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ABSTRACT The existing approaches for fuzzy soft sets decision-making are mainly based on different types
of level soft sets. How to deal with such kinds of fuzzy soft sets decision-making problems via decreasing the
uncertainty resulting from human’s subjective cognition is still an open issue. To address this issue, a hybrid
method for utilizing fuzzy soft sets in decision-making by integrating a fuzzy preference relations analysis
based on the belief entropy with the Dempster–Shafer evidence theory is proposed. The proposed method
is composed of four procedures. First, we measure the uncertainties of parameters by leveraging the belief
entropy. Second, with the fuzzy preference relations analysis, the uncertainties of parameters are modulated
by making use of the relative reliability preference of parameters. Third, an appropriate basic probability
assignment in terms of each parameter is generated on the modulated uncertainty degrees of parameters
basis. Finally, we adopt Dempster’s combination rule to fuse the independent parameters into an integrated
one; thus, the best one can be obtained based on the ranking candidate alternatives. In order to validate
the feasibility and effectiveness of the proposed method, a numerical example and a medical diagnosis
application are implemented. From the experimental results, it is demonstrated that the proposed method
outperforms the related methods, because the uncertainty resulting from human’s subjective cognition can
be reduced; meanwhile, the decision-making level can also be improved with better performance.

INDEX TERMS Fuzzy soft set, decision making, Dempster–Shafer evidence theory, belief entropy, fuzzy
preference relations, belief function, variance of entropy, medical diagnosis.

I. INTRODUCTION
It is inevitable for the uncertainty in the real world.
How to model and cope with the uncertainty information
is still an open issue. To overcome this problem, many
mathematical tools are proposed and extended, like the
rough sets theory [1], fuzzy sets theory [2]–[5], evidence
theory [6]–[10], evidential reasoning [11], Z numbers [12],
D numbers theory [13]–[15], and so on [16]–[18]. In addi-
tion, the approaches with hybrid intelligent algorithms
are used for forecasting time series [19], fault diagno-
sis [20], [21], supplier selection [22], human reliability anal-
ysis [23], decision making [24], [25], and other optimization
problems [26], [27].

Soft set theory which gives a parametric view for soft
computing and uncertainty modelling was firstly presented
by Molodtsov [28] in 1999. Because of having the loose and
general set of characteristics, soft set theory is not limited

by the inadequate parametric tools of those theories, like
rough sets, probability theory and fuzzy sets. Hence, it is a
general math tool to cope with objects and is widely applied
in a variety of fields, like rule mining [29], forecasting [30],
etc. Afterwards, through combining the theories of soft set
and fuzzy set, the fuzzy soft set was firstly proposed by
Maji et al. [31] in 2001. Due to the capability of dealing
with imprecise and fuzzy parameters, fuzzy soft set theory
was extended and extensively applied in the decision making
problems. Roy and Maji [32] attempts to find a best object on
fuzzy soft sets based on the assessment basis of score value.
Then, Hou [33] takes advantage of the grey relational analysis
to make decisions on fuzzy soft sets by taking into account
both of the choice and score value assessment bases. Feng
et al. [34] applies the level soft sets to make decisions in fuzzy
soft sets. Furthermore, Jiang et al. [35] presents an adjustable
method to make decisions on fuzzy soft sets by leveraging
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the intuitionistic fuzzy soft sets’ level soft sets. Çağman and
Enginoğlu [36] and Feng et al. present the uni-int decision
making method that can select an optimal element set from
the candidate alternatives.

From the abovementioned approaches, different results for
the same decision problem may be obtained on the basis of
suitable level soft sets and various assessment bases. Conse-
quently, it is difficult for the decision makers to determine
which alternative is the best one. Hence, the main issue is
how to deal with such kinds of fuzzy soft sets-based decision
making problems via decreasing the uncertainty resulting
from the subjective cognition of human, so that it can improve
the level of decision-making. Later on, by taking the above-
mentioned issue into consideration, Li et al. [38] presents a
method by using the grey relational analysis and Dempster–
Shafer (D–S) evidence theory to make decisions on fuzzy soft
sets. On the other hand,Wang et al. [39] proposes using fuzzy
soft sets in decision making on the basis of the ambiguity
measure and Dempster–Shafer evidence theory. Both of [38]
and [39] reduce the uncertainty resulting from the subjective
cognition of human and achieve a preferable decision-making
level.

D–S evidence theory was proposed by Dempster [40] first,
and it had been developed by Shafer et al. [41] later. As
an efficient reasoning tool for the uncertainties, it has the
advantage to represent the ‘‘uncertainty’’ directly by assign-
ing the probability to the subsets of the set that includes
multi-objects, rather than to an individual object. More-
over, D–S evidence theory is able to combine multiple evi-
dences to produce an integrate evidence. On account of both
of the flexibility and effectiveness in modelling the uncer-
tainty and imprecision without relying on prior informa-
tion, D–S evidence theory is extensively applied in a lot of
areas [42]–[44].

The uncertainty measure can indicate the quality and clar-
ity of the evidences. For better reflecting the uncertainty,
we make use of a novel belief entropy [45] to measure the
uncertainties of evidences. This belief entropy can not only
measure the uncertainty of evidence that is expressed by a
probability distribution, but also can measure the uncertainty
of evidence that is expressed by a basic probability assign-
ment. Hence, it is an effective method to measure the uncer-
tainties of evidences which has been successfully utilised in
decision-making problems [46].

Fuzzy preference relations which plays a base role
in most decision-making processes was firstly presented
by Tanino [47] in 1984. Because as the uncertainty
increases in the course of information collection, the anar-
chy’s degree which is involved in the systems is ris-
ing, so that the Dempster’s rule of combination may not
be able to use due to violating the essential condition.
Employing the information that are ordered can improve
the robustness of the D–S evidence theory-based sys-
tems. Thus, the fuzzy preference relations analysis are
taken into account to further improve the decision-making
level.

TABLE 1. Tabular representation of the soft set (F , B).

Therefore, a hybrid fuzzy soft sets decisionmakingmethod
by integrating the belief entropy, fuzzy preference relations
analysis, with D–S evidence theory is proposed in this paper.
The proposed method considers the uncertainty measure of
the evidences, as well as the impact of evidences’ relative
reliability, so that it can obtain more appropriate basic proba-
bility assignments of alternatives. Finally, we illustrate three
numerical examples and a medical diagnosis application to
demonstrate that the proposed method is more efficient than
the related works. Meanwhile, the uncertainties resulting
from human’s subjective cognition can be decreased and the
level of decision-making can also be improved with more
better performance.

The remainder of this paper is organized as follows.
Section ‘‘Preliminaries’’ briefly introduces this paper’s pre-
liminaries. A hybrid fuzzy soft sets decision making method
by integrating the belief entropy, fuzzy preference rela-
tions analysis, with D–S evidence theory is proposed in
Section ‘‘The proposed method’’. Section ‘‘Experiment’’
illustrates a numerical example which show the effective-
ness of the proposal. In Section ‘‘Application’’, the proposal
is adopted to a practical application in medical diagnosis.
Finally, Section ‘‘Conclusion’’ gives a conclusion.

II. PRELIMINARIES
A. FUZZY SOFT SETS
Definition 1 (Soft Set [28], [38]): LetU be a universe set,

E be a set of parameters related to the objects in U , and
B ⊆ E . The power set of U is represented by 2U . A pair
(F,B) is called a soft set over the universe set U , in which F
is a mapping from B to 2U defined as F : B→ 2U .

Hence, the soft set over U is a parameterized family of
subsets of U . For e ∈ B, F(e) may be considered as a set
of e-approximate elements of (F,B).
Example 1: Let U = {g1, g2, g3, g4, g5} and B =

{e1, e2, e3, e4}. Let (F,B) be a soft set over U which are
denoted as follows:

F(e1) = {g1/1, g2/1, g3/0, g4/0, g5/0},

F(e2) = {g1/1, g2/0, g3/0, g4/0, g5/1},

F(e3) = {g1/0, g2/0, g3/1, g4/1, g5/0},

F(e4) = {g1/0, g2/1, g3/0, g4/1, g5/0}.
Then, the soft set (F,B) is represented by Table 1.
Definition 2 (Fuzzy Soft Set [31], [38]): Let U be a uni-

verse set and E be a set of parameters related to the objects
inU , where B ⊆ E . IU is denoted as a set of all fuzzy subsets
of the universe set U . A pair (F,B) is called a fuzzy soft set
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TABLE 2. Tabular representation of the fuzzy soft set (F , B).

over U , in which F is a mapping from B to IU defined as
F : B→ IU .

We can notice that every soft set can be considered as a
fuzzy soft set [35]. Let e ∈ B, x ∈ U , and F(e) be a fuzzy
subset of the universe set U , which is called the parameter
e’s fuzzy value set. When F(e) is a crisp subset of the uni-
verse set U , (F,B) will degenerate into a soft set. Then, let
F(e)(x) be a membership value, where the object x holds the
parameter e, a fuzzy set F(e) can be expressed as F(e) =
{x/F(e)(x)|x ∈ U}.
Example 2: Let U = {h1, h2, h3} and B = {e1, e2, e3}.

Let (F,B) be a fuzzy soft set over U which are denoted as
follows:

F(e1) = {h1/0.6, h2/0.2, h3/0.2},

F(e2) = {h1/0.7, h2/0.2, h3/0.1},

F(e3) = {h1/
1
3
, h2/

1
3
, h3/

1
3
}.

Then, the fuzzy soft set (F,B) is represented by Table 2.
Definition 3 (Fuzzy Intersection Operation [38]): Let

(F,B) and (G,C) be two fuzzy soft sets, the fuzzy soft set
‘‘(F,B) AND (G,C)’’ which is denoted as (F,B) ∧ (G,C)
can be defined by (F,B)∧ (G,C) = (H ,B×C), in which for
α ∈ B and β ∈ C , H (α, β) = F(α)∩̃G(β) and ∩̃ represents
the fuzzy intersection operation between two fuzzy sets.
Definition 4 (Performance Measure [39]): The perfor-

mance measure of a M method, denoted as γM is supposed
to satisfy the optimal criteria for resolving a fuzzy soft set
decision making problem. It is defined as the sum of the
inverse of the summation of the non-negative differences
between the membership values of the optimal object for the
choice parameters and the choice value of the optimal object.
Its mathematical form is defined by

γM =
1∑n

i=1
∑n

j=1 |F(ei)(Op)−F(ej)(Op)|
+

n∑
i=1

F(ei)(Op),

(1)

where n denotes the number of choice parameters and
F(ei)(Op) represents the membership value of the optimal
object Op for the choice parameter ei.
Given two methods M1 and M2 that satisfy the optimal

criteria, their corresponding performance measures are γM1

and γM2 , respectively. If γM1 > γM2 , then M1 is better than
M2. If γM1 < γM2 , then M2 is better than M1. If γM1 = γM2 ,
then M1 is equal to M2.

B. DEMPSTER–SHAFER EVIDENCE THEORY
Because of the flexibility and effectiveness in modelling both
of the uncertainty and imprecision without prior information,
D–S evidence theory [40], [41] ismore applicable to deal with
uncertain information than the Bayesian probability theory.
Under such a situation where probabilities are clear, D–S
evidence theory could convert into Bayesian theory, hence D–
S evidence theory is considered as the generalization of the
Bayesian probability theory.
Definition 5 (Frame of Discernment): Let U be a set

of collectively exhaustive and mutually exclusive events,
indicted by

U = {x1, x2, . . . , xi, . . . , xt }. (2)

The set U represents a frame of discernment. The power
set of U is denoted by 2U , where

2U = {∅, {x1}, {x2}, . . . , {xt }, {x1, x2}, . . . ,

{x1, x2, . . . , xi}, . . . ,U}, (3)

and ∅ is an empty set. If A ∈ 2U , A is called a proposition.
Definition 6 (Mass Function): For a frame of discernment

U , a mass function is a mappingm from 2U to [0, 1], formally
defined as

m : 2U → [0, 1], (4)

which satisfies the following condition:

m(∅) = 0 and
∑
A∈2U

m(A) = 1. (5)

In the D–S evidence theory, the mass function can be also
called as a basic probability assignment (BPA). If m(A) is
greater than 0, A will be called as a focal element, and the
union of all of the focal elements is called as the core of the
mass function.
Definition 7 (Belief Function): For a proposition A ⊆ U ,

the belief function Bel : 2U → [0, 1] is defined as

Bel(A) =
∑
B⊆A

m(B). (6)

The plausibility function Pl : 2U → [0, 1] is defined as

Pl(A) = 1− Bel(Ā) =
∑

B∩A 6=∅

m(B), (7)

where Ā = U − A.
Definition 8 (Dempster’s Rule of Combination): Let m1

andm2 be two independent BPAs in the frame of discernment
U , the Dempster’s rule of combination is defined as below:

m(A) =


1

1− K

∑
B∩C=A

m1(B)m2(C), A 6= ∅,

0, A = ∅,
(8)
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TABLE 3. An example of the Dempster’s combination rule.

with

K =
∑

B∩C=∅

m1(B)m2(C), (9)

where B ∈ 2U , C ∈ 2U , and K ∈ [0, 1] is the coefficient of
conflict between two BPAs.

Notice that, the Dempster’s combination rule is only prac-
ticable for the two BPAs with the condition K < 1.
Take the Example 2 as an instance, two BPAs m1 and

m2 in terms of e1 and e2 in the frame of discernment U =
{h1, h2, h3} can be obtained as follows

e1 : m1(h1) = 0.60, m1(h2) = 0.20, m1(h3) = 0.20;

e2 : m2(h1) = 0.70, m2(h2) = 0.20, m2(h3) = 0.10.

Then, we can produce a new BPA by using the Demp-
ster’s combination rule, where the fusing results are displayed
in Table 3.

C. DENG ENTROPY
Recently, Kang andDeng [45] proposes a novel belief entropy
which is named as the Deng entropy. Comparing with the
Shannon entropy [48], Deng entropy is more efficient to
measure the uncertain information, becauseDeng entropy can
not only measure the uncertainty expressed by a probability
distribution, but also can measure the uncertainty expressed
by a basic probability assignment. Hence, the Deng entropy
is considered as the generalization of Shannon entropy.
Definition 9 (Deng Entropy [45]): Let Ai be a hypothesis

of the belief function m, |Ai| is the cardinality of set Ai. Deng
entropy Ed of set Ai is defined as follows:

Ed = −
∑
i

m(Ai) log
m(Ai)

2|Ai| − 1
. (10)

When the belief value is only allocated to the single ele-
ments, Deng entropy degenerates to Shannon entropy, i.e.,

Ed = −
∑
i

m(Ai) log
m(Ai)

2|Ai| − 1

= −

∑
i

m(Ai) log m(Ai). (11)

The following examples show the effectiveness of theDeng
entropy.

First, let’s consider the case that the beliefs are only allo-
cated to single elements. Take the Example 2 as an instance,
a BPA m3 in terms of e3 in the frame of discernment U =
{h1, h2, h3} can be obtained as m3(h1) = m3(h2) = m3(h3) =
1/3; thus its corresponding Shannon entropy, denoted as H

TABLE 4. The Shannon entropy and Deng entropy of e3 in Example 2.

TABLE 5. The Shannon entropy and Deng entropy of m in Example 3.

and Deng entropy, denoted as Ed , can be calculated as shown
in Table 4.

Furthermore, let’s consider the other case that the belief is
assigned to multiple elements below.
Example 3: Supposing there exists the mass function

m(h1, h2, h3) = 1 in the frame of discernment U =

{h1, h2, h3}, its corresponding Deng entropy, denoted as Ed ,
can be obtained as shown in Table 5.

From the above two examples, we can notice that when
the belief is only allocated to the single elements, the Deng
entropy and Shannon entropy are the same. However, when
the belief is assigned to the multiple elements as shown in
Example 3, the Deng entropy can efficiently measure the
uncertainty, but the Shannon entropy is incapable of that.

D. FUZZY PREFERENCE RELATIONS
Definition 10 (Fuzzy Preference Relations [47], [49]):Let

P be a fuzzy preference relation and E = {e1, e2, . . . , en} be
a set of alternatives, the fuzzy preference relation is defined
as below:

P = (pjk )n×n =



0.5 · · · p1j · · · p1n
...

...
...

...
...

pj1 · · · 0.5 · · · pjn
...

...
...

...
...

pn1 · · · pnj · · · 0.5

, (12)

where pjk ∈ [0, 1] denotes the preference value for alternative
ej over ek , pjk + pkj = 1, pjj = 0.5, 1 ≤ j ≤ n and 1 ≤ k ≤ n.
pjk = 0.5 denotes indifference between ej and ek ; pjk = 1
denotes that ej is absolutely preferred to ek ; pjk > 0.5 denoted
that ej is preferred to ek , where 1 ≤ j ≤ n and 1 ≤ k ≤ n.
Definition 11 (Additive Consistency for the Fuzzy Prefer-

ence Relation [47]): Let P = (pjk )n×n be a fuzzy preference
relation, the concept of the additive consistency for P is
defined as:

pjl = pjk + pkl − 0.5, (13)

where pjk + pkj = 1, pjj = 0.5, 1 ≤ j ≤ n and 1 ≤ k ≤ n.
Definition 12 (The Consistency Matrix [49]): Given a

complete fuzzy preference relation P∗ = (pjk )n×n, where pjk
denotes the preference values for alternative ej over alterna-
tive ek , pjk + pkj = 1, pjj = 0.5, 1 ≤ j ≤ n and 1 ≤ k ≤ n.
The consistency matrix P can be constructed based on the
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complete fuzzy preference relation P∗, shown as follows:

P = (pjl)n×n =

(
1
n

n∑
k=1

(pjk + pkl)− 0.5

)
n×n

. (14)

The consistency matrix P = (pjl)n×n has the following
properties:

(1) pjl + plj = 1;
(2) pjj = 0.5;
(3) pjl = pjk + pkl − 0.5;
(4) pjl ≤ pjs for all j ∈ {1, 2, . . . , n}, where l ∈
{1, 2, . . . , n} and s ∈ {1, 2, . . . , n}.

Given a consistency matrix P = (pjl)n×n, the ranking value
RV (ej) of alternative ej is defined as follows:

RV (ej) =
2
n2

n∑
k=1

pjk , (15)

where 1 ≤ j ≤ n and
∑n

j=1 RV (ej) = 1.

III. THE PROPOSED METHOD
In this section, a hybrid method for utilizing fuzzy soft sets
in decision making by integrating fuzzy preference rela-
tions analysis based on the belief entropy with Dempster–
Shafer (D–S) evidence theory is proposed. We first mea-
sure the uncertainties of parameters by leveraging the belief
entropy. Next, with the fuzzy preference relations analysis,
the relative reliability preference among the parameters are
indicated. After that, the uncertainties of parameters are mod-
ulated by making use of the relative reliability preference
of parameters. Afterwards, an appropriate basic probability
assignment (BPA) in terms of each parameter is generated
on the modulated uncertainty degrees of parameters basis.
Eventually, we adopt the Dempster’s combination rule to
fuse the independent parameters into an integrate one; thus,
the best one can be obtained based on the ranking candidate
alternatives. The flowchart of the proposed method is shown
in Fig. 1.

A. MEASURE THE UNCERTAINTY OF THE PARAMETER
Although, ambiguity measure is widely applied in uncer-
tainty measure, because of lacking of the information
in the Pignistic probability conversion process, the belief
entropy, Deng entropy can better measure the uncer-
tainty of evidence compared with the ambiguity mea-
sure. The below examples depict the Deng entropy’s
effectiveness.

First, let’s consider the case that the beliefs are only allo-
cated to single elements. Also, take the Example 2 as an
instance, for e3, m3(h1) = m3(h2) = m3(h3) = 1/3; thus its
corresponding ambiguity measure, denoted as AM and Deng
entropy, denoted as Ed , can be obtained as shown in Table 6.
Moreover, let’s consider the other case that the beliefs

are assigned to not only single elements, but also multiple
elements below.
Example 4: Supposing there exists the mass function

m(h1) = 0.05, m(h2) = 0.05, m(h3) = 0.05,

FIGURE 1. The flowchart of the proposed method.

TABLE 6. The ambiguity measure and Deng entropy of e3 in Example 2.

m(h1, h2, h3) = 0.85 in a frame of discernment U =

{h1, h2, h3}, its corresponding ambiguity measure, denoted
as AM and Deng entropy, denoted as Ed , can be obtained as
shown in Table 7.
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TABLE 7. The ambiguity measure and Deng entropy of m in Example 4.

From the above two examples, we can easy see the effec-
tiveness of the Deng entropy which can better measure the
uncertainties of evidences compared with the ambiguity mea-
sure. Specifically, m3 is supposed to be more certainty than
m in Example 4. However, the values of AM for m3 and m
are identical. Conversely, the m’s Deng entropy Ed = 3.2338
is more bigger than m3’s Deng entropy Ed = 1.5850, where
this result is consist with the intuition.

Let 2 = {x1, x2, . . . , xi, . . . , xt } be the frame of discern-
ment and B = {e1, e2, . . . , ej, . . . , en} be the set of parame-
ters, where xi (1 ≤ i ≤ t) represents the mutually exclusive
alternatives and ej (1 ≤ j ≤ n) denotes the evaluation
parameters. Then, F : B → I2 is defined as F(ej)(xi) =
dij. The uncertainties of parameters can be measured by the
following steps:
Step 1: The matrix D = (dij)t×n is built by the aid of the

fuzzy soft set (F,B) over2, in which dij denotes the
membership value of xi with ej:

D =



d11 · · · d1j · · · d1n
...

...
...

...
...

di1 · · · dij · · · din
...

...
...

...
...

dt1 · · · dtj · · · dtn

. (16)

Step 2: The information structure image sequence with
regard to the parameter ej is generated by dj =
{d̃1j, . . . , d̃ij, . . . , d̃tj}, in which d̃ij =

dij∑t
i=1 dij

; thus,
we construct the information structure image matrix
D̃ as follows:

D̃ =



d̃11 · · · d̃1j · · · d̃1n
...

...
...

...
...

d̃i1 · · · d̃ij · · · d̃in
...

...
...

...
...

d̃t1 · · · d̃tj · · · d̃tn

. (17)

Step 3: The belief entropy of the parameter ej is calculated
by leveraging Eq. (10), which is denoted as Ed (ej):

Ed (ej) = −
t∑
i=1

dij log
dij

2|xi| − 1
, 1 ≤ j ≤ n. (18)

Considering that the parameter’s belief entropy may
be zero in some certain case, we use the following
formula to measure the uncertain of the parameter ej
for avoiding assigning zero weight to such a kind of
parameter, which is denoted as U (ej):

U (ej) = eEd (ej) = e
−
∑t

i=1 dij log
dij

2|xi|−1 , 1 ≤ j ≤ n.

(19)

Step 4: The uncertain of the parameter ej is normalised as
follows, which is represented as U (ej):

U (ej) =
U (ej)∑n
h=1 U (eh)

, 1 ≤ j ≤ n. (20)

B. GENERATE THE CREDIBILITY VALUE BASED ON FUZZY
PREFERENCE RELATIONS ANALYSIS
How to distinguish relatively credible evidences based on
the obtained evidences plays an important role during the
process of information fusion. Nevertheless, the uncertainty
raises in the course of information collection, which results in
the increasing of the anarchy degree involved in the systems.
What is frustrating is that this behavior violates the essential
condition of utilizing the Dempster’s rule of combination.
The robustness of the system based on the Dempster–Shafer
evidence theory will become better when using ordered infor-
mation. It is considered that the variance of entropy has
capability to express the difference between evidences. In this
context, the variance of entropy is taken into account to
generate fuzzy preference relations. Then, through the fuzzy
preference relations analysis, the relative reliability prefer-
ence among the evidences are indicated, which can further
be utilised to decrease the impact of anarchy’s degree caused
by the accessorial uncertainty in the course of information
collection.

Step 1: Based on the entropy that obtained fromSection ‘‘Mea-
sure the uncertainty of the parameter’’, the fuzzy
preference relation matrix for all the parameters ej
(1 ≤ j ≤ n), denoted as P = (pjk )n×n is established
by the steps below:
Step 1-1: Based on the Definition 10, the diagonal

elements pjj is allocated to 0.5 as follows,
because no preference relation exists for
the parameter ej itself.

P = (pjk )n×n

=



0.5 · · · p1j · · · p1n
...

...
...

...
...

pj1 · · · 0.5 · · · pjn
...

...
...

...
...

pn1 · · · pnj · · · 0.5

 .

Step 1-2: When only two parameters exist which
means n = 2, the off-diagonal elements
pjk and pkj is allocated to 0.5, because
there are no plenty parameters to judge
how the parameters are preferred to each
other. Hence, we build the fuzzy prefer-
ence relation matrix as follows:

P = (pjk )n×n =
[
0.5 0.5
0.5 0.5

]
. (21)

Step 1-3: If there are more than two parameters
which means n > 2, the variance of
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entropy for the parameter ej (1 ≤ j ≤ n) is
generated by:

Var(ej) = Var({U (e1),U (e2), . . . ,

U (ej−1),U (ej+1), . . . ,U (en)}).

(22)

If the parameter ej highly conflicts with
other parameters, the variance of entropy
Var(ej) excepting oneself implies the
degree of difference between this conflict-
ing parameter and other parameters. The
more conflict the parameter ej has, the less
value the variance of entropy Var(ej) has.

Step 1-4: The off-diagonal elements pjk and pkj is
calculated as follows:

pjk =
Var(ej)

Var(ej)+ Var(ek )
, (23)

pkj =
Var(ek )

Var(ej)+ Var(ek )
, (24)

where 1 ≤ j ≤ n and 1 ≤ k ≤ n.
It is obvious that if the parameter ej is more
conflicting comparing with the parameter
ek , the value of pjk will be lower than pkj,
because the variance of entropy Var(ek ) is
more higher than that of Var(ej).

Step 2: On the basis of the obtained fuzzy preference relation
matrix P = (pjk )n×n, we construct the consistency
matrix P by using Eq. (14).

Step 3: Based on the consistency matrix P and Eq. (15),
we define the credibility value of the parameter ej by:

Crd(ej) =
2
n2

n∑
k=1

pjk , 1 ≤ j ≤ n; 1 ≤ k ≤ n.

(25)

where
∑n

j=1 Crd(ej) = 1, such that the credibil-
ity values of parameters can be considered as the
weights to indicate the relative reliability preference
of parameters.

C. CALCULATE THE BPAS OF THE PARAMETERS
In this part, the final uncertainty of the parameters are deter-
mined. Based on the final uncertain degree of each parameter,
we generate the basic probability assignments (BPAs) of the
parameters which can be further utilised by the Dempster’s
rule of combination. The specific steps are as follows:
Step 1: On the credibility degree Crd(ej) basis, the nor-

malised uncertain of the parameter ej is modulated,
represented as MU (ej):

MU (ej) = Crd(ej)× U (ej), 1 ≤ j ≤ n. (26)

Step 2: The MU (ej) is normalised as below, denoted as
MU (ej) which is regarded as the final uncertainty

TABLE 8. The fuzzy soft set (F , B) in Example 5.

measurement of the parameter ej.

MU (ej) =
MU (ej)∑n
h=1MU (eh)

, 1 ≤ j ≤ n. (27)

Step 3: The basic probability assignment of the alternative
xi and 2 with regard to the parameter ej can be
calculated by:

mej (∅) = 0, (28)

mej (xi) = d̃ij × (1−MU (ej)), (29)

mej (2) = 1−
t∑
i=1

mej (xi), (30)

where 1 ≤ i ≤ t and 1 ≤ j ≤ n.
For j = 1, 2, . . . , n,

∑
A⊆2 mej (A) = 1 is obvious.

Thus, mej is the basic probability assignment on 2.

To be specific, Eq. (26) represents that the uncertainty
of parameter is adjusted by multiplying a factor Crd(ej),
so that the effect of the parameter with less uncertainty will
be enhanced via (1−MU (ej)) operation in Eq. (29), while the
impact of the parameter with more uncertainty will be allevi-
ated via (1−MU (ej)) operation when constructing the BPAs
of the parameters. Therefore, an appropriate basic probability
assignment (BPA) in terms of each parameter is generated on
the modulated uncertainty degrees of parameters basis.

D. COMBINE THE BPAS WITH THE DEMPSTER’S RULE OF
COMBINATION
Step 1: The independent parameters will be fused into an

integrate one by adopting the Dempster’s combina-
tion rule based on Eq. (8); thus, the final BPA of the
candidate alternative xi (1 ≤ i ≤ t) that is regarded
as the belief measure of the alternative can be
generated.

Step 2: The candidate alternatives can be ranked based on the
final BPA of the alternative xi and the best one will
be obtained.

IV. EXPERIMENT
In this section, we illustrate a numerical example to show the
effectiveness of the proposed method.
Example 5: Consider a decision making problem related

to a fuzzy soft set (F,B) shown in [38, Table 8], where
2 = {x1, x2, x3} is the frame of discernment and B =
{e1, e2, e3, e4, e5} is the set of parameters which is considered
as the set of evidences.
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Step 1: Build the matrix D = (dij)t×n induced by the fuzzy
soft set (F,B) over 2 as follows:

D =

 0.85 0.73 0.26 0.32 0.75
0.56 0.82 0.76 0.64 0.43
0.84 0.55 0.82 0.53 0.47

.
Step 2: Construct D̃, i.e., the information structure image

matrix as below:

D̃ =

 0.3778 0.3476 0.1413 0.2148 0.4545
0.2489 0.3905 0.4130 0.4295 0.2606
0.3733 0.2619 0.4457 0.3557 0.2848

.
Step 3: Measure the uncertainty of parameter ej (j =

1, 2, 3, 4, 5) as follows:

U (e1) = 4.7617, U (e2) = 4.7870,

U (e3) = 4.2435, U (e4) = 4.6214,

U (e5) = 4.6585.

Step 4: Normalise the uncertainty of parameter ej (j =
1, 2, 3, 4, 5) as below:

U (e1) = 0.2064, U (e2) = 0.2075,

U (e3) = 0.1839, U (e4) = 0.2003,

U (e5) = 0.2019.

Step 5: Establish P = (pjk )n×n, i.e., the fuzzy preference
relation matrix as follows:

P =


0.5000 0.5147 0.9043 0.4630 0.4664
0.4853 0.5000 0.8991 0.4485 0.4519
0.0957 0.1009 0.5000 0.0836 0.0847
0.5370 0.5515 0.9164 0.5000 0.5034
0.5336 0.5481 0.9153 0.4966 0.5000

.
Step 6: Build P = (pjl)n×n, i.e., the consistency matrix as

below:

P =


0.5000 0.5127 0.8967 0.4680 0.4710
0.4873 0.5000 0.8840 0.4553 0.4582
0.1033 0.1160 0.5000 0.0713 0.0743
0.5320 0.5447 0.9287 0.5000 0.5030
0.5290 0.5418 0.9257 0.4970 0.5000

.
Step 7: Generate the credibility value of parameter ej (j =

1, 2, 3, 4, 5) as follows:

Crd(e1) = 0.2279, Crd(e2) = 0.2228,

Crd(e3) = 0.0692, Crd(e4) = 0.2407,

Crd(e5) = 0.2395.

Step 8: Modulate the normalised uncertainty of parameter
ej (j = 1, 2, 3, 4, 5) on the basis of the credibility
value as below:

MU (e1) = 0.0470, MU (e2) = 0.0462,

MU (e3) = 0.0127, MU (e4) = 0.0482,

MU (e5) = 0.0484.

TABLE 9. The BPAs of alternatives with regard to the parameters in
Example 5.

TABLE 10. The belief measure of the alternatives in terms of different
methods in Example 5.

TABLE 11. The comparison of different methods in Example 5.

Step 9: Normalise the modulated uncertainty of parameter
ej (j = 1, 2, 3, 4, 5) as follows:

MU (e1) = 0.2322, MU (e2) = 0.2282,

MU (e3) = 0.0628, MU (e4) = 0.2380,

MU (e5) = 0.2387.

Step 10: Calculate the basic probability assignment of alter-
native xi and 2 with regard to the parameter ej as
shown in Table 9.

Step 11: Combine the BPAs of Table 9 through the Demp-
ster’s rule of combination, and the fusing results,
namely, the belief measures of alternatives are
shown in Table 10 and Fig. 2.

Step 12: The final ranking of candidate alternatives on the
basis of the final BPA of the alternative xi is x2 >
x3 > x1. Hence, the optimal choice decision is x2
which corresponds to the maximum.

Additionally, we compare the proposed method with the
related methods [38] and [39] where the comparison results
are displayed in Table 10, Table 11 and Fig. 2.

As shown in Table 11, it is obvious that the belief mea-
sures of the uncertainties that are obtained by Li et al. [38]
and Wang et al. [39] methods are 0.0751 and 0.0051,
respectively, whereas the uncertainty’s belief measure falls
to 0.0031 which are obtained by the proposed method. It
indicates that the proposal by integrating fuzzy preference
relations analysis based on the belief entropy with D–S evi-
dence theory can reduce uncertainty resulting from human’s
subjective cognition, such that it can improve the decision-
making level. Furthermore, according to the belief measure
of the alternatives in Table 10 and Fig. 2, and the mea-
sure of performance γ in Table 11, the proposed method is
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FIGURE 2. The comparison of the belief measure of different methods in
Example 5.

more accurate and effective than the previous methods [38]
and [39].

V. APPLICATION
As well as we know, it is critical to manage uncertainty
in medical diagnosis. By considering the medical diagno-
sis problem from [38] and [39], we compare the proposed
method with the related methods [38] and [39]. Finally,
the experimental results illustrate that the proposed method
is as efficient as the related methods.

Supposing that the universe set 2 that consists of four
diseases is given by 2 = {acute dental abscess, migraine,
acute sinusitis, peritonsillar abscess} = {x1, x2, x3, x4}, and
the set of parameters B is given by B = {fever , running nose,
weakness, orofacial pain, nausea vomiting, swelling, trismus,
history, physical examination, laboratory investigation} =
{e1, e2, e3, e4, e5, e6, e7, f1, f2, f3}.
Let I1 and I2 be two subsets of E , given by I1 =
{e1, e2, e3, e4, e5, e6, e7} and I2 = {f1, f2, f3}. Supposing that
(F, I1) is the fuzzy soft that expresses ‘‘symptoms of the
diseases’’, and (G, I2) is the fuzzy soft set that represents
‘‘decision making tools of the diseases’’. The fuzzy soft sets
(F, I1) and (G, I2) are shown in Table 12 and Table 13,
respectively.

TABLE 12. The fuzzy soft set (F , I1).

TABLE 13. The fuzzy soft set (F , I2).

Supposing that a patient who is suffering from a disease has
three symptoms P = {fever , runny noise, orofacial pain}. A
doctor requires to make the most suitable diagnosis regarding
to the the patient’s symptoms, physical examination, his-
tory, and laboratory investigation. To figure out this problem,
‘‘(F,P) ∧ (G, I2)’’ is constructed as shown in Table 14.
There are four diseases, i.e., x1, x2, x3, x4, and nine pairs of
parameters, i.e., s1 = (e1, f1), s2 = (e1, f2), s3 = (e1, f3),
s4 = (e2, f1), s5 = (e2, f2), s6 = (e2, f3), s7 = (e4, f1),
s8 = (e4, f2), s9 = (e4, f3), where s = (e, f ) denotes the
pair of one symptom and one decision making tool.

Aforementioned, the frame of discernment is 2 =

{x1, x2, x3, x4} that is constructed by four diseases, and the
set of parameters which is considered as the set of evidence
is Q = {s1, s2, s3, s4, s5, s6, s7, s8, s9} that is constructed by
the pairs of the symptoms and the decision-making tools.
Afterwards, we propose amethod to identify themost suitable
symptoms of each disease. The concrete steps are given as
below.
Step 1: Build the matrix D = (dij)t×n induced by the fuzzy

soft set (F,P)∧(G, I2) over2 as shown in Eq. (31),
at the bottom of the next page.

Step 2: Construct D̃, i.e., the information structure image
matrix as shown in Eq. (32), at the bottom of the
next page.

Step 3: Measure the uncertainty of parameter sj (j =
1, 2, . . . , 9) as follows:

U (s1) = 6.6141, U (s2) = 6.6141,

U (s3) = 7.0936, U (s4) = 1.0000,

U (s5) = 1.0000, U (s6) = 1.0000,

U (s7) = 7.2805, U (s8) = 6.6559,

U (s9) = 6.8627.

Step 4: Normalise the uncertainty of parameter sj (j =
1, 2, . . . , 9) as below:

U (s1) = 0.1499, U (s2) = 0.1499,

U (s3) = 0.1608, U (s4) = 0.0227,

U (s5) = 0.0227, U (s6) = 0.0227,
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TABLE 14. The fuzzy soft set (F , P) ∧ (G, I2).

TABLE 15. The BPAs of alternatives in terms of the parameters.

U (s7) = 0.1650, U (s8) = 0.1509,

U (s9) = 0.1555.

Step 5: Establish P = (pjk )n×n, i.e., the fuzzy preference
relation matrix which is shown in Eq. (33), at the
bottom of the next page.

Step 6: Build P = (pjk )n×n, i.e., the consistency matrix
which is shown in Eq. (34), at the bottom of the
next page.

Step 7: Generate the credibility value of parameter sj (j =
1, 2, . . . , 9) as follows:

Crd(s1) = 0.1161, Crd(s2) = 0.1161,

Crd(s3) = 0.1143, Crd(s4) = 0.1030,

Crd(s5) = 0.1030, Crd(s6) = 0.1030,

Crd(s7) = 0.1134, Crd(s8) = 0.1159,

Crd(s9) = 0.1152.

Step 8: Modulate the normalised uncertainty of parameter
sj (j = 1, 2, . . . , 9) on the basis of the credibility
value as below:

MU (s1) = 0.0174, MU (s2) = 0.0174,

MU (s3) = 0.0184, MU (s4) = 0.0023,

MU (s5) = 0.0023, MU (s6) = 0.0023,

MU (s7) = 0.0187, MU (s8) = 0.0175,

MU (s9) = 0.0179.

Step 9: Normalise the modulated uncertainty of parameter
sj (j = 1, 2, . . . , 9) as follows:

MU (s1) = 0.1522, MU (s2) = 0.1522,

MU (s3) = 0.1607, MU (s4) = 0.0204,

MU (s5) = 0.0204, MU (s6) = 0.0204,

MU (s7) = 0.1638, MU (s8) = 0.1530,

MU (s9) = 0.1568.

Step 10: Calculate the basic probability assignment of alter-
native xi and 2 with regard to the parameter sj
(j = 1, 2, . . . , 9) as shown in Table 15.

Step 11: Combine the BPAs of Table 15 through the Demp-
ster’s rule of combination, and the fusing results,
namely, the belief measures of alternatives are
shown in Table 16 and Fig. 3.

Step 12: The final ranking of candidate alternatives on the
basis of the final BPA of the alternative xi is x3 >
x1 > x4 > x2. Hence, the optimal choice decision
is x3 which corresponds to the maximum.

In addition, we compare the proposed method with the
related methods [38] and [39] where the comparison results
are displayed in Table 16, Table 17 and Fig. 3.

From Table 17, we can see that the belief measures of
the uncertainties that are obtained by Li et al. [38] and
Wang et al. [39] methods are 0.0069 and 0.0001, respec-
tively, whereas the uncertainty’s belief measure falls to

D =


0.60 0.60 0.40 0.00 0.00 0.00 0.60 0.80 0.40
0.20 0.20 0.20 0.00 0.00 0.00 0.80 0.30 0.60
0.30 0.30 0.30 0.70 0.40 0.70 0.80 0.40 0.70
0.40 0.40 0.30 0.00 0.00 0.00 0.60 0.70 0.30

. (31)

D̃ =


0.4000 0.4000 0.3333 0 0 0 0.2143 0.3636 0.2000
0.1333 0.1333 0.1667 0 0 0 0.2857 0.1364 0.3000
0.2000 0.2000 0.2500 1 1 1 0.2857 0.1818 0.3500
0.2667 0.2667 0.2500 0 0 0 0.2143 0.3182 0.1500

. (32)
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FIGURE 3. The comparison of the belief measure of different methods in
the application.

0.0000001 which are obtained by the proposed method.
It indicates that the proposal by integrating fuzzy prefer-
ence relations analysis based on the belief entropy with

TABLE 16. The belief measures of alternatives in terms of different
methods.

TABLE 17. The comparison of different methods.

D–S evidence theory can reduce uncertainty resulting from
human’s subjective cognition, such that it can improve the
decision-making level. Furthermore, according to the belief
measure of the alternatives in Table 16 and Fig. 3, and
the measure of performance γ in Table 17, the proposal
is more accurate and efficient compared with the previous
methods [38] and [39].

VI. CONCLUSION
In this paper, a hybrid method for utilizing fuzzy soft sets
in decision making by integrating fuzzy preference relations
analysis based on the belief entropy with Dempster–Shafer
(D–S) evidence theory was proposed. The proposed method
regarded not only the uncertainty measure of parameters, but
also the impact of the relative reliability of parameters. The
proposed hybrid method was composed of four parts. Firstly,
the belief entropy was utilised to measure the uncertainties
of parameters. Then, the uncertainties of parameters were

P =



0.5000 0.5000 0.5082 0.5589 0.5589 0.5589 0.5120 0.5006 0.5039
0.5000 0.5000 0.5082 0.5589 0.5589 0.5589 0.5120 0.5006 0.5039
0.4918 0.4918 0.5000 0.5509 0.5509 0.5509 0.5038 0.4925 0.4958
0.4411 0.4411 0.4491 0.5000 0.5000 0.5000 0.4529 0.4417 0.4450
0.4411 0.4411 0.4491 0.5000 0.5000 0.5000 0.4529 0.4417 0.4450
0.4411 0.4411 0.4491 0.5000 0.5000 0.5000 0.4529 0.4417 0.4450
0.4880 0.4880 0.4962 0.5471 0.5471 0.5471 0.5000 0.4887 0.4920
0.4994 0.4994 0.5075 0.5583 0.5583 0.5583 0.5113 0.5000 0.5033
0.4961 0.4961 0.5042 0.5550 0.5550 0.5550 0.5080 0.4967 0.5000


. (33)

P =



0.5000 0.5000 0.5081 0.5589 0.5589 0.5589 0.5119 0.5006 0.5039
0.5000 0.5000 0.5081 0.5589 0.5589 0.5589 0.5119 0.5006 0.5039
0.4919 0.4919 0.5000 0.5508 0.5508 0.5508 0.5038 0.4925 0.4958
0.4411 0.4411 0.4492 0.5000 0.5000 0.5000 0.4530 0.4417 0.4450
0.4411 0.4411 0.4492 0.5000 0.5000 0.5000 0.4530 0.4417 0.4450
0.4411 0.4411 0.4492 0.5000 0.5000 0.5000 0.4530 0.4417 0.4450
0.4881 0.4881 0.4962 0.5470 0.5470 0.5470 0.5000 0.4887 0.4920
0.4994 0.4994 0.5075 0.5583 0.5583 0.5583 0.5113 0.5000 0.5033
0.4961 0.4961 0.5042 0.5550 0.5550 0.5550 0.5080 0.4967 0.5000


. (34)

25310 VOLUME 6, 2018



F. Xiao: Hybrid Fuzzy Soft Sets Decision-Making Method in Medical Diagnosis

modulated via the relative reliability preference of parameters
by making use of the fuzzy preference relations analysis.
After that, an appropriate BPA in terms of each parameter was
generated on the basis of the modulated uncertainty degrees
of parameters. On this basis, we adopted the Dempster’s com-
bination rule to fuse the independent evidences, i.e., param-
eters into an integrate evidence; thus, the best one could be
obtained based on the ranking candidate alternatives. After-
wards, the proposed method was compared with the related
works through a numerical example. The results showed that
the uncertainty’s belief measure fell from 0.0051 to 0.0031 in
Example 5; meanwhile, the belief value of the best candidate
increased from 0.3803 to 0.4029, so that the decision-making
level was improved. Additionally, the proposed method
was implemented in a medical diagnosis application, where
the uncertainty’s belief measure reduced from 0.0001 to
0.0000001; at the same time, the belief value of the best
candidate increased from 0.9906 to 0.9999661 which also
improved the decision-making level. Consequently, it can
be concluded that the proposed method was more efficient
than the related works, because the uncertainty resulting from
human’s subjective cognition was reduced and the decision-
making level was improved with better performance by using
the proposed method.
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