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ABSTRACT This paper surveys the current research status of location privacy issues in mobile applications.
The survey spans five aspects of study: the definition of location privacy, attacks and adversaries, mechanisms
to preserve the privacy of locations, location privacy metrics, and the current status of location-based appli-
cations. Through this comprehensive review, all the interrelated aspects of location privacy are integrated
into a unified framework. Additionally, the current research progress in each area is reviewed individually,
and the links between existing academic research and its practical applications are identified. This in-depth
analysis of the current state-of-play in location privacy is designed to provide a solid foundation for future
studies in the field.

INDEX TERMS Location privacy, location-based service, mobile applications.

I. INTRODUCTION
Global positioning systems (GPSs) are now a standard com-
ponent in most cell phones, and their ubiquity is driving
high growth in location-based information services (LBSs).
According to statistics [1], in 2016, there were nearly
200million LBS users in theUS. Inevitably, this upward trend
will continue since LBSs fill many useful and interesting
needs in a wide range of areas.Mobile social networks [2] [3],
navigation [4], finding places of interest (POI) [5], sports and
health assistants [6], and augmented reality (AR) games [7]
are just a few of the practical applications that have benefited
from LBSs. In fact, for many businesses and government
agencies, LBSs have become a critical part of deriving real
insights from data tied to the specific locations where an
activity takes place. However, accessing personal location
data, even with permission, raises severe privacy concerns
for most users and, therefore, effective privacy preservation
is foremost for LBS applications.

As a result, scholars have undertaken a great deal of
research into ways of preserving the privacy of user loca-
tions. Various methods have been proposed, such as cryp-
tography [8], anonymity [9] [10], obfuscation [11] [12] and
caching [13] but, despite these efforts, there are still some
obstacles to the progress of location privacy research:

• It is difficult to make comparisons between the differ-
ent location privacy preservation mechanisms (LPPMs)
because there is little consensus on the definition of
location privacy or the best metrics to use to measure
privacy levels.

• The gap between theory and practice is vast, with little
analysis on how to implement LPPMs in real-world
applications.

In this context, a systematic study of location privacy in all
its related aspects is essential to future research efforts in this
important topic. This includes a definition of privacy, the role
of adversaries, themetrics used tomeasure privacy levels, and
the LPPMs used along with how and where they are applied.

This study is not the first or only attempt to comprehen-
sively survey location privacy. However, previous surveys
have tended to focus on privacy preservation schemes [14]
[15] [16] [17] [18] [19] [20], or are limited to a particular kind
of network architecture [21] [22] [23] [24]. Shokri et al. [25]
were the first to publish a unified framework of location
privacy. Their review included various LPPMs and a qual-
itative comparison of three metrics for measuring location
privacy: uncertainty, errors, and k-anonymity. The results
show that entropy and k-anonymity are inadequate for mea-
suring location privacy. Then in [26] the authors jointly
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consider obfuscation and anonymization methods, develop-
ing generic attacks that can be used against any LPPM.

Both these works only focus on one or two aspects of
location privacy, and both lack analysis of the connections
between attacks, LPPMs, privacy metrics, and a defini-
tion of location privacy. In addition, newer methods based
on caching [13], differential privacy (DP) [27], game the-
ory [28] [29], machine learning [30], etc., were not included
in their literature reviews.

FIGURE 1. Connections of different aspects of the location privacy.

To overcome these obstacles, this study provides an
updated and integrated framework for location privacy
research. It includes location privacy definitions, and reviews
of attacks and adversaries, LPPMs, location privacy metrics,
and the applications that rely on location privacy. In addition,
we analyze the relationships between the different aspects of
location privacy (Fig. 1)- for example, the types of attacks
that target particular attributes of location privacy but can
be prevented by a certain type of LPPM or evaluated with
a certain metric.

The main contributions of this paper follow.
• We define location privacy using a generic definition
that covers all aspects of a user’s location information
including identity, position, and trajectory. In addition,
we analyze the special characteristics of location privacy
data.

• Four aspects of attacks and adversaries are examined
to provide a comprehensive description of adversaries
and their behavior: methods of obtaining location infor-
mation, adversarial knowledge, methods of attack, and
targets of attack. New and emerging trends in attacks,
such as deep learning attacks, are also discussed.

• The milestone LPPMs are analyzed along with an inves-
tigation of the different LPPM categories and the evolu-
tion of logic inside each category.

• We summarize the most commonly-used location pri-
vacy metrics and identify the connections between those
metrics and the LPPMs.

• We explore the location privacy issues associated with
practical implementation, including the type of location
information each LBS uses, the potential applications
for each type of LPPM, and the current research progress
into these methods.

• The study concludes with a discussion on the likely
directions of future research in location privacy.

Through this comprehensive overview, we hope to provide a
foundation for future studies in this area.

The rest of the paper is structured as follows. Section II
presents our definition of location privacy. In Section III,
wemodel the four aspects of adversaries and attacks.We clas-
sify and compare existing LPPMs in Section IV, followed by
an overview of privacy metrics in Section V. In Section VI,
we present the current status of location privacy in terms of
real-world applications, and future directions of research are
discussed in Section VII. Finally, we conclude our work with
a summary in Section VIII.

The abbreviations used in this paper are listed in Table 1.

TABLE 1. Summary of important abbreviations.

II. SYSTEM MODEL OF LOCATION-BASED SERVICES
AND THE DEFINITION OF LOCATION PRIVACY
LBSs pose the risk of location privacy disclosure because
they rely on a variety of location information to provide their
services. This section begins by introducing a generic system
model of an LBS. Then, location privacy is defined within in
this scope.

A. LOCATION-BASED SERVICES
Fig. 2 illustrates the general structure of an LBS. It contains
the following components:
• A positioning system: GPS satellites are the most
widely-used positioning system. Cellular base stations
and Wi-Fi routers can also be used as locating devices.

• Users: Most LBSs are distributed on mobile phones.
However, LBSs are also frequently found in wearable
devices and vehicles.

• Networks: Communication networks, includingwireless
local networks and cellular networks, are typically the
first hop in the data transmission. Data is then usually
transmitted over the Internet.

• LBS server: The LBS server responds to user queries and
is usually operated and maintained by the LBS provider.

• Content/Data Provider: LBSs require massive amounts
of data, such as POIs and maps. Some LBS providers
own their own data and content, while others use a third
party to provide this service.

• Location privacy server: The location privacy server
executes the privacy preservation algorithms, such as
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FIGURE 2. System model of location based services.

FIGURE 3. Three attributes of the location information.

anonymization and encryption. This server can either be
owned and operated by the LBS provider or by a third
party.

The structure of the LBS dictates, in part, the possible types
of attacks and adversaries a provider may confront. A more
detailed discussion on this is provided in Section III.

B. REPRESENTATION OF LOCATION INFORMATION
From a privacy perspective, the location information in LBSs
is not just a set of coordinates or the name of a place. It may
also include the user’s identity, spatial information (position),
and temporal information (time), as shown in Fig. 3. Hence,
a user’s location information can be defined as a tuple <
identity; position; time > [31] [19]. Each of these attributes
can take different forms, as summarized in the following.

1) IDENTITY
Identity is a user’s name, email address, or any feature that
makes a person distinguishable from another. In LBSs, iden-
tities can be either consistent or non-consistent [32].

Some LBSs require consistent user identities. For example,
Pokemon Go requires its users to log in, while WeChat’s
‘‘find my nearby friends’’ function requires users to contin-
uously provide their location information along with their
WeChat ID [3].

Other LBSs do not require consistent user identi-
ties, or even the user’s identity at all. For example, one can use
Google Maps to find nearby restaurants anonymously or with
a pseudonym.

An email address is the most common consistent identity
required by LBSs. However, email addresses are an integral
part of a user’s private information and can easily be used to
conduct context linking attacks.

2) SPATIAL INFORMATION (POSITION)
Spatial information is the primary means of determining a
location. Locations can either be described as a set of coor-
dinates (e.g., longitude and latitude), or by some other form
of information that can be linked to a location, such as a
shop name. The different types of spatial information can be
loosely divided into two categories:
Single locations and trajectories: Single locations are scat-

tered and do not correlate to other locations. A trajectory is
a group of locations with strong correlations, for example,
a person trace.
Direct locations and indirect locations: Traditional LBSs,

such as a ‘‘check-in’’ or ‘‘nearby-POI’’ services, use direct
locations defined by GPS coordinates. Whereas, more
recently, geo-social discovery services, which use indirect
locations, have been rapidly growing in popularity. WeChat
and Facebook contain good examples of these new types
of services, where connections among users are explicitly
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established on-the-spot based on physical proximity. Rather
than pinning down a user’s exact location on amap, proximity
information is provided instead, such as ‘‘Tom is within
3 miles’’ [30].

3) TEMPORAL INFORMATION (TIME)
In addition to identity and location information, some LBSs
also associated a time stamp with a location. Again, temporal
information can be divided into two groups:
Non-real time: Some applications, such as Fitbit tracking,

publish location or trajectory information afterward.
Real-time: Real-time privacy protection is more challeng-

ing than non-real-time protection because the scalability
requirements in real-time privacy preservations become a
much more important factor. Further, global optimization is
very difficult with real-time information due to the highly
dynamic and uncertain movements of users [32]. Examples of
LBSs that use real-time location information include naviga-
tion and AR games.

C. THE DEFINITION OF LOCATION PRIVACY
Thus, location privacy can be defined as the protection of
these three attributes of a person’s location information.
Blumberg and Eckersley [33] use the following definition:

Location privacy ‘‘is the ability of an individual to move
in public space with the expectation that under normal cir-
cumstances their location will not be systematically and
secretly recorded for later use’’.

They also argue that there is no absolute location privacy,
because:
‘‘...when you leave your home you sacrifice some privacy.
Someone might see you enter the clinic on Market
Street, or notice that you and your secretary left the Hilton
Gardens Inn together.’’

According to this definition, location privacy has two
main features: the individual’s expectation of ‘‘normal cir-
cumstances’’, and the way the information is collected and
used. However, a person’s expectation of location privacy
can change over time, especially with the rapid development
of information technology and the dramatic increase in the
amount of location information that is used in everyday life.
Additionally, the ways we collect and use location informa-
tion has also changed. Today, personal information is more
often collected quietly by inconspicuous devices, such as
mobile phones, RFID tags, and cameras [34]. Moreover,
newly emerging technologies, such as machine/deep learning
and face-recognition, have also changed how location data
can be used to derive more sensitive personal information.

Therefore, to evaluate the privacy of a location, its key
factors must be defined from the users’ point of view:
• How: how is the information revealed? Is it revealed
secretly or publicly? Is it encrypted or not? And how
will the information be used?

• What: what kind of information is revealed? Is it a set
of coordinates, at a particular time, and with my identity
attached? Are these attributes precise or coarse?

These two key factors also form the basis of our investi-
gation into the features of attacks and adversaries in the next
section of the paper.

D. LOCATION PRIVACY VS. DATA PRIVACY
Location privacy is a subcategory of data privacy. Among
the different types of personal data categories, the risks of
unsanctioned disclosures of financial and medical records are
well known. However, risks associated with location are no
less grave for the following reasons:
• Identity inference: Location data holds a unique capac-
ity to link disparate datasets in a way that can reveal
personally identifiable information through inference.
And these links only rely on an understanding of the
relationships between data and human activity.

• Profiling completeness: User locations typically contain
POIs, such as hospitals and restaurants. Thus, one may
be able to gain a deeper understanding of user behavior
in the real world and use that data to predict future
activity. The ability of location information to ‘‘connect
the dots’’ almost automatically results in a much more
complete profile of an individual or organization than
the base data contains.

Location data also holds some distinguishing characteris-
tics. Location data is typically:
• Massive: Using an LBS generates enormous amounts of
location data, no matter the form.

• Highly correlated: A real-world location dataset often
exhibits strong coupling relations; locations are often
correlated, and these correlations may disclose more
information than expected.

• Dynamic: The data can change quickly over time.
• Unequal in importance: From a user’s point of view, their
privacy requirements differ from location to location.
For example, most people care very little about exposing
the location of a shopping center visit, but care very
much about keeping their home and workplace secret.

These features require special attention when conducting
location privacy studies.

III. LOCATION ATTACKS AND ADVERSARIES
An adversary aims to collect location information and use
it for their benefit. Based on the two key factors of location
privacy, an adversary and their attack can be characterized by
‘‘how’’ they obtained the information, ‘‘how’’ the attack is
launched, ‘‘what’’ information or knowledge they obtained,
and ‘‘what/who’’ their target is. Fig. 4 illustrates this four-
part model of an adversary and an attack. Each aspect of the
model will be analyzed in detail in this section.

A. LOCATION INFORMATION OBTAINING METHODS
As shown in Fig. 2, the three main parties in an LBS system
are the users, the servers, and the networks. Each party can be
attacked, and each attack can be measured and categorized by
its victim and level of danger.
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FIGURE 4. An overview of the location attacks and adversaries.

1) Collecting shared or published location information,
historical statistics, or distributions. Some attacks can
be as simple as collecting published data using tools
like a Web Crawler.

2) Eavesdropping on a network (communication channel)
can expose the data traffic between the server and
client or between clients (e.g., peer-to-peer networks),
especially with the wireless networks.

3) Compromising the server or the client through a hack
that extracts any information an adversary wants.

B. TYPES OF ADVERSARIAL KNOWLEDGE
Once an adversary has acquired some location information,
through whatever means, they may hold the necessary knowl-
edge to carry out a location attack. However, the power of this
knowledge depends on whether it has been processed through
a privacy preservation scheme.
• Observed location information has been preprocessed
by the user, a third party privacy server, or the service
provider before being divulged. It may still be vulner-
able to exploitation, but is less vulnerable than precise
information.

• Precise location information has not been processed and
is vulnerable to compromise and hacks.

In addition, an adversary may have other knowledge that
can be used to help breach location privacy. This additional
knowledge is referred to as:
• Context knowledge: any information that could be used
by an adversary to help reveal the location information
of a user.

Examples of contextual knowledge include: 1) the number
of users in an area at a given time; 2) the relationships

between different users; 3) the relationships between a user’s
identity and their location; 4) the location restrictions of
an area, such as road networks and POIs; 5) the statisti-
cal distributions or probabilities associated with a location
(e.g., people tend to stay home at night); and 6) social
event information (e.g., well-publicized events held by, say,
a celebrity or museum).

C. ATTACK TARGETS
The first type of attack is the self-explanatory identity attack.
Localization attack combine spatial and temporal informa-
tion as targets because this information is often highly related.

1) IDENTITY ATTACK
Identity attacks, also known as deanonymizing attacks seek
information for the purposes of determining a target’s iden-
tity. Examples of these types of attacks include:
• Personal identification attack (single identity attack):
identifying a user based on their home address [35],
or determining a person’s gender and education, for
example, through an anonymous trace [30].

• Meeting Disclosure Attacks/Aggregated Presence
Attack (multiple identity attacks): inferring the relation-
ship between two people or an aggregated property, for
example, whether two people met on a certain day or the
approximate number of people visiting a Pokemon Go
stop.

2) LOCALIZATION ATTACK
Localization attacks focus on determining position and time
information. Some examples follow.
• Sensitive place attacks (position attack): identifying
important locations, such as home and work [36] [37].
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• Presence and absence disclosure attack (position and
discrete time attack): determining whether or not a user
is present at a place at a specific time. For instance,
empty homes are good targets for burglary; physi-
cally attacking a person requires you know where they
are [38] [39].

• Tracking attack (position and continuous time attack):
assembling a partial or entire sequence of the events to
develop a user trace. This kind of adversary is generally
known as stalking [40] [41] [42].

D. TYPES OF ATTACK METHODS
Lastly, adversaries can use different methods of attack.
• Context linking attacks: Most location attacks involve
some contextual knowledge. Contextual knowledge is
easy to combine with the observed location information
to obtain a precise location for a target, for the purposes
of conducting a localization attack. For instance, in a
personal context linking attack [10], which can be used
to reduce an obfuscated area to a specific location and
then locate users by removing all the irrelevant areas.
Contextual knowledge can also be combined with pre-
cise location information to conduct an identity attack.
For example, if an adversary knows a person’s home
address and finds that address in a hospital’s check-in
list, the adversary can infer that their target is, or was,
in that hospital at a specific time.

• Probability-based attacks: Probability distribution
attacks [26] are based on gathered statistics about
environmental contexts. A Markov chain model is
widely used in these type of attacks. Using this
method, an adversary can either perform a localization
attack (location prediction [43] ) or an identity attack
(de-anonymization [44]). Strictly speaking, statistical
information is actually a kind of contextual information;
however, since exploiting probability theory is an impor-
tant category of attacks, we have discussed it separately.

• Machine/deep learning-based attacks: Li et al. [30]
proposed an approach to inferring user demographics
in a mobile social network (MSN) based on machine
learning. The type of demographic information included
gender and education level, and their experiments
demonstrated a 70% successful rate on a large real-world
dataset. Murakami and Watanabe [45] proposed a learn-
ing method that uses tensor factorization to accurately
estimate personalized transition matrices from a small
amount of training data. The matrices are then used to
launch a localization attack that can derive the actual
location of a user at a given time from an obfuscated
trajectory.
In a recent work, Weyand et al. [46] showed that it is
possible to determine the location of a photo by its pixels
alone using a convolutional neural network.

• Collusion of malicious users attacks: Peers subscrib-
ing to the same LBS can either collude to launch
attacks, or one adversary can create fake peers to obtain

the information they seek. For example, Li et al. [47]
created three fake anchor locations and used their cor-
responding distances to the target in an iterative trilat-
eration based on a localization algorithm to obtain an
inferred location.

E. EMERGING TRENDS
Big data and deep learning techniques are changing the land-
scape of location privacy. In particular, two attack trends
have become more challenging than ever before - cross-
database and platform attacks and deep learning attacks.
Cross-database and platform attacks exploit the links between
the location information in two different databases to infer
sensitive information about their target. The unprecedented
accuracy of deep learning methods is also posing significant
challenges. For example, current deep learning-based meth-
ods are able to predict geolocations [46] from personal photos
posted on social networks. These trends are likely to become
the increasing focus of future research.

IV. LOCATION PRIVACY PRESERVATION
MECHANISMS (LPPMS)
Shokri et al. [26] discusses LPPMs in two groups: obfus-
cation mechanisms and anonymization mechanisms. Our
review of the literature reveals two further mechanisms,
cryptographic mechanisms and shared information reduction
mechanisms, creating four categories for existing LPPMs.

A. CRYPTOGRAPHIC MECHANISM
LPPMs based on cryptography use encryption to protect
user positions. Mascetti et al. [48] proposed an approach
to notify users when their friends, called buddies, are in
proximity but without revealing the current user’s position
to the LBS server. To this end, the authors assume that each
user shares a secret with each of his buddies through a sym-
metric encryption technique. Another approach proposed by
Ghinita et al. [8] makes use of a private information
retrieval (PIR) technique to provide location privacy. Through
PIR, an LBS server can answer queries without learn-
ing or revealing any information about the query. PIR relies
on an assumption of quadratic residuosity, which states that
it is computationally hard to find quadratic residues in the
modulo arithmetic of a large composite number for the prod-
uct of two large primes. To deal with the problem of non-
trusted LBS server infrastructures,Marias et al. [49] proposed
an approach based on distributing the position information
and secret sharing. The basic idea is to divide the position
information into shares, which are then distributed among a
set of (non-trusted) LBS servers. Hence, to reassemble the
position information, the client needs to retrieve the shares
from multiple servers. The advantage of this approach is that
compromising one LBS server will not reveal the position
information since it does not have all the necessary shares.
However, the downside is that none of the LBS servers can
perform computations that require all the position informa-
tion, such as range queries.
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Chen et al. [50] constructed a secure query protocol,
where different data providers can use different secret keys
to encrypt their data to prevent the location server from
deducing the content of the query data.

The main concerns with cryptographic mechanism are
their computational complexity and/or the requirement of
cooperative servers. It is worth noting that this area of
research has not seen any great breakthroughs for some time.

B. ANONYMIZATION MECHANISMS
These types of methods aim to break the links between
identity and location information. They mainly fall into two
categories: k-anonymity and mix-zone.

1) K -ANONYMITY
k-anonymity [10] [51] [52] [53] [54] achieves privacy preser-
vation through generalization and suppression algorithms to
ensure that one record can not be distinguished from (k − 1)
the other records. A subject is considered k-anonymous if its
location is indistinguishable from those of k - 1 other users.
The basic concept of k-anonymity [10] requires that

the location privacy server is operated by a trusted third
party (TTP). This trusted LBS server is aware of all precise
user positions and acts as the anonymizer. Whenever a user
needs to transmit their location along with a query, the TTP
calculates a set of k users and reports an obfuscation area
containing k positions including that of the querying user.
k-anonymity has been extended in two directions. The first

direction attempts to avoid a single trusted anonymizer, either
by employing multiple distributed servers [55] [56] or using
peer-to-peer communication instead of a server [57]. The sec-
ond direction constrains which users are included in k
based on a set of conditions relating to the potential con-
textual knowledge an adversary may have. For example,
p-sensitivity [58] aims to guarantee the key attributes have at
least p different values within the k user set (i.e., an identity
information constraint). l-diversity [59] [60] ensures that the
location of the user is unidentifiable from a set of l different
physical locations (i.e., a location information constraint).
And historical k-anonymity [61] provides guarantees for
moving objects (i.e., a time information constraint).
k-anonymization approaches are targeted at the applica-

tions that do not demand a true or pseudo identity, such as
finding nearby gas stations or restaurants, or notifying a user
of the sale price of items as they pass through a shoppingmall.
The basic concept is to break the link between the identity
and the location by hiding this information among similar
anonymous users. However, k-anonymization techniques are
ineffective when the LBS relies on some form of identity
information to deliver its services because this information
in association with spatially cloaked regions is vulnerable to
inference attacks [35] [62].

2) MIX-ZONE
Unlike k-anonymity, mix-zones can be used without user
identity information. The first mix-zone approach was

proposed by Beresford and Stajano [9]Here, the privacy
of the user is maintained by constantly changing the
user’s name or pseudonym within a mix-zone. Since then,
this method has been investigated in the context of sev-
eral different applications. Ying et al. [63] proposed a
dynamic mix-zone for location privacy in vehicular net-
works, which dynamically forms the mix-zone at the time
the vehicle requests it. The MobiMix approach proposed by
Palanisamy and Liu [62] is a mix-zone framework based
on road networks that considers the anonymization effec-
tiveness and resilience of timing and transition attacks.
Lu et al. [64] incorporate pseudonym changes at social spots
to achieve location privacy, while Gao et al. [65] uses a mix-
zone framework that hides the exact location information
within a designed trajectory mix-zone for mobile crowd sens-
ing (MCS) applications. Xu et al. [66] treated the problem of
optimal multiple mix-zones as a transportation problem and
built a mixed-integer programming model with the objective
of minimizing the amount of time the users’ privacy level is
lower than their privacy requirement.

Both the k-anonymity and mix-zone schemes require users
to cooperate to reach a target level of privacy, thus inspir-
ing research on incentives for cooperation. For example,
Freudiger et al. [67] model the behavior of mobile nodes as
pseudonyms change in a noncooperative game where each
player aims to maximize their location privacy for mini-
mum cost. Gong et al. [68] modeled user decision making
about whether to change pseudonyms as a socially aware
pseudonym change game. Auction-based mechanisms were
designed in [69] to impel users to participate in pseudonym
change. Gong et al. [70] assumed a general anonymity model
that allows a user to have their specific anonymity set to a
personalized level of location privacy using a social group
utility approach.

Anonymization has been well-studied and applied to many
different scenarios. However, this approach has also attracted
some criticisms [71]. The main concern is that it is unreason-
able to maintain the same level of anonymity in different con-
texts. For example, a group of users cooperating to achieve
k-anonymity may either be near each other in a small place
(e.g., a train station), or in the opposite situation and scattered
across a large area. k-anonymity is satisfied in both cases, but
it is clear that the users in the second case have better location
privacy because an adversary would have more uncertainty
about their exact locations. This example also implies that k
is sometimes irrelevant to actual location privacy.

C. OBFUSCATION MECHANISMS
Obfuscation mechanisms encompass a range of methods
that reduce the precision of location information. Some add
dummy locations, others perturb (add noise), still others
reduce the granularity of the information [26] [72] [73].

1) DUMMY LOCATIONS
The goal of position dummies is to mask a user’s true posi-
tion by sending multiple false positions (‘‘dummies’’) to
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the LBS server together with the true position [11]. Since
the dummy locations are randomly selected from the user’s
mobile device, this method does not require any trusted
servers and is known to achieve good levels of privacywithout
loss of accuracy.

The classic dummymethod only addressed single locations
but has since been extended to trajectories. You et al.’s [74]
method produces a user’s dummy trajectories through ran-
dom or rotating patterns. Specifically, the random pattern
generates dummy trajectories beginning with the starting
point and moving towards the destination. The rotating
patterns cycle through a set of dummy user trajectories.
Lei et al. [75] uses a rotation scheme to rotate a user trajectory
that satisfies the distance deviation to make the actual user
trajectory indistinguishable from the dummies.

Given that an adversary may have additional contex-
tual knowledge, such as the map of a certain area, some
research efforts have focused on improving the dummy loca-
tion method to create dummies that not only are realistic
but also cannot be distinguished from the user’s true posi-
tion. Krumm [76] faked a users’ driving movements using
a database of actual GPS tracks from 253 drivers. To make
the model more realistic, they also compute the probability
of a given position being a plausible start or end point.
Chow and Golle [77] generated fake location traces by lever-
aging Google Maps. They add simulated stops and noise in
the routes planned by Google Maps and output a fraction of
the points according to the desired time range. Do et al. [78]
proposed a dummy generation method using conditional
probabilities to generate realistic false locations that are resis-
tant to adversaries who have information about the user as
well as external spatiotemporal knowledge. Hara et al. [79]
proposed a method to generate natural dummies that con-
siders the physical constraints of the real environment.
Chen and Shen [80] proposed dummy selection using maxi-
mizing minimum distance (MaxMinDistDS) and a simplified
version of MaxMinDistDS (SimpMaxMinDistDS) that takes
both semantic diversity and the physical dispersion of loca-
tions into account.

2) LOCATION OBFUSCATION
Spatial obfuscation approaches attempt to preserve privacy
by deliberately reducing the precision of the position infor-
mation sent from the user to the LBS server and, in turn,
to the client. A classic spatial obfuscation approach is the
one presented by Ardagna et al. [12], [81], where a user
sends a circular area instead of the precise user position to
the LBS server. Gutscher [82] proposed an approach based
on coordinate transformation, where the mobile device per-
forms some simple geometric operations on their positions
(e.g., shifting, rotating) before sending them to the LBS
server.

These location obfuscation methods, designed to protect
spatial information, led researchers to investigate ways of
protecting temporal information. Hwang et al. [83] intro-
duced a novel time-obfuscating technique that issues multiple

user queries at different times to confuse the LBS. By sending
a query randomly from a set of random trajectories based
on the user’s location, the LBS cannot know the user’s
real trajectory. Terrovitis and Mamoulis [84] considered spa-
tiotemporal obfuscation to protect the published trajectories
of users. A similar idea was presented by Ghinita et al. [85]
in their spatiotemporal cloaking approach.

There are some papers that consider more complex adver-
sarial knowledge. Duckham and Kulik [86] used obfuscation
graphs to apply the concept of location obfuscation to road
networks. Ghinita et al. [85] considered background map
knowledge represented by a set of privacy-sensitive features.

Xiao and Xiong [87] developed a framework to preserve
location privacy that accounts for the temporal correlations
in location data.

3) DIFFERENTIAL PRIVACY-BASED METHODS
The application of differential privacy to location protection
has been investigated in several recent papers. The defini-
tion of geo-indistinguishability [27] formalizes the notion of
protecting a user’s location within a radius r with a level of
privacy that depends on r . The level of privacy is achieved
by adding controlled random noise to the user’s location.
Bordenabe et al. [88] showed that, given a desired degree of
geo-indistinguishability, it is possible to construct a mech-
anism that minimizes service quality loss using linear pro-
gramming techniques.

However, Kifer and Machanavajjhala [89] showed that
differential privacy will only erase the evidence of a single
individual’s private value when the individuals in the data
are independent. This means there is potential for privacy
leaks when the individuals’ private values are correlated,
as discussed by Olteanu et al. [90].
Generally speaking, obfuscation schemes will sacrifice the

user’s utility. While there is always a tradeoff between util-
ity and privacy, there are some special cases. For example,
Soma et al. [91] investigated location privacy protection in
trip planning (TP) queries. They designed a method to protect
location privacy by sending a false or cloaked location to
the service provider that still yielded exact results for the TP
queries. In this case, obfuscation is a good choice for privacy
protection as there is no performance degradation.

D. REDUCING LOCATION INFORMATION SHARING
1) CACHING
Cache systems have been proposed as a way to improve
user privacy. In these systems, the POI data is prefetched
and stored in cache before arriving at an area [92]. How-
ever, this means a huge amount of service data needs to be
stored. MobiCrowd [93] preserves user privacy by query-
ing neighbors for service data before sending the query to
the LBS server but, if neighboring users cannot provide the
answers, the query is sent to the LBS server and is still at
risk. Zhu et al. [94] proposed the Mobicache scheme which
attempts to cache additional data that has not yet been cached.
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TABLE 2. Comparison of location privacy preservation mechanisms by adversary and attack models.

However, it does not consider side information, which may
be used by an adversary to infer the real location of users.
Niu et al. [13] proposed a privacy metric to model the effect
of caching. Their cache-aware dummy selection algorithms
carefully combine k-anonymity, caching, and side informa-
tion to achieve a higher privacy degree and caching hit ratio.
But cooperation among community members is still required.
Liu et al. [95] proposed a framework that enhances the pri-
vacy of LBS in wireless vehicular network scenarios through
active caching.

2) GAME THEORY
Alternatively, a game theory approach can be used to reduce
location information sharing. For example, Liu et al. [28]
proposed a framework that enhances the location privacy of
MCS applications by reducing the bidding and assignment
steps in the MCS cycle.

E. COMPARISONS AND DISCUSSIONS
1) LPPMS VS. OTHER PRIVACY-PRESERVATION TECHNIQUES
Just as location privacy is a subcategory of data privacy,
LPPM is a subcategory of privacy preservation techniques.
On the one hand, the ideas behind most LPPMs are derived
from generic privacy protection techniques. For example,
obfuscation can be used to disguise other types of data, such
as figures, and cryptography can be applied to any informa-
tion. But, on the other hand, most LPPMs need to be modified
to suit the particular characteristics of location data. A typical
example is the notion of geo-indistinguishability [27], which
associates a level of privacy with a radius r from the user’s
location according to a generic differential privacy definition.
Additionally, special attention needs to be paid to the ability
of location data to reveal connections between different infor-
mation as stated in Subsection II-D. In fact, a context linking

attack is one of the most important research issues for many
existing LPPMs, as can be seen in Table 2.

2) COMPARISONS OF THE FOUR DIFFERENT GROUPS
Consider an application that finds nearby POIs to compare the
four types of LPPMs. As shown in Fig. 5, there are four users -
Alice, Bob, Chuck, and Eve - who use an LBS to find nearby
locations. Cryptography-based mechanisms encrypt all the
information (see Fig. 5(a)). Anonymization schemes remove
the true user identities, replacing them with {u1, u2, u3, u4}
(see Fig. 5(b)). Obfuscation methods extend the precise user
locations to a range of possible locations (see Fig. 5(c)).
Finally, since Alice and Bob are close to each other, and they
are both looking for a restaurant, they can share information,
reducing the number of queries sent to the LBS server by one
query (see Fig. 5(e)).

From the above example, it is clear that LPPMs are differ-
entiated by their basic ideas. Cryptography schemes lower the
risk of an adversary obtaining information. Anonymization
breaks the links between identities and locations to make the
information worthless. Obfuscation blurs the information to
reduce the risk of disclosure. And reducing the amount of
location sharing reduces the amount of information generated
and transmitted through the whole system.

Additionally, each approach considers different types of
adversaries and the attacks they perpetrate. Obfuscation
schemes focus on spatial and temporal information, whereas
anonymization emphasizes identity protection. While cryp-
tography and reducing location sharing protect all three
attributes of location information. An overall comparison is
listed in Table 2.

Finally, anonymization schemes differ from the three other
groups in two further ways. First, the anonymization is
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FIGURE 5. Comparison of different LPPMs using a POI finder as an example. (a) Queries without privacy protection. (b) Queries with encryption.
(c) Queries with anonymization. (d) Queries with obfuscation. (e) Reducing unnecessary queries. (f) Queries with multiple privacy protection
schemes.

TABLE 3. Comparison of location privacy preservation mechanisms by TTP and metrics.

FIGURE 6. Different LPPMs can be used at the same time.

usually entrusted to a third party, as shown in Table 3. Second,
these approaches require user cooperation to achieve their
goals.

Despite these differences among the LPPMs, it is important
to emphasize that they are not mutually exclusive. As shown
in Fig. 6, it is common to combine different techniques by first
trying to reduce any unnecessary information sharing, and
then protecting the remaining transmissions with encryption.
Anonymization is often used to protect identity information,
and obfuscation is used to protect position/time information.
Fig. 5(f) illustrates an example where multiple schemes have
been adopted at the same time.

3) EVOLUTION OF METHODS WITHIN EACH GROUP
It is also interesting to look at the evolution of the meth-
ods within each group. The original version of a method is
generally based on simple adversary models and assump-
tions. Then, new methods consider more complicated cases
and expand to include more contextual knowledge or more
comprehensive targets. Take anonymization schemes as an
example. As shown in Fig. 7, anonymization was divided
into two groups from the outset. One group was based on
the idea of hiding a user among other similar anonymous
users, i.e., k-anonymity; another group was based on chang-
ing the identities within the set; i.e., mix-zones. Each group
was then further improved by more complicated information
acquisition methods and knowledge of adversaries. Similarly,
Fig. 8 shows the evolution of the different methods in the
obfuscation group.

V. PERFORMANCE EVALUATION: LOCATION
PRIVACY METRICS
Comparing the performance of different LPPMs is highly
dependent on the ability to quantify location privacy.
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FIGURE 7. Evolution of location privacy methods using the anonymization scheme.

FIGURE 8. Evolution of location privacy methods using the obfuscation scheme.

However, there is not yet a standard for evaluating privacy.
Indeed, it is rare for even two different research projects to
use the same method of quantification [96].

Wagner and Eckhoff [97] provides a very detailed sum-
mary of privacy metrics, including many metrics that are

not even in the scope of location privacy. Shokri et al. [26]
argues that location privacy metrics should consider three
key aspects: accuracy, uncertainty, and correctness. In this
section, we reorganize the existing metrics into five
categories.
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A. CERTAINTY
Certainty or uncertainty metrics are used to measure the
ambiguity of an adversary with respect to finding a unique
answer. This answer could be an identity or any other spa-
tial or temporal information about the location.

1) NUMERICAL METRICS
Duckham and Kulik [98] defines the ‘‘level of privacy’’ as
the number of different location coordinates sent by a user
with a single location-based query. More points mean more
ambiguity and, hence, a higher privacy level. The goal of their
system is to be as ambiguous as possible while still getting the
right answer for a POI query.

In the k-anonymity group of LPPMs, k is used to rep-
resent the level of privacy [10]. Similarly, p is used in
p-sensitivity [58], and l is used in l-diversity [59].

2) ENTROPY-BASED METRICS
Shannon entropy is the basis for many metrics. In location
privacy, entropy-based metrics are computed based on the
posterior probability of the adversary’s estimates x̂ based on
his observations o:∑

x̂

Pr(x̂|o) log
1

Pr(x̂|o)
. (1)

Actually, numerical metrics can easily be converted into
entropy-based metrics. For example, in a k-anonymity
system, the equivalent entropy is∑

k

1
k
log

1
1/k

. (2)

The resulting value can be used to measure how well an
adversary can identify a specific user in an anonymity set and
disclose their position.

Entropy has also been used in cases where privacy is mea-
sured at more than one point in time. For example, in scenar-
ios where an the adversary tracks users over a period of time,
entropy is computed at every point in time and the under-
lying probabilities are updated after each timestamp using
Bayesian belief tables [99]. This approach accounts for the
prior knowledge that the adversary acquired during previous
timestamps once the first timestamp has been calculated.

The disadvantage of certainty metrics is that they do not
take the correctness of the adversary’s estimates into account
because the true position x is not considered in the equation.
This might be problematic. For example, if two positions are
very close to each other, the locations may be revealed despite
high entropy [100].

B. CORRECTNESS
1) ADVERSARIAL SUCCESS RATES
This metric measures the probability that an adversary will be
successful, or the percentage of successes in a large number
of attempts. Depending on the application scenario, success
can be defined in different ways. For example, to evalu-
ate the performance of an inference attack, Li et al.’s [30]

successful rate is based on the success of inferring the correct
demographics.

2) DISTANCE-BASED METRICS
Distance-based metrics quantify the error or expected dis-
tance between the true information and the estimated infor-
mation, using any distance metric d(). A distance metric for a
single location can be computed by the posterior probability
of the adversary’s estimate x̂ based on their observations o,
while the true position is x:∑

x̂

Pr(x̂|o)d(x, x̂). (3)

And this can be extended to a trajectory by summation over
multiple timestamps [100].

C. INFORMATION GAIN OR LOSS
Information gain or loss metrics measure the amount of infor-
mation that an adversary can possibly gain. They assume that
privacy is higher when an adversary can gain less informa-
tion. Similar to uncertainty metrics, many information gain
metrics found their roots in numerical metrics or entropy-
based metrics.

For example, Liu et al. [95] defines the ‘‘Privacy degree’’
as the percentage of queries that cached content can respond
to as opposed to the service provider. As the cached content
is in local memory, it is more secure than the LBS server.

Similarly, the number of packages uploaded by participants
in MCS applications can also be used to measure privacy
levels [28].

D. GEO-INDISTINGUISHABILITY
In statistical databases, differential privacy guarantees that
any disclosure is equally likely regardless of whether or not
an item is in the database [101]. In the context of loca-
tion privacy, Andrés et al. [27] proposed a useful term
‘‘Geo-indistinguishability’’ to measure the level of privacy.
Definition 1 (ε-Geo-indistinguishability): For each true

location x ∈ X , a mechanism K is a probabilistic func-
tion assigned to x as a probability distribution of Z . And
Pr(K(x) = z), z ∈ Z is the probability that z is the location
generated byK from x. Then the Geo-indistinguishable level
of K is defined as:

GIL(K, x, x ′) = sup
z∈Z

∣∣∣∣ln Pr(K(x) = z)
Pr(K(x ′) = z)

∣∣∣∣
= sup

z∈Z

∣∣∣∣ln Pr(z|x)
Pr(z|x ′)

∣∣∣∣ , (4)

where we use Pr(z|x) instead of Pr(K(x) = z) for simplicity.
We say K satisfies ε-Geo-indistinguishability if and

only if, for all x, x ′ ∈ X and z ∈ Z :

GIL(K, x, x ′) ≤ εd2(x, x ′), (5)

where d2(x, x ′) is the Euclidean distance between locations.
Note that for all points x ′ within a radius of r from x, the def-
inition forces the corresponding probabilities of generating
the same released location z to be εr distant at most.
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Therefore, the parameter ε represents the level of
Geo-indistinguishability.

E. TIME
Time-based metrics focus on time as a resource that an
adversary needs to spend to compromise a user’s privacy.
In some location privacy issues, the adversary aims to not
only break privacy at a single time point, but also to track
a target’s location over time. For example, the adversary’s
tracking ability is measured by the maximum tracking time
in [102], which is defined as the cumulative time that the size
of the target’s anonymity set remains 1.

This metric tends to overestimate a target’s privacy because
it assumes that the adversary has to be completely certain.
To avoid the overestimation of privacy, the mean time to
confusion measures the time during which the adversary’s
uncertainty stays below a confusion threshold [103].

F. PERFORMANCE EVALUATION
In this subsection, we compare the performance of several
LPPM mechanisms in a POI-finding scenario. Of the five
metrics discussed above, correctness is the one which can be
used to evaluate the most methods.

Consider a tradeoff with respect to the service quality
loss (SQL) metric discussed in [104]. SQL is defined as the
expected distance between the reported (observed) location o
and the user’s true location x:∑

x

Pr(o|x)d(x, o). (6)

The mechanisms compared here are:
1) k-anonymity [10] with someminor changes to the orig-

inal version for ease of comparison with the other two.
When a user wants to query POI information, instead
of sending their true location, they randomly select one
location from the k-anonymity group.

2) Classic spatial obfuscation [12], which sends a circular
area with radius of R to the LBS server instead of the
precise user position.

3) Geo-indistinguishability [27] with a planar Laplace
distribution to generate the noise that is added to the
precise locations.

In all cases, the area of interest is assumed to be a two-
dimensional plane, the users’ real locations are randomly
generated throughout the region. No contextual information
is considered.

First, we set the parameters of each mechanism in such a
way that the SQL is the same for all and compare the correct-
ness of each. Fig. 9(a) shows that the geo-indistinguishable
mechanism offers the best performance. among the mecha-
nisms. (A greater value of correctness means that it is hard
for the adversary to obtain the correct location.) k-anonymity
and obfuscation provided a similar performance with our
settings. Once the values of correctness were fixed, the geo-
indistinguishable mechanism introduced the smallest SQL,
as shown in Fig. 9(b).

FIGURE 9. Performance comparison of different LPPMs by simulation.
(a) SQL = 100. (a) Correctness = 100.

G. DISCUSSION ON PERFORMANCE METRICS
The metrics discussed above are the most frequently used in
current research endeavors. However, there are some other
ones. For instance, Shokri et al. [26] mentions an accuracy
metric, which is used to quantify the accuracy of the adver-
sary’s estimation. However, this metric it is not used very
often as it does not reflect the certainty or the correctness of
the results.

Although we used the correctness metric for our compar-
ison, it is important to emphasize that different groups of
LPPMs should use different metrics as they have different
protection targets and methodologies. As such, evaluating
the differences between LPPMs without considering specific
contexts and goals is a relatively arbitrary exercise. Table 3
summarizes the most commonly-used metrics for a selection
of LPPMs for the interest of readers.

VI. LOCATION PRIVACY IN PRACTICAL APPLICATIONS
Having discussed the different aspects of location privacy
issues in LBSs, in this section, we investigate the current
status of location privacy in practical terms.

A. LOCATION-BASED SERVICES IN
PRACTICAL APPLICATIONS
LBSs experienced a boom along with the emergence of the
smartphone and are currently widely used in a variety of
contexts, such as health, entertainment, work, and personal
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TABLE 4. Summary of location information types in the current LBS applications.

TABLE 5. Summary of LBSs provided by different LBAs.

life. According to the different application scenarios, current
LBSs can be grouped into the following categories [105]:
• Geo-social services [106]: These services have intro-
duced location information into social networking plat-
forms to enrich interactivity and the relationships
between people. The very first service of this kind
was the check-in service. Foursquare [107] was one
of the earliest LBS applications to provide a check-
in function. Glympse is a similar application, and
there are many others [108]. This simple check-in
concept was soon extended to encompass a broader
vision of geo-social services, including location sharing
among friends (Foursquare), posting geo-tagged tweets
(Twitter [109]) or moments (Wechat), and to finding
nearby friends (Wechat, Facebook).

• Information services: Current navigation systems pro-
vide real-time traffic condition reports and route selec-
tion based on a user’s location. Passengers can obtain
public transport timetables at bus stops and train sta-
tions. Additionally, some services provide nearby-POI
information to their users. Yelp [110] was one of the
first online local POI search services. Its mobile ver-
sion provides an easy way for users to find nearby
POIs by allowing Yelp to access to their current loca-
tion. Similarly, many other traditional web-based ser-
vices, such as Tripadvisor [5], have LBS versions for
mobile platforms. In addition, unmanned autonomous
systems, or autonomous systems for short, are becoming
mainstream in practice, with the widespread introduc-
tion of autonomous vehicles, drones, and so on. These
systems also include LBSs.

• Healthcare assistant systems: Fitbit [6] is an exam-
ple of this type of LBS, which is an activity tracker
and a wireless-enabled wearable technology device that
measures data, such as the number of steps walked, heart
rate, quality of sleep, steps climbed, and other personal
metrics involved in fitness.

• Augmented reality (AR) games: While the craze has
cooled somewhat, Pokemon Go [7] has launched a new
era of AR games by combining the addictive crea-
ture collection and monster battling play in Nintendo’s
Pokemon with Niantic’s augmented reality technology.
Players explore their neighborhood on foot, using their
smartphone as a map and viewfinder to discover and
collect Pokemon. Pokemon, and their accoutrements,
can also be collected from Pokestops - shops and gyms
tied to real-world locations that you need to physically
travel to - which encourages players to explore their
neighborhood and get their feet in gear.

The above summary of categories is based on the func-
tions and aims of the services, but different LBSs use
different types of location information as well. Table 4
lists the types of location information used in the different
LBSs.

The current trend is to integrate multiple functions into one
application. For example, the original Foursquare has become
a location-aware smart-search tool that focuses on discov-
ering nearby locations, events, restaurants, and shops, while
Swarm caters to those addicted to checking in and location
sharing with friends. Google Maps has paired its navigation
system with location awareness functions that allow you to
easily find everything you need, like nearby POIs, traffic, and
the estimated travel time to any destination.

To distinguish the application from the provided service,
we have used the term location-based application (LBA) to
refer to any device, software, or mobile app that provides
an LBS. Given that one LBA can house multiple LBSs,
the types of LBSs provided in popular LBAs have been
provided in Table 5) as general context.

B. HOW DO PEOPLE CARE ABOUT THEIR
LOCATION PRIVACY?
People’s views on location privacy changes over time. Studies
prior to 2010 [111] [112] [113] show that the general public
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were not very concerned about their location privacy. How-
ever, with the boom of LBSs in recent years, new research has
been conducted that tells a different story.

Below, we summarize these opinions in two different
respects.

1) DO PEOPLE REALLY KNOW HOW MUCH OF THEIR
LOCATION INFORMATION HAS BEEN
COLLECTED OR REVEALED?
Some researchers argue that people do not much care about
their location privacy because they are often unaware of the
amount and frequency of the data collected by their applica-
tions. Aalmuhimedi et al. [114] show that a user’s location
can be shared more than 5000 times in a two-week period.
And participants in the study knew how frequently their data
was being collected, 95% of them reassessed their permis-
sions, and 58% further restricted some of their permissions.

2) HOW DO PEOPLE CARE ABOUT THEIR
LOCATION PRIVACY?
Fawaz and Shin [115] surveyed 180 smartphone users.
78% of the participants believe that apps accessing their
location can pose privacy threats. Also, 85% of them reported
that they care about who accesses their location informa-
tion. 77% of the users included the term ‘‘privacy’’ as a
factor affecting their choice in installing a privacy protection
mechanism.

Thus, we cannot arbitrarily assert that people care or do
not care about their location privacy nowadays. In most cases,
people are weighing the price of information sharing with the
corresponding benefits. As people become more aware of the
risk of disclosing their location information, it is reasonable to
believe that the majority of the public will pay more attention
to location privacy issues.

C. HOW TO HELP USERS SELECT AN LPPM
The research in LPPMs provide powerful tools for users to
protect their privacy. However, the reality of location privacy
issues are still far from satisfactory for several reasons. First,
users are not generally very sure about the LPPMs used in
certain applications. Additionally, it is difficult for the aver-
age person to understand the advantages and consequences of
using LPPMs. Lastly, as privacy is always a tradeoff between
its benefits and its risks, different users may have different
views about privacy issues. Therefore, users need guidance
to help them select the most appropriate LPPM for their own
personal circumstances.

Most LBSs have a default configuration that users can
modify as desired. But customizing these settings requires
effort, and users often accept the default rather than mod-
ifying these preferences to meet their needs [116]. Thus,
the default settings can have a large impact on the resulting
privacy for users. Organizations and developers that create
applications must make decisions about default privacy con-
figurations, and sometimes those decisions do not fully meet
the user’s privacy needs [117].

A variety of research has examined how to automatically
determine or recommend personalized privacy settings.

1) MODEL-BASED METHODS
One strand of research classifies or score a user’s attitudes
toward privacy by asking users to answer a series of ques-
tions about privacy, and then setting privacy levels accord-
ingly [118]. Liu and Terzi [119] framework for computing
privacy scores using profile item sensitivity and the user’s
social network level. Minkus and Memon [120] examined
characterizing privacy settings into a single score that can be
used to aid users when configuring a privacy policy or com-
paring two given policies. This approach includes both naive
and weighted methods, which take sensitivity and visibility
into account. Watson et al. [121] computes a score to charac-
terize a user’s privacy preferences without assumptions about
how each piece of data should impact the score.

2) LEARNING-BASED METHODS
Others have examined using machine learning algorithms
and other algorithms to automatically determine settings
based on a user’s previous settings or behaviors [122]. For
example, Sinha et al. [123] gathers information about users’
previous Facebook posts to predict better default policies
for future posts. Similarly, Shehab and Touati [124] and
Bilogrevic et al. [125] suggest using machine learning to
automatically configure complex privacy settings for friends
based on the configurations for a selected set of friends.

D. EXAMPLES OF LOCATION PRIVACY PRESERVATION
SCHEMES IN PRACTICAL APPLICATIONS
Despite the numerous research proposals for location pri-
vacy protection from various angles and in various scenarios,
the majority have not found their way into common use.
Existing mechanisms suffer several shortcomings that hinder
their deployment in the real world. These shortcomings can
be described in terms of effectiveness, efficiency, and practi-
cality. For example, cryptographic methods face the problem
of inefficiency due to high computational costs. And most
of the proposed mechanisms rely on unrealistic assumptions,
making real-world deployment difficult [115].

Encouragingly, more and more LBS providers are begin-
ning to emphasize privacy issues and are introducing counter-
measures into their applications. For example, Twitter [109]
has enabled users to select the location accuracy of the geo-
tagged posters. Glympse [108] enables users to share loca-
tions that will automatically expire, so the locations are never
permanently posted. SocialRadar [126] provides an overview
of what is going onwith the people in your social network and
who is around, but users can choose to be anonymous or invis-
ible when using the app. For people who wish to remain
anonymous, Yik Yak [127] is a fun location-based sharing
app that removes the pressure to have your identity strapped
to a profile. This app shows you a stream of short anonymous
posts from people around your geographic area. When you
post, you do have the option to show your exact location and
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add a nickname but, otherwise, everyone is totally nameless
in the community.

E. DISCUSSION ON PRIVACY IN APPLICATIONS
Overall, protecting the privacy of location data in real life still
has a long way to go because the majority of people do not yet
fully understand the power of location data, and the majority
of businesses need to know more about location data man-
agement. The rapid development of LBSs has meant location
ecosystems and location data are becoming more and more
complicated. Yet, existing policies and the legal environment
is not aligned with the current state of the technology. With
the efforts from both academia and industry, we believe the
situation will soon improve.

VII. FUTURE DIRECTIONS
A. LOCATION PRIVACY PROTECTION
UNDER CORRELATIONS
Although the location privacy issues have been widely stud-
ied, most previous studies have focused on independent data,
which assumes that all data were independently sampled from
a universe. Despite this, a real-world dataset often exhibits
strong coupling relations, where some records are frequently
correlated with each other, and this may disclose more infor-
mation than expected. Some research is beginning to account
for the temporal and spatial correlations in location data [90]
[128] [129], but these efforts are far from mature.

A further challenge is the correlation between location
data and other databases. For example, health and medical
records may be associated with people’s location information
to launch attacks. This is an important direction of research
but has not yet been well-studied.

B. LOCATION PRIVACY IN BIG DATA AND
DEEP LEARNING ERA
The massive amounts of data available on the Internet and
the unprecedented accuracy of deep learning methods are
continually reshaping many areas of research and industry.
At the same time, these methods present obvious privacy
issues [130]. For example, current deep learning-based meth-
ods can detect type of objects [131], and recognize celebrities
and landmarks from personal photos posted on social net-
works. These methods can automatically collect and process
millions of photos or videos to reveal private information. For
example, Weyand et al. [46] were able to predict the geolo-
cations of users with high accuracy just from their personal
photos.

Traditional privacy preservation methods seem powerless
when faced with large-scale deep learning tools and a Big
Data training set. Hence, location privacy problems need to
be reinvestigated in a Big Data and deep learning context.

VIII. CONCLUSIONS
This study surveys the literature on location privacy and
combines it into a unified framework. The existing research
on this topic, especially in recent years, has covered almost
every aspect of location privacy. By classifying each aspect of

this research and identifying the connections between studies,
we can draw several conclusions as follows.
• The definition of location privacy provided in this paper
includes the three aspects of privacy that are important to
users: identity, spatial information (position), and tem-
poral information (time) and can, therefore, be used as
a generic definition for location privacy within the field.
The importance of location data is high due to its ability
to link disparate datasets and provide a much more com-
plete profile of an individual or organization. In addition,
location data has unique characteristics including the
massive scale of available location information, its high
correlations, and its dynamic and unequal importance.

• A variety of adversarial features and attacks have been
explored in the literature. Machine learning/deep learn-
ing represents an emerging threat and has recently been
used as an attack method based on large-scale location
data mining.

• Among the four groups of location privacy preserva-
tion schemes studied in this paper, obfuscation and
anonymization mechanisms are the most predominant.
Cryptographic mechanism are a classic technique but
these methods have not seen much improvement for a
while. The idea of reducing the amount location infor-
mation that is shared has emerged recently, and this
technique can be combined with any and all of the other
methods. Different groups of LPPMs use different eval-
uation metrics, as they have different protection targets
and methodologies. Moreover, improvements to LPPMs
tend to concern the more and more realistic contexts for
attacks and adversaries.

• Privacy preservation in practical applications is still in its
preliminary stages. Only a few basic LBAs incorporate
simple obfuscation and anonymization methods.

We believe that this study will shed light on the research
issues associated with location privacy and will promote
the advancement and development of future location privacy
applications. With the increasing attention paid to the impor-
tance of location privacy, we expect to see more research and
its application in this area.
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