
Received February 28, 2018, accepted March 30, 2018, date of publication April 3, 2018, date of current version April 23, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2822661

Domain Specific MetaModeling for Deep
Semantic Composability
ZHI ZHU 1,2, YONGLIN LEI1,2, ABDURRAHMAN ALSHAREEF2,
HESSAM SARJOUGHIAN2, AND YIFAN ZHU1
1Department of Military Modeling and Simulation, School of System Engineering, National University of Defense Technology, Changsha 410073, China
2Arizona Center for Integrative Modeling and Simulation, School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,
Tempe, AZ 85281, USA

Corresponding author: Zhi Zhu (zhuzhi@nudt.edu.cn)

This work was supported by the Natural Science Foundation of China under Grant 61273198.

ABSTRACT Current simulationmodels are not only represented in the form of traditional data or formula for
pure theory analysis but expanded to be simulation modeling assets that are featured with complicated struc-
ture, diverse behaviors, and abundant semantics. Semantic composability, therefore, receives a constantly
growing attention in recent years. So far, one of the popular solutions to enhance semantic expressiveness
is domain specific modeling based on general metamodeling (GMM) facilities. But for some particular
domains, researchers identified the need of deeper semantic expressiveness therefore proposed domain
specific metamodeling (DSMM). Hence, this paper aims to explore the underlying methodologies of DSMM
for supporting deep semantic composability. Compared with several usual alternatives based on GMM, this
paper applies the multi-level metamodeling architecture to create a set of metamodeling primitives using
an example named SEvent. In fact, SEvent is a novel formalism that slightly extends Petri net to support
continuous states transition and continuous event triggering. As a proof of concept, we concentrate on
developing the textual syntax of SEvent and using it to represent torpedo’s behaviors.

INDEX TERMS DSL, metamodeling, semantics, composability.

I. INTRODUCTION
Different simulation modelers interpret and represent a simi-
lar model in different ways, leading to the variety of models
in terms of syntax, structure, and semantics. Consequently,
models are syntactically independent and semantically diffi-
cult to reach a consensus, which could result in model reuse
difficulties and a low model composability level.

Model composability [1] has different levels. In gen-
eral, it contains deep semantic composability (also called
full composability), semantic composability, syntactical
composability, and no composability. Furthermore, syntac-
tical composability has several levels of difficulties with
respect to the type of model heterogeneity [2]. Also,
semantic composability has different levels regarding the
depth of semantic mapping and matching between model
components [3].

The goal of model composability is model reuse [4]. On the
one hand, it is necessary to describe information about model
interfaces by standard model specifications. On the other
hand, it requires the standardized expression of domain con-
cepts and relationships, and needs to support the consistency

between model concepts and model implementations, since it
is beneficial for simulation modelers to early judge whether
given models can be composed or not. In fact, the task of
model reuse is more to compose models with others than
purely to use models repeatedly, thus to realize the fast
development of models in a composable way. Therefore,
both model reuse and model composability blend into one
integrity with two sides to some degree, which means that
model reuse foundationally requires the syntactic compos-
ability of different models, and what’s more, it should ensure
the semantic validity after models are composed completely.
Specifically, semantic composability is concerned with the
abstract or semantic relations that naturally exist among dif-
ferentmodel components which have the desire towork coop-
eratively. Therefore, it is possible to satisfy the individual
and diverse requirements of simulation modelers to develop
simulation applications by organizing these available model
components to form a dynamic alliance.

Unfortunately, there is no general rule or guidance that
can be provided to define a good solution. However, seman-
tic composability can be evaluated according to some basic

18276
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-3758-8568


Z. Zhu et al.: DSMM for Deep Semantic Composability

principles derived from abundant practice [5], [6]. In this
paper, we summarize some basic criteria that need to be
satisfied for a successful approach to support semantic com-
posability. For this purpose, we pay attention to three aspects
listed as follows and these criteria will be used to evaluate the
case example in Section IV.

1. Syntactical compatibility. Important though semantic
composability is to integrate models into a meaningful whole,
the premise is that these models should be compatible syntac-
tically at least. That is, the aim is to explore an effective solu-
tion to reduce or eliminate the technical gap exists between
model components.

2. Model abstraction. Since it is preferable for modelers to
specify domain knowledge as intuitive as possible, the goal
is to raise the level of abstraction of models to be closer to
the problem domain and to be away from the implementation
details. As such, modelers can concentrate on how to directly
introduce domain concepts and relations into models so as to
enhance their semantic expressiveness.

3. Model evolvability. Although model evolvability has a
lot of connotations, the requirements derived fromM&S com-
munity give more focus on evolving model representations in
a convenient way. In this regard, the aim is to describe amodel
without considering on a specific technology, tool or plat-
form, so as to allow modelers to update models in a more
understandable and modifiable way according to the new
vendor demands.

FIGURE 1. The trend of system modeling and simulation paradigms.

So far, studies on addressing model composability could
mostly summarize into two phases: standard specifications
and semantics anchoring. The ways formed at the first phase
mainly focus on the syntactical heterogeneity from the tech-
nological perspective, while the second phase attempts to
address the semantic difference from the domain’s point of
view, as shown in Fig. 1. Specifically, standard specifica-
tions aim to build a commonly accepted specification or
formalism to represent models in a unified form, like the
unified simulation protocols (e.g. HLA [7]), model spec-
ifications (e.g. BOM [8], SMP [9]), modeling formalisms
(e.g. DEVS [10], Modelica [11]), and simulation platform

(e.g. JointMEASURE [12], DEVS-C++ [13]). The seman-
tics anchoring, whereas, intends to define good mapping
relationships between model elements and domain con-
cepts for a particular domain, like domain specific simu-
lation systems (e.g. EADSIM [14], SEAS [15], etc.), and
architecture-driven large system development and analysis
(e.g.WESS [16], DM2 [17]), as well as ontological metamod-
eling [18] or domain specific metamodeling which is studied
in this paper.

The trend in Fig. 1 shows that it is not sufficient to
adopt a generic simulation platform that realizes one or a
few standard model specifications or formalisms, neither is
it sufficient to create a dedicated simulation platform for
a special type of system. Rather, the key is to explore a
well-defined mechanism to represent domain knowledge in
a commonly understandable way that could be closer to the
problem domain not the implementation details.

Domain specific modeling (DSM) as such a mecha-
nism has effectively applied to capture domain concepts
and structure in a deeper semantic way than the general-
purpose programming language (GPL) [19]. However, sev-
eral researchers have identified the shortage of the use of
domain specific languages (DSL) because they are normally
defined through the general-purpose metamodeling (GMM)
facilities. Hence, domain specific metamodeling (DSMM),
at a higher abstract meta-level, is proposed to customize the
metamodeling primitives aiming at the definition of modeling
languages for a specific domain.

The remainder of this paper is structured as follows.
Section 2 introduces the metamodeling architecture based on
GMM and presents two representative facilities, i.e. UML
profile mechanism and EMF. With more flexible expressive-
ness, Section 3 focuses on designing DSMM facilities from
scratch based on the multi-level metamodeling architecture.
In Section 4, a slight extension of Petri net, namely SEvent,
is defined as a demonstrative example and the development of
its textual concrete syntax is shown, then this DSL is used to
describe torpedo’s physical behaviors. Section 5 summarizes
this paper and gives a brief discussion on the assessment of
the proposed approach.

II. DSL DESIGN WITH GMM FACILITIES
As mentioned before, DSLs are normally defined through
the GMM facilities like MOF (Meta-Object Facility) and
Ecore. Generally, these DSLs comprise two meta-levels [20],
i.e. the definition of a DSL and its immediate use. This section
introduces three alternatives within the architecture of GMM
facilities: UML metamodel refinement, UML metamodel
extension, and new metamodel definition, and lastly makes
a simple comparison of these alternatives in regard to their
properties and capabilities for specifying a certain system.

A. THE METAMODELING ARCHITECTURE
BASED ON GMM FACILITIES
In metamodeling, the term meta-level is used to indicate
the level of which a language element possesses, so as to

VOLUME 6, 2018 18277



Z. Zhu et al.: DSMM for Deep Semantic Composability

FIGURE 2. Three metamodeling alternatives using GMM facilities.

represent the level structure of a metamodel and the model
that the metamodel defines. Typically, MOF is a strict four
meta-levels metamodeling architecture that is widely used
as a principle in the language engineering literature, in
which every model element on every meta-level is strictly
in correspondence with a model element of the meta-level
above [21]. The four meta-levels conceptual architecture
creates an infrastructure for customizing a new modeling
language or making future language extensions.

Usually, there are three metamodeling alternatives based
onMOF [22]: UMLmetamodel refinement, UMLmetamodel
extension, and new metamodel definition, as shown in Fig. 2.
Since the previous two do not change the UML metamodel,
both of which are known as UML Profile [23]. The last
one defines a metamodel from scratch without the confor-
mance to the UML metamodel, like EMF (Eclipse Modeling
Framework). An important point needs to be mentioned here
is that either UML Profile or EMF is based on a GMM
facility.

1) Metamodel refinement does not permit the modification
of existing metamodels. Therefore, the semantics and the
structure of UML metamodel cannot be modified, and the
introduction of new language elements into the metamodel
are not permitted. Moreover, additional domain specific con-
straints can be added, but changes to existing constraints
in the UML metamodel are not allowed. So this method
is more suitable for those extensions are highly specific to
a particular domain. In a combat effectiveness simulation
system (CESS) [24], for example, assume a particular pro-
totype of surface ship only can be equipped with two kinds
of weapons. We use OCL (Object Constraint Language) to
describe such a constraint, as shown in Fig. 2 (left), because a
Class in the UMLmetamodel is allowed to be associated with

multiple classes. As a result, in theM1meta-level, the surface
ship to be equipped with a mine is not allowed when it has
already been armed with both a torpedo and a missile.

2) Metamodel extension makes an extension of an existing
modeling language by supplementing it with fresh domain
specific constructs. It is considered to be a more flexible
approach since new concepts may be represented in the meta-
model. However, it may lose some support from existing
tools due to the introduction of new language elements. For
instance, it makes sense to say that both missiles and torpe-
does are children of theWeapon class, and the subsetMissile
is disjoint with the subset Torpedo. This is to say that, in the
real world, there exists not a weapon that is able to have both
the torpedo and the missile properties simultaneously. So we
create a stereotype named�disjointWith� to be applied on
the Association class of the UML metamodel. In addition,
this stereotype has a tag named ‘‘DisjointType,’’ indicating
two different kinds of disjoint relationships: full and partial.
The full disjoint relationship occurs between two complete
disjoint relationships, i.e. given three sets A,B,C , where
B ⊂ A,C ⊂ A, and B ∩ C = ∅ ∧ B ∪ C = A, but if
B∩C = ∅∧B∪C ⊆ A, saying B and C are partially disjoint
with each other.

3) Newmetamodel definition is a process of metamodeling
from scratch. Obviously, it enjoys the highest flexibility to
customize a metamodel directly using the domain specific
concepts. For example, based on EMF/Ecore, we define a
TacticalState and a TriggerEvent as well as a Transition
relationship that has a tag named ‘‘priority.’’ All of these
elements will be instantiated at the next meta-level with
a complete individual and distinctive style. However, this
method may suffer from some drawbacks because devel-
oping tools for the new defined metamodel is difficult and

18278 VOLUME 6, 2018



Z. Zhu et al.: DSMM for Deep Semantic Composability

FIGURE 3. DSL design framework based on UML profile.

expensive, which could be worse in the case of metamodels
with sophisticated and deep semantics.

Above mentioned methods are widely used by researchers
and engineers in the metamodeling field [25], [26]. Some are
from the technical perspective to address general syntactical
problems, whereas others are more concerned with domain
oriented issues. In either case, a wide lack of semantic com-
posability exists. We compare the properties and capabilities
of these methods, in terms of their effects on change of
UML metamodel, semantic expressiveness, use of existing
resources, and training expenditure, each of which is denoted
with three levels, as shown in Table 1.

TABLE 1. A simple comparison of the GMM alternatives.

In addition, it is known that a single modeling language
is not enough to cover all the various concerns involved
in a specific domain. However, currently there have been
little guidelines applied to define a DSL due to the diverse
of disciplines. Yet there is not a definite answer for the
discussion about the suitability of UML Profile exten-
sions or metamodeling from scratch when facing a partic-
ular domain. But, it is important to conclude experience
to avoid pitfalls in practice. Next we will discuss these
metamodeling methods using the UML profile and EMF
mechanisms.

B. UML PROFILE AND EMF MECHANISMS
Nowadays, many UML profiles may be either invalid because
they are conflict with the standard UML principles, or incom-
prehensive because they do not adequately capture necessary
semantic information. Therefore, overcoming these prob-
lems is a key work that an effective framework needs to do
for defining well-formed and flexible profiles. It requires
not only the domain expertise but also proficiency in

UML modeling [27]. Fig. 3 shows a framework of DSL
design based on UML Profile.

This framework conforms to the MOF four meta-levels
metamodeling architecture and mainly contains five key
stages which are labeled by the letter ‘‘S’’ plus a number:
S1 metamodeling, S2 UML Profiling, S3 profile evaluation,
S4 user friendly-modeling, and S5 code generation. Note the
former three stages belong to the range of language defini-
tion, while the latter two stages concentrate on the use of
languages.

1) Metamodeling (S1). This stage is concerned with the
process of explicit modeling to capture the abstract syn-
tax of a modeling language. In general, the abstract syn-
tax model should include the following elements, i.e. a set
of fundamental language constructs, a set of valid rela-
tionships, a set of constraints, the concrete syntax and the
semantics.

In practice, it is not easy to define the above key elements
because they usually become woven together, so it is of
importance to identify some experience to get a valid profile
of good quality. Firstly, one should specify the domain model
without any consideration of UML metamodels. Secondly,
one should adjust the domain model even with some loss of
expressiveness if conflict occurs. Thirdly, one should check
the domain model structure to reduce the complexity of
constraints.

2) UMLProfiling (S2). This stage is an activity of selecting
the most suitable UML base language elements adapting to
the domain concepts. Initially, the UML base classes should
be selected semantically similar to the domain concepts.
Furthermore, not all the stereotypes are from the UML base
classes but may be other forms such as inheritance. At last,
the selected UML base classes are not always well aligned
with the domain concepts even being contradictory, thus
proper constraints should be constructed to resolve these
conflicts.

3) Profile evaluation (S3). This stage is to evaluate the
correctness of a profile usually by constructing its concrete
implementations. Firstly, create an object diagram to ensure
the correctness of the abstract syntax model. Secondly, define

VOLUME 6, 2018 18279



Z. Zhu et al.: DSMM for Deep Semantic Composability

FIGURE 4. Typing from the linguistic and ontological perspectives.

rules to transform the profile to another language that has pre-
cise and well-defined semantics. Thirdly, develop a domain
specific tool for the profile to implement the concrete syntax.

The latter two stages (i.e. user friendly-modeling and code
generation) use the validated profile to build some models for
a specific domain. In practice, we often find some practical
modeling issues when using the DSL, which is inevitable
because some issues are always discovered in the long run
of use, even though the domain experts are very confident for
their professional knowledge. Thankfully, with such a general
framework accompanying with much practical experiences,
one can easily tackle with the model evolvability and clearly
renew languages based on previous ones.

EMF is another mean to design DSLs, which usually has
close relationships with a set of OMG standards, like UML,
MOF, XMI, and MDA and so on. Firstly, UML is widely
used to capture various concerns of a certain system by an
object-oriented method, emphasizing multi-view to describe
the structure, behavior, function, and deployment, etc. While,
EMF as a way of defining metamodels is only concerned
with one aspect of a system, i.e. class structure. Secondly,
EMF/Ecore focuses on the tool sets not the metadata ware-
housemanagement, thus avoiding some of the complex issues
such as data structure, package relationships, and associations
compared to the MOF. Thirdly, XMI is a widely accepted
serializing standard which is not only used as the format for
serializing EMF models, but also suitable for serializing the
metamodel, i.e. Ecore itself.

This method is very different with the UML profiling
mechanism because it defines metamodels from scratch with-
out considering the UML rules. Hence, it has the potential for
the most direct and succinct expression of domain concepts.
Furthermore, it has a collection of supporting tools (e.g. GEF
and GMF) thanks to the Eclipse open source architecture.

Once a DSL is completed, it does not mean that one can
process to the subsequent work without any change of the
DSL. In many cases, the DSL may show its shortcoming
along with its wide application since the GMM facilities
cannot always be qualified to specify domain concepts and

relations comprehensively. Even some of modeling elements
are contradictory with the domain specific characteristics.
When this happens, special care must be taken to raise the
level of abstraction as a result. For instance, it is time to aban-
don the GMM facilities and explore a more flexible approach
having deeper semantics to express complex domain concepts
and relations.

III. DOMAIN SPECIFIC METAMODELING
Unlike DSLs design using theGMM facilities where users are
given the full power of a general-purpose metamodeling lan-
guage, the DSMM approach provides a set of more suitable
metamodeling primitives that tailored to a particular meta-
modeling task or application. Hence, the resulting DSMM
language contains primitives of a specific domain with deep
semantics, thus is closer to the problem domain than using
the GMM facilities. This section adds another ontological
dimension to the usual linguistic definition, then introduces
the general DSMM architecture, and provides a motivating
example for DSMM languages.

A. TYPING FROM TWO PERSPECTIVES
Typing an element is an important method to improve the
meta-level of domain concepts, thus realizing the maximum
reuse of model information at the level above. Base on
the identified two separate orthogonal dimensions of meta-
modeling [28], the method has two distinct forms of typ-
ing, i.e. ontological typing and linguistic typing, as shown
in Fig. 4. Ontological typing locates a model element from
the perspective of domain definition hence uses ontological
typing, e.g. it makes sense to say that a wire guided tor-
pedo is a torpedo, weapon, and so on. Linguistic typing is
concerned with languages definition hence uses linguistic
typing, e.g. the linguistic type of tmWireGuidedTorpedo is
the Class, while the Attribute can be instantiated to the field
‘‘prototype,’’ and the instance of Operation is startHoming().
Both forms work simultaneously to precisely provide the
location for a specific element within the domain space.

18280 VOLUME 6, 2018



Z. Zhu et al.: DSMM for Deep Semantic Composability

Traditionally, researchers have long emphasized the lin-
guistic typing to address the syntactical comosability,
e.g. UML/MOF infrastructure as shown in Fig. 4 (left), while
encouraging the ontological typing as a subservient mecha-
nism to enhance the semantic composability, e.g. UML Pro-
file. However, UMLProfile as a kind of lightweight extending
mechanisms provides a known limited expressiveness using
stereotypes, tagged values, and domain specific constraints
as well. For example, it is possible to express that the timed
tmWireGuidedTorpedo is an instance of the Class by apply-
ing the stereotype �DerivedClass� which is tagged by
the ‘‘clock’’ property, but not all the domain concepts and
relationships can be available suitably, e.g. states, events,
associations, or generation relationships. Ideally, ontological
typing should play an equal role to linguistic typing and vice
versa. Neither should be attached to the other.

Fig. 4 (right) shows the process of the ontological typ-
ing by a wire guided torpedo example within the military
effectiveness simulation space. Metaconcepts such as Guid-
ance, Category, and so on allow new created classes to be
added to the military classification system. Note that these
metaconcepts can be viewed as a way of classification. For
example, the military system has wire guided torpedo and
homing torpedo if it is classified by a guidance way. While,
Torpedo,Missile, and so on are classified if a category way is
adopted. Also, a use way derives weapons, countermeasures,
platforms, etc., and a motion way gives birth to entities and
sensors.

In addition to the ontological and linguistic typing meth-
ods, we introduce a meta-stop principle that is significant
to terminate the unlimited meta-level of domain knowledge
abstraction. For a specific meta-level, if only exists one sin-
gle element or exclusive elements, the meta-level structure
should stop intuitively at this level since there is not the
need to set a higher meta-level to abstract its commonali-
ties, which is called the meta-stop principle. For example,
the UML/MOF architecture stops at the M3 level accordingly
because the elements at this level are always disjoint without
overlapping parts.

According to the different perspectives of typing an ele-
ment, the meta-stop principle also includes ontological meta-
stop principle and linguistic meta-stop principle. On the
one hand, ontological meta-stop principle requires that the
domain definition terminates at a ontological meta-level
whose domain elements are exclusive with each other, includ-
ing the special case of only one domain element exist-
ing at this meta-level. On the other hand, the linguistic
meta-stop principle declares that the language definition
should terminate if no similar language elements exist at that
meta-level.

B. GENERAL ARCHITECTURE OF DSMM
To support the dual linguistic/ontological typing of model
elements, this study, similar to the DSMM architec-
ture with three meta-levels [29], applies the multi-level
approach [30] which can define indirect properties at several

meta-levels below. In the multi-level framework, an element
has a type facet that is able to be instantiated at the next meta-
level and an instance facet in which instances are typed at
the meta-level above. Hence, the term Clabject is used to
represent an element that encompasses both facets, i.e. the
union meaning of class and object, as shown in Fig. 5.

FIGURE 5. General architecture of DSMM.

Moreover, there is another important point with respect to
the instantiation relationship of two dimensions: linguistic
and ontological instance of. On the one hand, the model
element signalIsInterrupted (L0) is an ontological instance of
EIB (L1), hence resides a lower ontological level than EIB.
Furthermore, EIB is an ontological instance of Event (L2).
On the other hand, one can interpret all of the modeling
elements in the right column as being conformant to the
linguistic metamodel in the left column. For instance, Event,
EIB, and SignalIsInterrupted are all the linguistic instances
of Clabject.

To make the instantiation across multiple meta-levels, the
multi-level framework uses a notation ‘‘@X ’’ that will be
attached to models, clabjects, fields, and associations, rep-
resenting the concept of the level. It is a natural number
(including zero) that indicates which meta-level the attach-
ing element will be instantiated at. For example, the field
name@1 is assigned a value wireIsBroken at the next meta-
level, and the field occur is assigned a value (11.0, 1) at the
next two meta-level because this field receives the level of
its container Event if this notation (‘‘@X ’’) is not explicitly
given. In addition, a linguistic extensionmechanism is used to
create a new element that has only linguistic type, but has no
ontological types.Mostly, this mechanism is useful to express
those elements which are specific to the particular application
at a specific meta-level. For example, the field factor that has
not an ontological type is contained by the clabject EIB and is
assigned a value WireWithPoorQuality at the L0 meta-level.
Moreover, it is sometimes usemore sophisticatedmetamodel-
ing facilities to assist for the trimness and neatness of models.
For example, an abstract clabject that cannot be instantiated
may be used to define commonalities for elements, e.g. ST is
an abstract state that is used to derive other states, thus getting
a model structure with a good look, which will be seen later.

VOLUME 6, 2018 18281



Z. Zhu et al.: DSMM for Deep Semantic Composability

FIGURE 6. DSMM for torpedo physical behaviors representation.

C. DEEP SEMANTIC METAMODELING:
A SIMPLE DEMONSTRATION
Assume we need to describe the physical behaviors for par-
ticular domains, like torpedo, fighter, and so on. These behav-
ioral models should be able to represent the states, events, and
their transitional relationships, etc. Before, we had discussed
GMM facilities, either UML Profile [31] or EMF, to build
such models, but results showed undesirable. Therefore, our
aim is to define a metamodeling language facilitating the
construction of behavioral models for specialized domains
such as torpedo. Fig. 6 shows such an example as a simple

demonstration of DSMM with deep semantics. The DSMM
approach consists of three meta-levels, which are respec-
tively labeled by L2, L1, and L0. At the L0 meta-level
defines the metamodeling facilities constituting a DSMM
language. At L1 meta-level uses the primitives with which
the DSMM language provides to define a DSL. This DSL
will be used to build the torpedo physical behavioral models
at L0 meta-level.

At the L2 meta-level, DSMM language defines three core
elements, State,Event, and Transition, each of which is gener-
ated from Element. Element is abstract and has a field labeled

18282 VOLUME 6, 2018



Z. Zhu et al.: DSMM for Deep Semantic Composability

by name which will be instantiated at next meta-level, thus
name has an attached notation ‘‘@1.’’ In addition, State has
fields start and duration representing a system starts a state at
a time point and will stay in the state for a time interval. Also,
Event has a field occur typed by a data type SuperdenseTime.
To specify some events occurring at the same simulation time
but in different sequence, SuperdenseTime is introduced to
represent casually related weakly simultaneous events [32].
Its value is a pair (t, n), called a time stamp, where t is
the simulation time and n is a microstep (also called an
index). In general, two time stamps (t1, n1) and (t2, n2) are
weakly simultaneous if t1 = t2, and strongly simultaneous if
n1 = n2 as well.

At the L1 meta-level, the defined DSMM language is
used to define DSLs for other domains, like torpedo physical
behavioral modeling. Additionally, consider some specific
needs of torpedo domain, this meta-level may make a lin-
guistic extension that should not be defined at the meta-level
above. This DSLmakes the torpedo physical behavioral mod-
eling more natural than the GMM paradigms, like Petri net
[33], Finite State Machine, and UML Activity Diagram, as it
includes the following specialized sets of model elements.

1) A set of states including elements SPI (name=Initial),
SWG (name=Wire Guide), SHG (name=Homing Guide),
SHS (name=Helix Search), SFA (name=Final Attack), SPT
(name=Terminal), and ST (name=Torpedo State), represent-
ing the lifecycle of a torpedo once launched.

2) A set of events including elements ELC (name=
LaunchCommands), EAA (name=preAreaArrived),
EIB (name=wireIsBroken), ETL (name=targetLost),
ETF (name=targetFound), EexBA (name=exitBlindArea),
EenBA (name= enterBlindArea), and ETO (name=
simulTimeOut), representing the overall possible events that
may be triggered during the lifecycle of a torpedo.

3) A set of transitions including elements SPI2ELC,
ELC2SWG, SWG2EAA, EAA2SHG, SHG2ETL, ETL2SHS,
SFA2EexBA, EexBA2SHS, CSR (name=ContinuousState_
Result), ETO2SPT, ST2ETO, SWG2EIB, EIB2SHG, CETL
(name=ContinuousEvent_TargetLost),ETF2SHG, SHS2ETF,
CETF (name=ContinuousEvent_TargetFound), SHG2EenBA,
and EenBA2SFA, whose names that are similar to their lin-
guistic types are omitted for brevity. Note thatCSR represents
the continuous transition between states, and CETL and
CETF represent the continuous transition between events.
4) A set of linguistic extensions including the clabject

Trigger (name: String), relationship triggers, and field factor:
String, representing the entities who triggers the events, trig-
gering relations, and factors causing the events triggering,
respectively. These concepts are all the specialized elements
of torpedo physical behavioral domain so that there are
not corresponding ontological types at the meta-level above.
Another important point is that the field factor that has not an
ontological type is embedded in an event EIB which has yet
an ontological type.

Using DSMM languages for defining varieties of DSLs,
we may need to conclude some commonalities underlying

these DSLs, and improve the meta-levels of these com-
monalities as being the basic model elements of DSMM.
Afterwards, DSL designers can reuse maximally the DSMM
facilities to define DSLs for the domains that they are famil-
iar with. Usually, DSL designers can be qualified for the
role of DSMM designers, but DSLs are generally expected
to be used by particular domain experts, like the torpedo
experts. At the L0 meta-level, torpedo experts will use the
defined DSL to build concrete torpedo physical behavioral
models. Models at this meta-level include four sets of model
instances.

1) A set of states including instances Start (start=0.0,
duration=0.0), swg1 (start=1.0, duration=10.0), shg1
(start=12.0, duration=5.0), shs1 (start=17.5, duration=
10.0), shg2 (start=28.0, duration=5.0), sfa1 (start=33.0,
duration=2.0), and Termination (start=35.0, duration=0.0),
representing each state of a concrete torpedo, and the concrete
start time and time interval of each state are given.

2) A set of events including instances LaunchTorpedo
(occur=<1.0, 0>), SignlIsInterrupted (occur=<11.0,1>),
etl1 (occur=<17.0, 0>), etl2 (occur=<17.5, 1>), etf1
(occur=<27.5, 1>), eenba1 (occur=<33.0, 1>), and eto1
(occur=<35.5, 0>), representing each event of this torpedo
instance. Each event is labeled by the concrete triggered time
that is denoted by a pair <a, b>, to set the triggering order
of simultaneous events. Note that the variable a indicates the
triggered time point of an event, while b refers to the priority
of this event to be triggered. Besides, we regulates that an
event (b=0) possess of the highest priority thus should be
triggered firstly, and the greater b is, the lower the priority
is possessed of.
3) A set of transitions including instances whose names are

omitted but linguistic types are reserved :Trigger, :SI2EIC,
:ELC2SWG, :SWG2EIB, :EIB2SHG, :SHG2ETL, :CETL,
:ETL2SHS, :SHS2, :ETF2SHG,:SHG2EenBA, :EenBA2SFA,
:SFA2ETO, and :ETO2SPT, respectively representing the
transition instances between states and events. Note that
:CETL is a continuous event transition instance from event
instance etl1 to event instance etl2.
4) A set of linguistic extensions including instances Com-

mander (name=John) and factor=WireWithPoorQuality.
In the real word, this represents that a commander whose
name is John gives the order to launch a torpedo, and the
detection is deterred due to the poor quality of the torpedo
cable.

IV. CASE STUDY: SEVENT
As stated before, we attempted to use the GMM facilities to
define DSLs for building torpedo physical behavioral models
but the result shows to be failed or unsuitable. So we have to
seek the DSMM approach despite it may lack some supports
from the existing tools. As a proof of concept, this section
gives the formal SEvent definition, shows its concete syntax
development based on Xtext, and uses a more suitable multi-
level approach to design the textual syntax.

VOLUME 6, 2018 18283



Z. Zhu et al.: DSMM for Deep Semantic Composability

A. SEVENT DEFINITION
The descriptive power of DSLs is an important factor in much
of the success of MDE projects. One of the current issues
raise in the adoption and application of DSLs is the lack of a
precise description of the semantics of a DSL [34]. As such,
it is desirable to give a formal definition for a under designed
DSL before specifying its syntax and semantics by a typical
metamodel.

Similar to the core concepts of transitions (i.e. events that
may occur, represented by bars) and places (i.e. conditions,
represented by circles) in Petri net, SEvent also consists of
states and events. Differently, SEvent has more powerful
expressiveness in that it is able to support continuous states
transition and continuous events triggering, whereas Petri
net conforms to the alternative use of places and transitions.
In addition, each element of the SEvent metamodel uses the
executive semantics of Petri net’s, for instance, it is possible to
provide an execution method to the element which represents
the notion of transition in order to specify what happens when
a transition is fired. As a result, it is possible to execute any
model which conforms to the SEvent metamodel.
Definition 1 (SEvent): A 5-tuple SEvent = (S,T ,F,

Fs,Ft ) is defined as:
– S is a finite set of states
– T is a finite set of events
– F is the set of the ordered pairs 〈s, t〉, where s ∈ S, t ∈
T

– Fs is the set of ordered pairs 〈s, s〉, where s ∈ S
– Ft is the set of ordered pairs 〈t, t〉, where t ∈ T

where
1) S ∪ T 6= ∅ ∧ S ∩ T = ∅, i.e. S and T are disjoint that

no object can be both a state and an event.
2) F ⊂ S×T ∪T ×S, i.e. F is set of ordered pairs whose

left projection belongs to S and the right projection
belongs to T .

3) Fs ⊂ S × S,
〈
si, sj

〉
i6=j,i,j⊂Ns ,Ns is the size of S, i.e. Fs

is the set of ordered pairs whose both of projections
belong to S, and the left projection must not be equal
to the right projection because the description of tran-
sitions between a same state is meaningless.

4) Ft ⊂ T × T ,
〈
ti, tj

〉
i6=j,i,j⊂Nt ,Nt is the size of T , i.e. Ft

is the set of ordered pairs whose both of projection
belong to T , and the left projection must not be equal
to the right projection because the description of self-
triggering of an event is meaningless.

5) dom(F) ∪ cod(F) = S ∪ T , dom(Fs) ∪ cod(Fs) =
S, dom(Ft ) ∪ cod(Ft ) = T , dom(F) is the set of left
projections of F , while cod(F) is the set of right pro-
jections of F .

Note that Petri net is viewed as a special case of SEvent,
i.e., given SEvent = (S,T ,F,Fs,Ft ), if Fs = ∅ ∧ Ft = ∅,
thus SEvnet is equal to Petri net.

B. XTEXT BASED TEXTUAL SYNTAX DEVELOPMENT
Nowadays, the DSL textual syntax development generally
falls into two categories. One is to use existing standard

tools for defining language textual syntaxes, like Xtext [35],
TCS [36], and ANTLR [37]. This category is very useful
for the definition of the concrete syntax of the DSMM/DSM
language then use at the immediate meta-level below. The
other is a multi-level approach to support the DSMM. Using
the multi-level approach, one has to define syntaxes for the
DSMM language as well as for the language built with it,
i.e. the designer need to provide both the syntax at meta-
level L1 and the syntax at meta-level L0. Moreover, it should
be also possible to support the definition of syntaxes for the
linguistic extension.

Fig. 7 shows the syntax definition of DSMM language for
SEvent as well as its use at the meta-level below. At the left
contains four packages of the main project, SDK, Test, and
UI. At the right is an editor for writing the rules of the syntax
definition, mainly including SEventDataType, SEventName-
Type, Connection, and Node.
1) Node (lines 19-21).
It includes two kinds of rules, State or Event, which are

labeled by ‘‘State | Event.’’ The State rule (lines 32-39)
defines a keyword ‘‘state,’’ the Feature rule (lines 56-58), the
Transition rule (lines 52-54), and a composite state encap-
sulating other states and events (line 36). The Event rule
(lines 41-46) defines a keyword ‘‘event,’’ the Feature rule,
and the Transition rule.

Using above SEvent rules at the next meta-level, the DSL
for torpedo physical behavioral domain contains eight nodes,
i.e. Trigger (linguistic extension), SPI, SWG, SHG, SHS, SFA,
SPT, and ST, and eight events, i.e. ELC, EAA, EIB, ETL,
EenBA, ETF, EexBA, and ETO, where the field factor that
embedded into its container EIB is a linguistic extension.
The Feature rule (lines 56-58) defines the name and the

type of a field. A field type can be the SEventDataType (lines
23-26) or the SeventNameType (lines 28-30). In addition,
the Transition rule (lines 52-54) defines a transition from a
Connection cross reference to a Node cross reference.

2) Data Type (lines 23-26).
It includes the name of a data type, i.e. ‘‘name=ID,’’ and

supports the definition of a composite data type. In addition,
it contains multiple optional elements, i.e. ‘‘features + =
Feature,’’ and note the Feature here is a rule not a cross
reference. In SEvent, data type uses a keyword named ‘‘sev-
ent_datatype’’ and has four data types, i.e. String, Float32,
Int32, as well as the composite data type SuperdenseTime
which is composed of occurTime and priority.
3) Name type (lines 28-30).
It only has the name, i.e. ‘‘name = ID,’’ and uses a

keyword ‘‘sevent_nametype.’’ The DSL based on SEvent
has seven name types for State, i.e. Torpedo State, Initial,
Wire Guide, Homing Guide, Helical Search, Final Attack,
and Terminal, eight name types for Event, i.e. Launch-
Commands, preAreaArrived,wireIsBroken, targeLost, target-
Found, enterBlingArea, exitBlindArea, and simulTimeOut.

4) Connection (lines 48-50).
It includes the name and the code of a connection,

i.e. ‘‘name = ID code = ID.’’ The use of SEvent at the

18284 VOLUME 6, 2018



Z. Zhu et al.: DSMM for Deep Semantic Composability

FIGURE 7. Xtext based textual syntax definition of SEvent.

next meta-level defines 20 connections, i.e. CETF c1, CETL
c2, CSR c3, EAA2SHG c4, EenBA2SFA c5, EexBA2SHS C6,
EIB2SHG c7, ELC2SWG c8, ETF2SHG c9, ETL2SHS c10,
ETO2SPT c11, SFAEexBA c12, SHG2EenBA c13, SHG2ETL
c14, SHS2ETF c15, SPI2ELC c16, ST2ETO c17, SWG2EAA
c18, SWG2EIB c19, and triggers c20, where c20 is a linguistic
extension.

C. MULTI-LEVEL TEXTUAL SYNTAX DESIGN
BASED ON METADEPTH
As stated above, Xtext based textual syntax development
benefits from the existing standard tools and can be integrated
properly with other released tools in the Eclipse commu-
nity. However, it suffers from the two-level metamodeling
so that we have to redefine the syntax structure when going
on below meta-levels for describing implementation details.
In practice, it is preferable to explore amore flexible approach

to describe information across multiple meta-levels so as to
avoid unnecessary iterations.

MetaDepth [38], [39] is an IDE for building a template
language that supports the multi-level textual modeling and
implements the deep semantics through a notation mech-
anism ‘‘@X .’’ It is a self-contained system and provides
two mechanisms to control the way in which the designed
DSMM languages will be used and extended, as not any
extension may be appropriate for a certain language. On the
one hand, MetaDepth uses modifiers (e.g. strict) to indicate
the non-extendable language elements. Hence, once an ele-
ment is labeled by strict, its instances cannot be extended
with new attributes, references, or constraints. For example,
if we define the External Event as strict at the L2 meta-level,
then its instance EIB at the L1 meta-level with a linguistic
extension ‘‘factor: String’’ is illegal. For another example,
if the SEvent is strict, then it is illegal to add a new language

VOLUME 6, 2018 18285



Z. Zhu et al.: DSMM for Deep Semantic Composability

element ‘‘Trigger’’ at the L1 meta-level. On the other, it may
be possible to define constraints to ensure a certain extensibil-
ity degree for the non-strict language elements. For example,
it is possible to ask an element (e.g. the ETL at the L2 meta-
level) to declare some fields acting as the identifier, which
will be instantiated at the L1 meta-level. In theory, we could
define this identifier at the L2 meta-level with a notation
‘‘@2,’’ but some identifiers (e.g. the NO. of an ETL instance)
for some reasons should be decided by the DSL designer
at the L1 meta-level and instantiated at the L0 meta- level.
For this purpose, we need to construct some constraints to
improve the DSMM language expressiveness.

FIGURE 8. Definition of SEvent textual syntax and its use at the L1 layer.

1) Fig. 8 (left) shows a definition of the SEvent textual
syntax and at the right shows its use at the L1 meta-level.
At the left of this figure, line 1 declares the file extension
for the DSMM language (‘‘se_mm’’). Lines 2-5 define the
model template acting as an entry point, which can be associ-
ated to other templates, e.g. zero or multiple state templates,
event templates, or transition templates. In particular, all of
templates are tagged ‘‘@1,’’ indicating that these templates
will be used at the next meta-level. Lines 7-9 define the
syntax for state, in which the keyword ‘‘^ID’’ stands for the
identifier of an element (line 8), the prefix ‘‘#’’ returns the
value of a field (line 8), whereas the with keyword introduces
semantic actions and syntactic predicates (lines 9, 13, 17).
Line 8 is a semantic action that sets the final property to true
when the ‘‘final’’ token is recognized. Line 13 is a syntactic
predicate that declares the name field as the identifier. Line
19 will trigger two semantic actions that src and tar will be
respectively refined by from and to at the next meta-level.
2) DSL users also need to be provided with a concrete

syntax to describe the models at the L0 meta-level, as shown
in Fig. 9. At this time, those syntaxes defined at the L2 meta-
level will be reused at the L0 meta-level. Similar to Fig. 8 that
consists of two parts, Fig. 9 (left) shows the definition,
whereas the right shows its use at a certain meta-level. Ini-
tially, the file extension (‘‘se’’) is declared and all of the
templates in this file are tagged ‘‘@2.’’ In practice, however,
the DSMM designers do not know the model type for which
the syntax is defined, but only know this model type is an
indirect instance of SEvent (line 2). Hence, MetaDepth uses
the keyword ‘‘^Typename’’ to access name of the concrete

FIGURE 9. Definition of SEvent textual syntax and its use at the L0 layer.

type (line 3). Fig. 9 (right) shows the use of the DSL to
build a concrete model which is prototyped by ‘‘MK-48.’’
This model contains several instances of states, events, and
transitions.

3) As discussed before, MetaDepth limits the extendability
of the DSMM language through either tagging strict language
elements or constructing OCL constraints. In practice, these
should be considered when defining the concrete syntax of
a DSMM language in order to avoid the illegal linguistic
extensions.

MetaDepth allows to access to the linguistic layer of mod-
els by four keywords with respect to models, i.e. Extends,
Imports, LingElements, and Constraints, as well as nine for
model elements, i.e. Extends, Id, Type, Typename, Fields,
Constraints, Supers, FieldVaulues, and Instances. Some of
these keywords allow linguistic extensions by notations such
as ‘‘^Field’’ decalring new atrributes, ‘‘^LingElements’’ cre-
ating new clabjects, ‘‘^Constraints’’ constructing constraints,
‘‘^Supers’’ allowing inheritance relationships, ‘‘^FieldValue’’
for field instances, and ‘‘^Instances’’ for clabject instances.
In addition, it is necessary to use some semantic actions and
syntactical predicates. For example, it is possible to extend
the syntactical definition as shown in Fig. 8 to define new
language elements (without ontological types) such as lin-
guistic types like ‘‘Trigger,’’ relationships like ‘‘triggers,’’
fields like ‘‘factor,’’ and constraints. Fig. 10 shows these
linguistic extensions.

FIGURE 10. Definition of SEvent linguistic extensible textual syntax and
its use at the L1 layer.

18286 VOLUME 6, 2018



Z. Zhu et al.: DSMM for Deep Semantic Composability

Initially, line 4 at Fig. 10 (left) uses ‘‘^LingElement’’ to
define new language elements without ontological types, thus
lines 20-23 at the right uses the syntax to make a language
extension ‘‘Trigger.’’ Then, line 8 at the left figure uses
‘‘^Supers’’ to define inheritance relationships, thus the state
SWG in line 4 at the right are generated from the abstract state
ST. It is similar to the states SHG, SHS, etc. which are omitted
for brevity. After that, at the left figure both lines 9-10 and
lines 16-17 uses ‘‘^Field’’ and ‘‘^Constraints’’ to define new
constraints, which are used to create a new field ‘‘factor’’
(line 11) at the right as well as construct new constraints to
ensure the names of events are identifiers (lines 8, 12, 16).
Finally, line 12 at the left figure uses a semantic action to set
the abstract property, thus at the right the state ST is abstract
when the keyword ‘‘abstract’’ is interpreted by the parser
(line 2).

D. SEMANTIC COMPOSABILITY IN SEVENT
The case example showed that deep semantic composabil-
ity is obtained when the DSMM approach is applied suc-
cessfully. Consider the criteria that are already presented in
Section I, we detail how the case example satisfy them.

First of all, SEvent is a slight extension of the Petri net
formalism and has a formal syntactical base. This provides
SEvent with accurate and unambiguous semantics. Further-
more, due to the fact that the metamodeling facilities live on a
relative high level of abstraction, the stability of foundational
facilities is implicitly guaranteed. The benefit is that model
heterogeneity reduces a lot thus models based on the similar
metamodeling facilities can be easily composed.

Secondly, the case example is based on the multi-level
metamodeling architecture and satisfies the model abstrac-
tion requirement. This architecture customizes the metamod-
eling facilities for a particular application, and then uses
these primitives to define a DSL. In this way, the language
is of deep semantics to be able to represent those domain
characteristics that GMM cannot be qualified.

Lastly, the model evolvability requirement is partially sup-
ported since we made small scale examples and more exper-
iments are needed for a better evaluation. In addition, thanks
to the fact that DSMM provides a set of domain specific
metamodeling primitives of SEvent, more user friendly mod-
eling capabilities are guaranteed to represent other domains
without considering a particular platform.

V. CONCLUSION
Improving the level of abstraction has long been recognized
as a useful way to free system modelers from thousands of
concrete details. Such an improvement makes people pay
more attention on how to interpret and understand models
than its underlying technological implementations. In this
context, DSLs acquire enormous successes in terms of their
friendly semantic representations for many MDE projects.
Typically, UML Profile is illustrated as one successful case to
extend the basic UML metamodel with additional semantics
for a specific domain. Another representative example is

EMF, which needs not conform to the UML metamodel and
therefore is able to describe more semantic information.

However, these DSLs are normally defined through the
GMM facilities, i.e. MOF and Ecore. Despite they are sup-
ported by a collection of existing modeling resources, such
as professionals, tools, tutorials and so on, they still shows
pale or defective for certain domains, such as the SEvent
described in this study. Hence, this study takes SEvent as
a proof of concept and attempts to describe this example
by applying the DSMM method. For this purpose, a gen-
eral DSMM architecture with two orthogonal dimensions
(i.e. ontological and linguistic) is introduced to simplify the
definition and use of DSMM languages. Within the architec-
ture, SEvent as a light extension of Petri net is shown to be
able to support the representation of continuous states and
events, demonstrating the overall process of three meta-levels
deep semantic metamodeling. Finally, these considerations
are implemented by developing the textual concrete syntax of
DSMM languages, usingXtext andMetaDepth. The semantic
composability of DSMM adoption is obtained according to
three evaluation criteria.

Currently, there are little guidelines to instruct the DSMM
design and implementation. Thus, a benefit of this study is
that it can be viewed as a referenced experience to guide
other domains that have the needs of DSMM. Moreover,
it reviews several widely used domain specific modeling
methods within the model driven engineering literature.
However, as a drawback some effort for further usage and
evaluation details is required.

REFERENCES

[1] H. S. Sarjoughian, ‘‘Model composability,’’ in Proc. 38th Winter Simula-
tion Conf., Dec. 2006, pp. 149–158.

[2] C. Hardebolle and F. Boulanger, ‘‘Exploring multi-paradigm modeling
techniques,’’ Simulation, vol. 85, nos. 11–12, pp. 688–708, 2009.

[3] C. Szabo and Y. M. Teo, ‘‘An analysis of the cost of validating semantic
composability,’’ J. Simulation, vol. 6, no. 3, pp. 152–163, 2012.

[4] C. Szabo and Y. M. Teo, ‘‘On syntactic composability and model reuse,’’
in Proc. 1st Asia Int. Conf. Modelling Simulation, Mar. 2007, pp. 230–237.

[5] M. Challenger, G. Kardas, and B. Tekinerdogan, ‘‘A systematic approach
to evaluating domain-specific modeling language environments for multi-
agent systems,’’ Softw. Quality J., vol. 24, no. 3, pp. 755–795, 2016.

[6] M. Estañol, M.-R. Sancho, and E. Teniente, ‘‘Ensuring the semantic cor-
rectness of a BAUML artifact-centric BPM,’’ Inf. Softw. Technol., vol. 93,
pp. 147–162, Jan. 2018.

[7] IEEE Standard for Modeling and Simulation (M&S) High Level Architec-
ture (HLA)—Framework and Rules, Standard 1516-2010, IEEE Computer
Society, 2010. [Online]. Available: http://www.ieee.org/HLA

[8] SISO Base Object Model Product Development Group. (2005). Base
Object Model (BOM) Template Specification. [Online]. Available:
http://www.sisostds.org

[9] European Space Agency (ESA). (2005). SMP 2.0 Handbook (Issue 1
Revision 2) EGOS-SIM-GEN-TN-0099. [Online]. Available: http://
www.eurosim.nl/support/manuals/manual_4_2/pdf/SMP_2.0_Metamodel-
1.2.pdf

[10] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems, 2nd ed. San Diego, CA, USA: Academic, 2000.

[11] Modelica Association. (2013). Modelica-A Unified Object-Oriented Lan-
guage for SystemsModeling Language Specification Version 3.3. [Online].
Available: http://www.modelica.org/

[12] S. B. Hall, B. P. Zeigler, and H. S. Sarjoughian, ‘‘Joint measure TM: Dis-
tributed simulation issues in a mission effectiveness analytic simulator,’’ in
Proc. Simulator Interoperability Workshop, 1999, pp. 1–7.

VOLUME 6, 2018 18287



Z. Zhu et al.: DSMM for Deep Semantic Composability

[13] K.-M. Seo, C. Choi, T. G. Kim, and J. H. Kim, ‘‘DEVS-based combat
modeling for engagement-level simulation,’’ Simulation, vol. 90, no. 7,
pp. 759–781, 2014.

[14] M. C. Azar, ‘‘Assessing the treatment of airborne tactical high energy
lasers in combat simulations,’’ Ph.D. dissertation, Air Force Inst. Technol.,
Dayton, OH, USA, 2003.

[15] J. O. Miller, L. Jason, and B. Honabarger, ‘‘Modeling and measuring
network centric warfare (NCW) with the system effectiveness analysis
simulation (SEAS),’’ in Proc. 11th ICCRTS, 2006, pp. 1–22.

[16] Z. Zhu, Y. Lei, Y. Zhu, and H. S. Sarjoughian, ‘‘A WESS-based method
for anti-submarine simulation through planning waypoints of helicopter
(WIP),’’ in Proc. Summer Comput. Simulation Conf., 2016, Art. no. 15.

[17] IDEAS Group. (Oct. 2016). IDEAS. [Online]. Available: http://
www.ideasgroup.org/dm2/

[18] D. ÃŘjuric, D. Gaševic, and V. Devedžic, ‘‘A MDA-based approach to the
ontology definition metamodel,’’ in Proc. 4th Inter. Workshop Inf. Tech.,
2003, pp. 51–54.

[19] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Hoboken, NJ, USA: Wiley, 2008.

[20] M. Strembeck and U. Zdun, ‘‘An approach for the systematic develop-
ment of domain-specific languages,’’ Softw.-Pract. Exper., vol. 39, no. 15,
pp. 1253–1292, 2010.

[21] G. Nordstrom, J. Sztipanovits, G. Karsai, and A. Ledeczi, ‘‘Metamodeling-
rapid design and evolution of domain-specific modeling environments,’’ in
Proc. IEEE ECB Conf., Apr. 1999, pp. 68–74.

[22] B. Selic, ‘‘A systematic approach to domain-specific language design using
UML,’’ in Proc. 10th IEEE Inter. Symp. Object Compon.-Oriented Real-
Time Distrib. Comput., May 2007, pp. 2–9.

[23] M. S. Abdulah, ‘‘A UML profile for conceptual modeling of knowledge-
based systems,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. York, York,
England, 2006.

[24] Y. L. Lei, Z. Zhu, Q. Li, F. Yang, and Y. Zhu, ‘‘WESS: A generic combat
effectiveness simulation system,’’ in Proc. 17th Asia Simulation Conf.,
2017, pp. 272–283.

[25] T. Clark, P. Sammut and J. Willans, Applied Metamodeling: A Foundation
for Language Driven Development, 3rd ed. New York, NY, USA: Ceteva,
2015.

[26] D. Çetinkaya, ‘‘model driven development of simulation models: Defining
and transforming conceptual models into simulation models by using
metamodels and model transformations,’’ Ph.D. dissertation, Dept. Multi
Actor Syst., Delft Univ. Technol., Delft, The Netherlands, 2013.

[27] Z. Zhu, Y. L. Lei, Y. F. Zhu, A. Alshareef, and H. S. Sarjoughian, ‘‘A uni-
fying framework for uml profile-based cognitive modeling: Development
and experience,’’ in Proc. 10th EAI Int. Conf. Simulation Tools Tech.,
Sep. 2017, pp. 1–10.

[28] C. Atkinson and T. Kuhne, ‘‘Model-driven development: A metamodeling
foundation,’’ IEEE Softw., vol. 20, no. 5, pp. 36–41, Sep. 2003.

[29] J. D. Lara, E. Guerra, and J. S. Cuadrado, ‘‘Model-driven engineering with
domain-specific meta-modelling languages,’’ Softw. Syst. Model., vol. 14,
no. 1, pp. 429–459, 2013.

[30] C. Atkinson and T. Kühne, ‘‘The essence of multilevel metamodeling,’’ in
Proc. Int. Conf. Unified Modeling Lang., 2001, pp. 19–33.

[31] Z. Zhu, Y. Lei, Y. Zhu, and H. Sarjoughian, ‘‘Cognitive behaviors mod-
eling using UML profile: Design and experience,’’ IEEE Access, vol. 5,
pp. 21694–21708, 2017.

[32] C. Ptolemaeus, System Design, Modeling, and Simulation using Ptolemy
Ii. Berkeley, CA, USA: Univ. California, 2014.

[33] C. A. Petri and W. G. Reisig, ‘‘Petri net,’’ Scholarpedia, vol. 3, no. 4,
p. 6477, 2008.

[34] B. R. Bryant, J. Gray, M. Mernik, P. J. R. B. Clarke France, and G. Karsal,
‘‘Challenges and directions in formalizing the semantics of modeling
languages,’’ Comput. Sci. Inf. Syst., vol. 8, no. 2, pp. 225–253, 2011.

[35] Eclipse. (Feb. 2017). Xtext. [Online]. Available: http://www.
eclipse.org/Xtext/

[36] F. Jouault, J. Bézivin, and I. Kurtev, ‘‘TCS:: A DSL for the specification
of textual concrete syntaxes in model engineering,’’ in Proc. 5th Int. Conf.
Generative Program. Compon. Eng., 2006, pp. 249–254.

[37] Eclipse. (Mar. 2017). ANother Tool for Language Recgnition (ANTLR).
[Online]. Available: http://www.antlr.org/

[38] J. de Lara and E. Guerra, ‘‘Deep meta-modelling with MetaDepth,’’ in
Proc. Int. Conf. Modelling Tech. Tools Comput. Perform. Eval., 2010,
pp. 1–20.

[39] J. de Lara and E. Guerra, ‘‘Domain-specific textual meta-modelling lan-
guages for model driven engineering,’’ in Proc. Eur. Conf. Modelling
Found. Appl., Jul. 2012, pp. 259–274.

ZHI ZHU was born in Anshun, Guizhou, China,
in 1989. He received the B.S. degree in infor-
mation management and information system from
Sichuan University, Chengdu, Sichuan, China,
in 2011, and the M.S. degree in control science
and engineering from the National University of
Defense Technology, Changsha, Hunan, China,
in 2013. He is currently pursuing the Ph.D. degree
in computer simulation with the National Univer-
sity of Defense Technology.

From 2016 to 2017, he was a Visiting Ph.D. Student with the Arizona
Center for Integrative Modeling and Simulation, School of Computing,
Informatics, and Decision Systems Engineering, Arizona State University,
Tempe, AZ, USA. He has co-/authored over 20 articles and over five
industry projects. His research interests include model-driven engineering,
simulation-based system design and demonstration, and domain-specific
modeling. He has attended and presented at international conferences, such
as the 2016 Summer Simulation, Montreal, Canada, and the 2017 Simulation
Tools, Hong Kong.

Mr. Zhu was a recipient of the National University of Defense Tech-
nology Project for Excellent Ph.D. Candidate in 2015 ($5000). Email:
zhuzhi@nudt.edu.cn

YONGLIN LEI received the B.S. degree in edu-
cation economy from Xi’an Jiaotong University,
Xi’an, Shanxi, China, in 2000, and the M.S. and
Ph.D. degrees in management science and engi-
neering from the National University of Defense
Technology, Changsha, Hunan, China, in 2002 and
2006, respectively. He is a currently an Associate
Professor with the National University of Defense
Technology.

From 2014 to 2015, he was a Visiting Scholar
with the Arizona Center for Integrative Modeling and Simulation, School of
Computing, Informatics, and Decision Systems Engineering, Arizona State
University, Tempe, AZ, USA. He is the first author of over two books, over
50 articles indexed in SCI and EI, and over five industry projects (over
$400 000). His research interests include complex system simulation, model
composability, model-driven architecture, domain-specific modeling, and
their applications in defense simulations.

Dr. Lei’s major awards and honors include the National University
of Defense Technology for Excellent Ph.D. Thesis in 2006 and the
National University of Defense Technology for Excellent Technical Person-
nel in 2012.

ABDURRAHMAN ALSHAREEF received the
B.S. degree in information systems from the Col-
lege of Computer and Information Sciences, King
Saud University, Riyadh, Saudi Arabia, in 2005,
the master’s degree in information technology
with a focus on software architecture from the
Queensland University of Technology, Brisbane,
Australia, in 2010.

He is currently pursuing the Ph.D. degree in
computer science program with the School of

Computing, Informatics and Decision Systems Engineering, Arizona State
University, Tempe, AZ, USA. He is currently a Lecturer with the College
of Computer and Information Sciences, King Saud University. His research
interests lie in the discrete event systemmodels development and simulation,
model-driven engineering, software architecture, and metamodeling.

Mr. Alshareef was a recipient of the King Saud University Scholarship
for master’s and Ph.D. degrees. He was also a recipient of travel grants
from the Saudi Arabia Cultural Mission in USA, the School of Computing,
Informatics, and Decision Systems Engineering, Arizona State University,
and from the Society for Modeling and Simulation International to show his
research in different conferences.

18288 VOLUME 6, 2018



Z. Zhu et al.: DSMM for Deep Semantic Composability

HESSAM SARJOUGHIAN received the B.S.
degree from Mississippi State University in 1984
and the M.S. and Ph.D. degrees from the Univer-
sity of Arizona in 1988 and 1995, respectively,
all in electrical and computer engineering. He is a
currently an Associate Professor and the Director
of the Arizona Center for Integrative Modeling
and Simulation, School of Computing, Informat-
ics, and Decision Systems Engineering, Arizona
State University, Tempe, AZ, USA.

His research has been supported by NSF, Intel, DARPA, and Boeing
among others. His industry experience has been with IBM and Honeywell.
He has been the architect and the lead for the DEVS-Suite simulator,
which is being used at universities and research institutes in many countries
across America, Europe, Asia, and Africa. His research interests include
agent-based modeling, multiformalism modeling, simulation-based design,
and software architecture. Since 2004, he has been the Area Editor of the
SIMULATION: TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION.

Dr. Sarjoughian is a Founding Member of the Certified Modeling &
Simulation Profession, a Certified Modeling and Simulation Professional.
He was a recipient of the SCS Distinguished Service Award.

YIFAN ZHU received the B.S. degree in solid
mechanics from Peking University, Beijing,
China, in 1983, the M.S. degree in solid mechan-
ics and the Ph.D. degree in systems engineering
from the National University of Defense Technol-
ogy, Changsha, Hunan, China, in 1989 and 2003,
respectively. He is currently a Professor and the
Director of the Simulation Engineering Institute,
School of Information System and Management,
National University of Defense Technology.

From 2007 to 2008, he was a Visiting Scholar with the Virginia Polytech-
nic Institute and State University, Blacksburg, VA, USA. Since 2000, he has
been the Director of the China Simulation Federation, the Assistant Sectary
General with the China Military Science Society, and an Editorial Board
Member with the Journal of System Simulation. He is the first author of over
five books, over 80 articles indexed in SCI and EI, and over 10 industry
projects (over $600 000). His research interests include simulation-based
system design and demonstration, and agent-basedmodeling and simulation.

Dr. Zhu’s major awards and honors include the National Ministry Techno-
logical Process for one first prize, three second prizes, and three third prizes.

VOLUME 6, 2018 18289


	INTRODUCTION
	DSL DESIGN WITH GMM FACILITIES
	THE METAMODELING ARCHITECTURE BASED ON GMM FACILITIES
	UML PROFILE AND EMF MECHANISMS

	DOMAIN SPECIFIC METAMODELING
	TYPING FROM TWO PERSPECTIVES
	GENERAL ARCHITECTURE OF DSMM
	DEEP SEMANTIC METAMODELING: A SIMPLE DEMONSTRATION

	CASE STUDY: SEVENT
	SEVENT DEFINITION
	XTEXT BASED TEXTUAL SYNTAX DEVELOPMENT
	MULTI-LEVEL TEXTUAL SYNTAX DESIGN BASED ON METADEPTH
	SEMANTIC COMPOSABILITY IN SEVENT

	CONCLUSION
	REFERENCES
	Biographies
	ZHI ZHU
	YONGLIN LEI
	ABDURRAHMAN ALSHAREEF
	HESSAM SARJOUGHIAN
	YIFAN ZHU


