12.51 to 21.60. Fig. 18 (b) shows that,
under Attack2, NRO of TRS-PD with UI = 1 increases
from 16.08 to 21.26 and NRO of TRS-PD with UI = 3
increases from 11.22 to 17.26. Fig. 18 (c) shows that,
under Attack3, NRO of TRS-PD with UI = 1 decreases
from 14.59 to 8.35 and NRO of TRS-PD with UI = 3
decreases from 9.43 to 6.20. We can analyze that, under all
three adversaries, the average NRO provided by TRS-PD
with UI = 3 is significantly better than TRS-PD with
UI = 1.
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FIGURE 19. PDR vs data payload with distinct threshold values. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under
Attack3.

FIGURE 20. NRO vs data payload with distinct threshold values. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under
Attack3.

C. TEST 3: VARYING DATA PAYLOAD
In this test, we evaluate the performance of TRS-PD and
AODV under Attack1, Attack2 and Attack3 by varying packet
size from 512 bytes to 1024 bytes and keeping other simu-
lation parameters fixed: mobility 10 m/sec, simulation time
200 sec and percentage of adversaries 20%.

Fig. 19 depicts the PDR of TRS-PD under the three adver-
sary models with increasing payload by taking η = 0.4 and
η = 0.5. Fig. 19 (a) shows that, underAttack1, PDR of AODV
decreases from 30.37 to 19.98, while PDR of TRS-PD with
η = 0.4 decreases from 59.43 to 38.47 and PDR of TRS-PD
with η = 0.5 decreases from 50.35 to 30.49. Fig. 19 (b) shows
that, under Attack2, PDR of AODV decreases from 50.03 to
33.36, while PDR of TRS-PD with η = 0.4 decreases from
66.76 to 40.39 and PDR of TRS-PD with η = 0.5 decreases
from 64.12 to 37.51. Fig. 19 (c) shows that, under Attack3,
PDR of AODV decreases from 60.48 to 36.38, while PDR
of TRS-PD with η = 0.4 decreases from 74.16 to 45.65 and
PDR of TRS-PDwith η = 0.5 decreases from 63.12 to 38.56.
We can analyze that, under all three adversaries, the average
PDR provided by TRS-PDwith η = 0.4 is significantly better
than TRS-PD with η = 0.5.

Fig. 20 depicts the NRO of TRS-PD under the three adver-
sary models with increasing payload by taking η = 0.4
and η = 0.5. Fig. 20 (a) shows that, under Attack1, NRO
of AODV varies between 18.93 and 26.19, while NRO of
TRS-PD with η = 0.4 varies between 16.18 and 22.98, and
NRO of TRS-PD with η = 0.5 varies between 20.11 and
29.18. Fig. 20 (b) shows that, under Attack2, NRO of AODV
increases from 7.05 to 13.44, while NRO of TRS-PD with
η = 0.4 increases from 12.61 to 18.48 and NRO of TRS-PD
with η = 0.5 increases from 12 to 19.49. Fig. 20 (c) shows
that, under Attack3, NRO of AODV increases from 9.79 to
16.42, while NRO of TRS-PD with η = 0.4 increases from
9.14 to 14.03 and NRO of TRS-PD with η = 0.5 increases
from 11.35 to 17.59. We can analyze that, under all three
adversaries, the average NRO provided by TRS-PD with
η = 0.4 is remarkably better than TRS-PD with η = 0.5.
Fig. 21 depicts the PDR of TRS-PD under the three

adversary models with increasing payload by taking w1 =
0.3 (and w2 = 0.7) and w1 = 0.5 (and w2 = 0.5).
Fig. 21 (a) shows that, under Attack1, PDR of TRS-PD
with w1 = 0.3 decreases from 56.72 to 38.58 and PDR of
TRS-PD with w1 = 0.5 decreases from 59.43 to 38.47.
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FIGURE 21. PDR vs data payload with distinct weights. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under Attack3.

FIGURE 22. NRO vs data payload with distinct weights. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under Attack3.

Fig. 21 (b) shows that, under Attack2, PDR of TRS-PD with
w1 = 0.3 decreases from 63.68 to 39.62 and PDR of TRS-PD
with w1 = 0.5 decreases from 66.76 to 40.39. Fig. 21 (c)
shows that, under Attack3, PDR of TRS-PD with w1 = 0.3
decreases from 72.27 to 46.92 and PDR of TRS-PD with
w1 = 0.5 decreases from 74.16 to 45.65. We can analyze
that, under all three adversaries, the average PDR provided
by TRS-PD with w1 = 0.5 is marginally better than TRS-PD
with w1 = 0.3.

Fig. 22 depicts the NRO of TRS-PD under the three adver-
sary models with increasing payload by taking w1 = 0.3
(and w2 = 0.7) and w1 = 0.5 (and w2 = 0.5). Fig. 22 (a)
shows that, under Attack1, NRO of TRS-PD with w1 = 0.3
varies between 16.71 and 21.57, and NRO of TRS-PD with
w1 = 0.5 varies between 16.18 and 22.98. Fig. 22 (b)
shows that, under Attack2, NRO of TRS-PD with w1 = 0.3
varies between 13.81 and 19.96, and NRO of TRS-PD with
w1 = 0.5 varies between 12.61 and 18.48. Fig. 22 (c)
shows that, under Attack3, NRO of TRS-PD with w1 = 0.3
varies between 9.20 and 14.17, and NRO of TRS-PD with
w1 = 0.5 varies between 9.14 and 14.03. We can analyze
that, under all three adversaries, the averageNROprovided by

TRS-PD with w1 = 0.5 is slightly better than TRS-PD with
w1 = 0.3.

Fig. 23 depicts the PDR of TRS-PD under the three adver-
sary models with increasing payload by taking UI = 1 and
UI = 3. Fig. 23 (a) shows that, under Attack1, PDR of
TRS-PD with UI = 1 decreases from 54.68 to 35.93 and
PDR of TRS-PD withUI = 3 decreases from 59.43 to 38.47.
Fig. 23 (b) shows that, under Attack2, PDR of TRS-PD with
UI = 1 decreases from 59.68 to 36.94 and PDR of TRS-PD
withUI = 3 decreases from 66.76 to 40.39. Fig. 23 (c) shows
that, under Attack3, PDR of TRS-PD with UI = 1 decreases
from 66.71 to 42.99 and PDR of TRS-PD with UI = 3
decreases from 74.16 to 45.65. We can analyze that, under all
three adversaries, the average PDR provided by TRS-PDwith
UI = 3 is significantly better than TRS-PD with UI = 1.

Fig. 24 depicts the NRO of TRS-PD under the three adver-
sary models with increasing payload by taking UI = 1 and
UI = 3. Fig. 24 (a) shows that, under Attack1, NRO of
TRS-PD with UI = 1 varies between 18.54 and 26.74 and
NRO of TRS-PD with UI = 3 varies between 15.19 and
22.98. Fig. 24 (b) shows that, underAttack2, NRO of TRS-PD
with UI = 1 varies between 16.98 and 24.35, and NRO
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FIGURE 23. PDR vs data payload with distinct trust update intervals. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance
under Attack3.

FIGURE 24. NRO vs data payload with distinct trust update intervals. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance
under Attack3.

of TRS-PD with UI = 3 varies between 12.61 and 18.48.
Fig. 24 (c) shows that, under Attack3, NRO of TRS-PD with
UI = 1 varies between 12.75 and 17.17, andNROof TRS-PD
with UI = 3 varies between 9.14 and 14.03. We can analyze
that, under all three adversaries, the average NRO provided
by TRS-PD with UI = 3 is significantly better than TRS-PD
with UI = 1.

D. TEST 4: VARYING SIMULATION TIME
In this test, we evaluate the performance of TRS-PD and
AODV under Attack1, Attack2 and Attack3 by varying sim-
ulation time from 200 sec to 1000 sec and keeping other
simulation parameters fixed: mobility 10 m/sec, packet size
512 bytes and percentage of adversaries 20%.

Fig. 25 depicts the PDR of TRS-PD under the three
adversary models with increasing simulation time by taking
η = 0.4 and η = 0.5. Fig. 25 (a) shows that, under Attack1,
PDR of AODV decreases from 30.37 to 25.17, while PDR of
TRS-PD with η = 0.4 decreases from 59.43 to 54.40 and
PDR of TRS-PD with η = 0.5 decreases from 50.35 to
47.96. Fig. 25 (b) shows that, under Attack2, PDR of AODV
decreases from 50.03 to 45.44, while PDR of TRS-PD with

η = 0.4 decreases from 66.76 to 61.36 and PDR of TRS-PD
with η = 0.5 decreases from 64.12 to 60.69. Fig. 25 (c) shows
that, under Attack3, PDR of AODV decreases from 60.48 to
56.98, while PDR of TRS-PD with η = 0.4 decreases from
74.16 to 71.13 and PDR of TRS-PD with η = 0.5 varies
between66.62 and 63.12. We can analyze that, under all
three adversaries, the average PDR provided by TRS-PDwith
η = 0.4 is significantly higher than TRS-PD with η = 0.5.

Fig. 26 depicts the NRO of TRS-PD under the three adver-
sary models with increasing simulation time by taking η =
0.4 and η = 0.5. Fig. 26 (a) shows that, under Attack1,
NRO of AODV increases from 20.01 to 44.44, while NRO
of TRS-PD with η = 0.4 increases from 16.18 to 20.53,
and NRO of TRS-PD with η = 0.5 increases from 20.11 to
25.22. Fig. 26 (b) shows that, under Attack2, NRO of AODV
increases from 7.05 to 23.73, while NRO of TRS-PD with
η = 0.4 increases from 12.61 to 15.34 and NRO of TRS-PD
with η = 0.5 increases from 12 to 15.94. Fig. 26 (c) shows
that, under Attack3, NRO of AODV increases from 9.79 to
11.98, while NRO of TRS-PD with η = 0.4 varies between
8.49 and 9.50, and NRO of TRS-PD with η = 0.5 varies
between 9.77 to 12.07. We can analyze that, under all three
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FIGURE 25. PDR vs simulation time with distinct threshold values. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under
Attack3.

FIGURE 26. NRO vs simulation time with distinct threshold values. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under
Attack3.

FIGURE 27. PDR vs simulation time with distinct weights. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under Attack3.

adversaries, the average NRO provided by TRS-PD with η =
0.4 is significantly better than TRS-PD with η = 0.5.
Fig. 27 depicts the PDR of TRS-PD under the three

adversary models with increasing simulation time by taking

w1 = 0.3 (and w2 = 0.7) and w1 = 0.5 (and w2 =
0.5). Fig. 27 (a) shows that, under Attack1, PDR of TRS-PD
with w1 = 0.3 decreases from 57.10 to 52.85 and PDR
of TRS-PD with w1 = 0.5 decreases from 59.96 to 54.40.
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FIGURE 28. NRO vs simulation time with distinct weights. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance under Attack3.

FIGURE 29. PDR vs simulation time with distinct trust update intervals. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance
under Attack3.

Fig. 27 (b) shows that, under Attack2, PDR of TRS-PD with
w1 = 0.3 decreases from 63.68 to 59.63 and PDR of TRS-PD
with w1 = 0.5 decreases from 66.76 to 61.36. Fig. 27 (c)
shows that, under Attack3, PDR of TRS-PD with w1 = 0.3
decreases from 72.55 to 69.12 and PDR of TRS-PD with
w1 = 0.5 decreases from 74.16 to 71.13. We can analyze
that, under all three adversaries, the average PDR provided by
TRS-PD with w1 = 0.5 is considerably better than TRS-PD
with w1 = 0.3.

Fig. 28 depicts the NRO of TRS-PD under the three
adversary models with increasing simulation time by taking
w1 = 0.3 (and w2 = 0.7) and w1 = 0.5 (and w2 =
0.5). Fig. 28 (a) shows that, under Attack1, NRO of TRS-PD
with w1 = 0.3 increases from 16.71 to 20.91, and NRO
of TRS-PD with w1 = 0.5 increases from 16.18 to 20.53.
Fig. 28 (b) shows that, under Attack2, NRO of TRS-PD with
w1 = 0.3 increases from 13.72 to 15.96, andNROof TRS-PD
with w1 = 0.5 increases from 12.61 to 15.34. Fig. 28 (c)
shows that, under Attack3, NRO of TRS-PD with w1 = 0.3
increases from 8.64 to 10.20, and NRO of TRS-PD with
w1 = 0.5 increases from 8.49 to 9.50. We can analyze that,

under all three adversaries, the average NRO provided by
TRS-PD with w1 = 0.5 is notably better than TRS-PD with
w1 = 0.3.

Fig. 29 depicts the PDR of TRS-PD under the three
adversary models with increasing simulation time by taking
UI = 1 and UI = 3. Fig. 29 (a) shows that, under Attack1,
PDR of TRS-PD with UI = 1 decreases from 56.99 to
49.86 and PDR of TRS-PD with UI = 3 decreases from
59.96 to 54.40. Fig. 29 (b) shows that, under Attack2, PDR
of TRS-PD with UI = 1 decreases from 59.68 to 54.35 and
PDR of TRS-PD withUI = 3 decreases from 66.76 to 61.36.
Fig. 29 (c) shows that, under Attack3, PDR of TRS-PD with
UI = 1 decreases from 67.89 to 62.33 and PDR of TRS-PD
with UI = 3 decreases from 74.16 to 71.13. We can analyze
that, under all three adversaries, the average PDR provided
by TRS-PDwithUI = 3 is significantly higher than TRS-PD
with UI = 1.

Fig. 30 depicts the NRO of TRS-PD under the three
adversary models with increasing simulation time by taking
UI = 1 and UI = 3. Fig. 30 (a) shows that, under Attack1,
NRO of TRS-PD with UI = 1 increases from 18.57 to 24.48
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FIGURE 30. NRO vs simulation time with distinct trust update interval. (a) Performance under Attack1. (b) Performance under Attack2. (c) Performance
under Attack3.

and NRO of TRS-PD with UI = 3 increases from 16.18 to
20.53. Fig. 30 (b) shows that, underAttack2, NRO of TRS-PD
with UI = 1 increases from 16.73 to 19.73, and NRO of
TRS-PD with UI = 3 increases from 12.61 to 15.34. Fig. 30
(c) shows that, under Attack3, NRO of TRS-PD with UI = 1
increases from 11.30 to 13.72, and NRO of TRS-PD with
UI = 3 increases from 8.49 to 9.50. We can analyze that,
under all three adversaries, the average NRO provided by
TRS-PD with UI = 3 is significantly better than TRS-PD
with UI = 1.

E. RESULT ANALYSIS
The tests conducted under different network scenarios prove
that: (i) The average PDR and the average NRO provided by
TRS-PD with η = 0.4 is significantly better than TRS-PD
with η = 0.5. (ii) The average PDR and the average NRO
provided by TRS-PD with w1 = 0.5 is considerably better
than TRS-PD with w1 = 0.3. (iii) The average PDR and
the average NRO provided by TRS-PD with UI = 3 is
significantly better than TRS-PD with UI = 1.

V. CONCLUSION
In our previous work, we devised a novel trust based scheme
(viz. TRS-PD) for MANETs in IIoT in order to identify
adversaries following different kinds of attack-patterns before
they actually launch packet dropping attacks. The scheme
intended to isolate the adversaries at an early stage in order to
improve the quality-of-services. In this work, we attempt to
identify the best choices of values of distinct parameters by
carrying out sensitivity analysis of the scheme. The sensitivity
analysis is carried out in different network conditions by
taking packet delivery ratio and normalized routing overhead
as the performance metrics, and varying the values of distrust
threshold, trust component’s weight and trust update interval.

The results depict that distrust threshold is a critical com-
ponent of any trust-based scheme which should be set conser-
vatively in order to optimize the detection rate of the scheme.
At the same time, both the distrust components (data packet

drop ratio and control packet drop ratio) should be given equal
importance as the adversaries attempt to trap benign nodes
during route discovery process followed by packet dropping
misbehaviors during data transmission process. Moreover,
trust update interval is a key component which significantly
affects the performance of a trust-based scheme as frequent
updates in the distrust values may lead to increased false
positives/false negatives and unnecessary route alterations.
Hence, we can conclude that it is imperative to carry out
sensitivity analysis of a security scheme in order to tune the
parameter values for different network conditions.
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