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ABSTRACT A continuous output feedback control scheme is presented for double integrator systems subject
to non-vanishing perturbation. In the method, no explicit state observer or disturbance observer is designed.
The geometric homogeneity technique and Lyapunov stability theory are utilized to ensure the global finite-
time stability of the closed-loop system. The extension of the algorithm to multi-input multi-output is
developed, and its application in quadrotor unmanned aerial vehicles is investigated. Finally, the numerical
simulation results are provided to validate the efficiency of the proposed method.

INDEX TERMS Finite-time stability, output feedback, quadrotor UAVs, nonlinear control, robust control.

I. INTRODUCTION
The system with double-integrator dynamics is one of the
most fundamental systems in control theory and has many
applications in practice, such as spacecraft rotation [1], rotary
crane motion [2] and manipulator motion [3]. Most of the
techniques used for linear or nonlinear feedback stabilization
and observation are asymptotic stability, which means the
system trajectories settle at the origin as the time approaches
infinity. In practice, the finite-time stability is more expected,
since it provides faster convergent rate, higher precision and
better disturbance rejection properties [4]. Hence, much effort
has been devoted to the topic during the last years.

Geometric homogeneity technique, Lyapunov stability the-
ory and Implicit Lyapunov Function (ILF) are commonly
used in finite-time control system design. In [5], it was shown
that a system is finite-time stability if it is locally asymptot-
ically stable and homogeneous with negative degree, which
provides a sufficient condition for the design of controller
and observer with finite-time convergence. In [6], a global
saturated finite-time controller is developed based on homo-
geneous method for a rigid spacecraft system. In [7],
the homogeneous technique was utilized to the observer
design for triple integrator. In addition, a homogeneous
Lyapunov function was developed to select gains explic-
itly to ensure the finite-time convergence of the closed-loop
system. In [8], a finite-time control algorithm is proposed
using homogeneous technique for arbitrary order integrator.

However, the convergence of the algorithm was only proved
when the degree of homogeneity was sufficiently close to 0
without more tractable information. Furthermore, in [9] the
implicit Lyapunov function method and homogeneous tech-
nique were combined together to present a control algo-
rithm for finite-time stabilization of a chain of integrator
with arbitrary order. Moreover, the tuning of control param-
eter was presented using linear matrix inequality technique.
In [10], an adaptive continuous twisting algorithm is devel-
oped for perturbed double integrator. In the method, finite-
time convergencewas achieved by a continuous control signal
even in the case that upper bound of the perturbation is
unknown. Moreover, the control gains are derived explicitly
using Polya’s Theorem.

A main drawback of these finite-time control methods
aforementioned is that the full state information is assumed
to be available. However, the velocity information of second
order systems may be difficult to obtain in practice [11].
To address the issue, some finite-time output feedback control
schemes have been developed. In [12], a class of output
feedback finite-time stabilizing control law was proposed
for the double integrator system, where the finite-time
separation principle was used to ensure the finite-time stabil-
ity of the closed-loop system under output-feedback frame-
work. In [13], a unified framework for the finite time output
feedback stabilization of a double integrator was proposed
using a modification of the twisting controller and the
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supertwisting observer. In [14], a homogeneous controller
and a homogeneous observer are designed with different
degree of homogeneity to ensure the finite-time astabiliza-
tion of the double integrator. Furthermore, the robustness
and effects of discretization on the closed-loop system were
investigated in [15], which shows that an improved robust-
ness is achieved with respect to the result in [13]. However,
only the disturbance vanishing in the origin was discussed
in [12]–[15]. In [16], a globally finite-time output feed-
back control law, combining state observer and discontinuous
integral controller, was presented for double integrator sys-
tems with non-vanishing perturbation. Based on the method
in [17], a homogeneous Lyapunov function was constructed
to ensure the finite-time stabilization of the closed-loop sys-
tem. A general idea in the methods aforementioned is that
a finite-time state observer is designed, and then the esti-
mate value is incorporated into finite-time controller. As a
result, the finite-time output control scheme is constructed by
combining the controller and observer. However, the observer
relies on the control input, which may affect the transient
response of the observer. In [18], a novel finite-time output
control law was developed. In the method, a simple nonlinear
filter, which does not refer to the control input, is developed to
replace the velocitymeasurement. Nevertheless, the proposed
control law is only insensitive to a class of perturbation
vanishing at the origin, and it can not reject the non-vanishing
perturbation completely. In practice, many systems, such as
attitude system of reusable launch vehicle [11] or manipula-
tor [3], are subject to non-vanishing perturbation. Therefore,
it is imperative to study this issue.

Inspired by the work in [18] and [16], a new finite-time
output feedback control scheme is developed for double inte-
grator with non-vanishing perturbation. The key features of
the algorithm are threefold. First, an output feedback con-
trol framework is developed for double integrator systems
with non-vanishing perturbation, where the velocitymeasure-
ments doesn’t resort to control input. Second, the proof the
finite-time stability of the closed-loop system is achieved
through geometric homogeneity technique and Lyapunov sta-
bility theory. Finally, an extension of the algorithm from
scalar to vector is given, and its application in attitude control
of quadrotor UAV is investigated.

The outline of this work is as follows. Notation and some
useful concepts, lemmas and the problem formulation are pre-
sented in Section 2. A continuous finite-time output feedback
control algorithm is developed in Section 3. Some results
in numerical simulation are presented in Section 4, and the
conclusions are summarized in Section 5.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. NOTATIONS
Throughout the paper, the following notations will be used.
R is the set of real numbers and R+ = {x ∈ R : x ≥ 0}. For
any non-negative real number α, the function x 7→ dxcα is
defined as dxcα = |x|αsign(x) for any x ∈ R. It follows from

the definition that ddxc
α

dx = α|x|
α−1, dxc0 = sign(x), dxc = x

and dxc2 = x|x|. For a given vector x = [x1, .., xn]T ∈ Rn, let
‖ x ‖=

√
xT x be the Euclidean norm of vector x. For any x ∈

Rn, define the multi-variable sign function sign(x) = x
‖x‖ .

The transpose of multivariable sign function is defined by
signT (x) = xT

‖x‖ . For any non-negative real number α,
the function x 7→ dxcα is defined as dxcα = ‖x‖αsignT (x) for
any x ∈ Rn. When one says that vector function f (x) ∈ Rn

is Lipschitz continuous, it means that each element of f (x),
i.e., fi(x), is Lipschitz continuous.

B. DEFINITIONS AND LEMMAS
Consider the nonlinear dynamical system

ẋ(t) = f (x(t)), t > t0, x(t0) = x0 (1)

where x = [x1, .., xn]T ∈ Rn is the state vector, f (x) :
Rn
→ Rn is a possibly discontinuous vector field. In this

case, the solutions of (2) are understood in the sense of
Filippov [19]. It is assumed that the origin is an equilibrium
point of system (1). Throughout the paper, it is assumed that
the solution of (1) starts at t0 = 0, denoted by X (t, x0) with
x0 as the initial condition.

Let r = [r1, ..., rn] ∈ Rn be the weight vector with
ri > 0, (i = 1, ..., n). The dilation mapping is defined as
3r
λ(x) = [λr1x1, ..., λrnxn]T for any λ > 0.
Definition 1 [20]: A function g(x) : Rn

→ R is said to be
r-homogeneous with degree k ∈ R if for all x ∈ Rn and all
λ > 0 we have g(3r

λ(x)) = λ
kg(x).

Definition 2 [20]: A vector field f (x) : Rn
→ Rn is said

to be r-homogeneous with degree k if for each i ∈ {1, ..., n},
the element fi(x) is r-homogeneous of degree of k + ri; that is
fi(3r

λ(x)) = λ
k+ri fi(x) for any λ > 0 and x ∈ Rn.

Definition 3 [5]: The origin of the system (1) is said
to be globally uniformly finite-time stable if it is uniformly
Lyapunov stable and finite-time attractive, i.e., there exists
0 ≤ T < +∞ such that X (t, x0) = 0 for all t ≥ T . The
function T0(x0) = inf {T ≥ 0 : X (t, x0) = 0,∀t ≥ T } is
called the settling-time function of the system (1).
Lemma 1 [5]: The origin of the system (1) is globally

finite-time stable if it is locally asymptotically stable and
homogeneous with negative degree.
Lemma 2 [21]: For any positive real numbers a > 0, b >

0, c > 0, p > 1 and q > 1 with 1
p +

1
q = 1, the inequality

cp
p a

p
+

c−q
q bq − ab ≥ 0 is always satisfied.

Lemma 3 [16]: Let η(x) : Rn
→ R and γ (x) : Rn

→ R+
be two homogeneious with degree m with respect to weight
vector r = [r1, ..., rn] such that {x ∈ Rn

\ {0} : γ (x) = 0} ⊂
{x ∈ Rn

\ {0} : η(x) < 0} holds. Then, there exists a real
number λ∗ such that, for all λ ≥ λ∗ and for all x ∈ Rn

\ {0},
and some c > 0, η(x)− λγ (x) < −c ‖ x ‖mr,p.

C. PROBLEM FORMULATION
Consider the following double integrator system described by

ẋ1 = x2, ẋ2 = u+1(t) (2)
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where x1, x2 ∈ R are the states, u ∈ R is the control
and1(t) represents the perturbation, satisfying the following
assumption
Assumption 1: Suppose that the perturbation 1(t) in (2)

is a Lipschitz continuous time signal with a known Lipschitz
constant L1, i.e. |1̇(t)| ≤ L1.
The problem is to design a continuous control law using

only the system output x1 such that the states of system (2)
converge to zero in finite time.

III. MAIN RESULT
In fact, various methods exist to address the problem through
state observer, such as [13] and [16], to name just a few.
However, the state observer is generally dependent on control
input, which may affect the transient response of the closed-
loop system. Inspired from [16] and [18], an output feedback
control law without resorting to a state observer is proposed
for system (2) such that x1, x2 → 0 in a finite time, i.e., T ,
and the perturbation 1(t) can also be estimated after finite
time. To this end, the following control law is proposed

u = −k1dx1c
1
3 − k2dx3c

1
3 −

∫ t

0
(kI1dx1 + kI2x3c

0)dt (3)

where x3 is designed by

x3 = q+ x1 (4)

with

q̇ = −k3dq+ x1c
2
3 (5)

By defining

x4 = −
∫ t

0
(kI1dx1 + kI2x3c

0)dt +1(t) (6)

the closed-loop dynamics of (2) results in the following dif-
ferential equation

ẋ1 = x2
ẋ2 = −k1dx1c

1
3 − k2dx3c

1
3 + x4

ẋ3 = −k3dx3c
2
3 + x2

ẋ4 = −kI1dx1 + kI2x3c
0
+ 1̇(t)

(7)

Since the right hand side of (7) is discontinuous, its solu-
tions will be understood in the sense of Filippov. A direct
verification shows that the system (7) is homogeneous with
degree k = −1 with respect to weight vector r = [3, 2, 3, 1].
Next, the following theorem is developed to ensure that the
system (7) is finite-time stable.
Theorem 1: Consider the closed-loop system (7) under

the Assumption 1, Then, there exists some positive constants
k1, k2, k3, kI1 and kI2 such that the states of system (7) con-
verge to zero in finite-time.

Proof: Consider the following continuously differen-
tiable Lyapunov function candidate

V (x) = r1|ε1|
5
3 + r12ε1x2 + |x2|

5
2 + |x3|

5
3 + |x4|5 (8)

with ε1 = x1 −
dx4c3

k31
. It follows from Lemma 2 that the

Lyapunov function is positive definite, which can be achieved
by selecting large enough r1 for any given r12. Moreover,
a direct verification shows that the Lyapunov function (8) is
homogeneous with degree 5 with respect to weight vector
r = [3, 2, 3, 1]. Furthermore, taking the derivative of the
Lyapunov function (8) along the states of (7) results in

V̇ (x) =
(
5
3
r1dε1c

2
3 + r12x2

)
ε̇1 +

(
5
2
dx2c

3
2 + r12ε1

)
ẋ2

+
5
3
dx3c

2
3 ẋ3 + 5dx4c4ẋ4 (9)

Substituting ε̇1 = x2 −
3x24
k31
ẋ4 into (9) results in

V̇ (x) =
(
5
3
r1dε1c

2
3 + r12x2

)
x2 +

(
r12ε1 +

5
2
dx2c

3
2

)
ẋ2

+
5
3
dx3c

2
3 ẋ3 +

(
5dx4c4−

3x24
k31

(
5
3
r1dε1c

2
3+r12x2)

)
ẋ4

(10)

Substituting the derivatives of x2, x3 and x4 in (7) into (10)
yields

V̇ (x) =
(
5
3
r1dε1c

2
3 + r12x2

)
x2 +

(
r12ε1 +

5
2
dx2c

3
2

)
×

(
x4−k1dx1c

1
3−k2dx3c

1
3

)
+
5
3
dx3c

2
3

(
x2 − k3dx3c

2
3

)
+

(
5dx4c4 −

3x24
k31

(
5
3
r1dε1c

2
3 + r12x2)

)
×

(
−kI1dx1 + kI2x3c

0
+ 1̇(t)

)
(11)

Taking into account the identities x4 − k1dx1c
1
3 − k2dx3c

1
3 =

x4 − k1dx1c
1
3 − k2dx3c

1
3 + k3(ε1 + dx2c

3
2 )− k3(ε1 + dx2c

3
2 )

and dx3c
2
3 = dx3c

2
3 −

1
k3
x2 + 1

k3
x2 and let r12 = 5

2 , the (11)
can be rewritten as

V (x) = V1(x)+ V2(x)+ V3(x) (12)

with V1(x),V2(x) and V2(x) being defined by

V1(x) = −k3

(
5
2

(
ε1 + dx2c

3
2

)2
+

5
3

(
dx3c

2
3 −

1
k3
x2

)2 )
V2(x) =

(
5
3
r1dε1c

2
3 +

5
2
x2

)
x2 −

5
2

(
ε1 + dx2c

3
2

)
×

(
k1dx1c

1
3 + k2dx3c

1
3 − k3(ε1 + dx2c

3
2 )− x4

)
+

5
3k3

x2
(
x2 − k3dx3c

2
3

)
V3(x) =

(
5dx4c4 −

3x24
k31

(
5
3
r1dε1c

2
3 + r12x2)

)
×

(
−kI1dx1 + kI2x3c

0
+ 1̇(t)

)
(13)

It is easily to be verified that the functions V1(x),V2(x) and
V3(x) are homogeneous with degree 4 with respect to weight
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vector r = [3, 2, 3, 1]. Furthermore, it follows form the
definition (13) that V1(x) is negative semidefinite, and it
becomes to zero only at the set S1 = {dx2c

1
2 + dε1c

1
3 =

0}
⋂
{dx3c

2
3 −

1
k3
x2 = 0}. On set S1, the value of V2(x)

becomes V2(x) = −( 53 r1 −
5
2 )|ε1|

4
3 which is negative when

r1 > 3
2 . Application of Lemma 3 shows that V1(x)+V2(x) <

−c ‖ x ‖mr,p for k3 sufficiently large. Note the fact that
V1(x) + V2(x) = 0 on the set S2 = {ε1 = x2 = x3 = 0}.
Obviously, V3(x) reduces to the following identity

V3(x) = 5
(
−kI dx1c0 + 1̇(t)

)
dx4c4 (14)

when the system states evolve on the set S2. Recall the rela-
tionship ε1 = x1 −

dx4c3

k31
, and ε1 = 0 implies that sign(x1) =

sign(x4). Hence, V3(x) in (14) satisfies V3(x) ≤ −(kI1 −
L)|x4|4 which is negative when kI1 > L. It follows from
Lemma 3 that there exist appropriate kI1 such that V̇ (x) =
V1(x)+V2(x)+V3(x) < 0, implying the asymptotic stability
of the system (7). Taking into account the homogeneity of the
system (7) with negative homogeneous degree −1, it follows
from Lemma 1 that the system (7) is finite-time stability.
Remark 1: It is worth noting that an analytic calculation

of the gains k1, k2, k3, kI1 and kI2 may be found using the
Polyas Theorem [17]. However, the derivation is intractable
for high-order system, such as the system (7). An alternative
way to determine these parameters is trial and error.
Remark 2: It should be noted that the parameter kI2 is

independent on the stability of the system (7), which can be
observed from the proof in Theorem 1. Hence, kI2 can be
selected arbitrarily at least in theory.
Remark 3: When the states of system (7) reach zero in a

finite time T , it follows from (6) that the perturbation1(t) can
be estimated through

∫ t
0 (kI1dx1+ kI2x3c

0)dt, i.e.,
∫ t
0 (kI1dx1+

kI2x3c
0)dt = 1(t) for any t ≥ T .

IV. APPLICATION IN QUADROTOR UAV
When applying the scalar algorithm in attitude control of
UAV, the attitude model has to be decoupled and divided into
multi SISO system. In practice, a multivariable algorithm is
expected when it is used in MIMO systems. Hence, an exten-
sion of the control law from scalar to vector is given, and
then its application in attitude control of quadrotor UAV is
discussed.

A. MULTIVARIABLE ALGORITHM
Themain result in this section is summarized by the following
theorem.
Theorem 2: Consider the multivariable double integrator

systems

ẋ1 = x2, ẋ2 = u+1(t) (15)

where x1, x2 ∈ Rn are the states, u ∈ Rn is the control and
1(t) ∈ Rn is a sufficiently smooth uncertain vector, satisfying
‖1̇(t)‖ ≤ L. Then, there exists some positive constants
k1, k2, k3, kI1 and kI2 such that the states of (15) is finite-time

stable if the control law is designed by

u = −k1dx1c
1
3 − k2dx3c

1
3 −

∫ t

0
(kI1dx1 + kI2x3c

0)dt (16)

where x3 is designed by

x3 = q+ x1 (17)

with

q̇ = −k3‖q+ x1‖
2
3 sign(q+ x1) (18)

Proof: The proof is similar with that provided in the
previous. Hence, just a sketch of the proof is given here. The
closed-loop dynamics of (15)-(18) is governed by

ẋ1 = x2
ẋ2 = −k1dx1c

1
3 − k2dx3c

1
3 + x4

ẋ3 = −k3dx3c
2
3 + x2

ẋ4 = −kI1dx1 + kI2x3c
0
+ 1̇(t)

(19)

where x4 = −
∫ t
0 (kI1dx1+ kI2x3c

0)dt+1(t). To examine the
stability of (19), consider the following Lyapunov function
candidate

V (x)=r1‖ε1‖
5
3+r12εT1 x2+‖x2‖

5
2+‖x3‖

5
3+‖x4‖5 (20)

with ε1 = x1 −
‖x4‖3sign(x4)

k31
. The Lyapunov function is

positive definite by selecting appropriate r1 for any given r12,
and homogeneous with degree 5 with respect to weight vector
r = [3, 2, 3, 1]. Noting the fact that [‖x‖p]′ = pxT ẋ

‖x‖2−p for
any p ∈ R+. Furthermore, the derivative of the Lyapunov
function (20) is given by

V̇ (x) =
(
5
3
r1dε1c

2
3 + r12xT2

)
x2 +

(
r12εT1 +

5
2
dx2c

3
2

)
×

(
xT4 − k1dx1c

1
3 − k2dx3c

1
3

)T
+

5
3
dx3c

2
3

(
xT2 − k3dx3c

2
3

)T
+

(
5dx4c4−(

5
3
r1dε1c

2
3+r12xT2)

4‖x4‖2In−x4xT4
k31

)
×

(
−kI1dx1 + kI2x3c

0
+ 1̇T (t)

)T
(21)

where In represents a n-dimension identity matrix. Follow-
ing the method in Theorem 1, (21) can be rewritten as

V̇ (x) = V1(x)+ V2(x)+ V3(x) (22)

with V1(x),V2(x) and V2(x) being defined by

V1(x) = −k3

(
5
2
‖εT1 + dx2c

3
2 ‖

2
+

5
3
‖dx3c

2
3 −

1
k3
xT2 ‖

2
)

V2(x) =
(
5
3
r1dε1c

2
3 +

5
2
xT2

)
x2 −

5
2

(
εT1 + dx2c

3
2

)
×

(
k1dx1c

1
3 + k2dx3c

1
3 − k3(εT1 + dx2c

3
2 )− xT4

)T
+

5
3k3

xT2
(
xT2 − k3dx3c

2
3

)T
19810 VOLUME 6, 2018
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V3(x) =

(
5dx4c4 − (

5
3
r1dε1c

2
3+r12xT2 )

4‖x4‖2In − x4xT4
k31

)
×

(
−kI1dx1 + kI2x3c

0
+ 1̇

T
(t)
)T

(23)

It follows form the definition of homogeneity in Defini-
tion 1 that V1(x),V2(x) and V3(x) are homogeneous with
respect to weight vector r = [3, 2, 3, 1]. Hence, the selection
of the parameters k1, k2, k3, kI1 and kI1 provided in The-
orem 1 can be directly utilized to ensure V̇ (x) in (22) is
negative. This completes the proof.
Remark 4: It should be noted that the extension of the

algorithm from scalar to vector is useful in mulivariable sys-
tems, and it can bring some improvements, such as chattering
suppression and non-decoupled design [11], [22].

FIGURE 1. The configuration of quadrotor.

B. ATTITUDE CONTROL OF QUADROTOR UAV
The configuration of quadrotor is given in Fig. 1. It is com-
posed by a rigid cross frame and four rotors. The position
(x, y and z direction) and attitude (pitch, roll and yaw) motion
can be achieved through appropriate combination of the
rotors 1 to 4 [23], [24].

The rotational motions of quadrotor UAV is described by

2̇ = W� (24)

I�̇ = −�× I�+ τ +1 (25)

where2 = [φ, θ, ψ]T is the Euler angle,� = [ωx , ωy, ωz]T

is attitude angular velocity, and 1 is disturbance.
τ = [τ1, τ2, τ3]T ∈ R3 is the control torque vector. I =
diag[Ix , Iy, Iz] is a symmetric positive definite constant matrix
and the matrixW is calculated by

W =

 1 sinφtanθ cosφtanθ
0 cosφ −sinφ
0 sinφsecθ cosφsecθ

 (26)

Denote x1 = 2 and x2 = W�, equations (24) and (25)
can be rewritten as

ẋ1 = x2, ẋ2 = F+1δ + τ ′ (27)

where F = −WI−1� × I�, 1δ = WI−11 + Ẇ� and
τ ′ = WI−1τ . Define the attitude tracking error
e1 = 2 − 2ref and e2 = x2 − 2̇ref , the error dynamics
of system (27) is governed by

ė1 = e2, ė2 = F+1δ + τ ′ − 2̈ref (28)

FIGURE 2. Attitude tracking curves.

Now the aim of the work is to design a continuous control
input τ ′ using only e1 such that e1 and e2 converge to zero
in finite time. Since the attitude angular velocity � is not
available, F in (27) can not be obtained directly. Hence,
the following assumption is required.
Assumption 2: It is assumed that 1δ + F in (28) is

Lipschitz continuous with a Lipschitz constant L̃ satisfying
‖1̇δ + Ḟ‖ ≤ L̃.
Assumption 3 [23]: Suppose that pitch and raw angles

satisfy the conditions −π2 < θ < π
2 and −

π
2 < φ < π

2 .
Applying Theorem 2 to system (27), we can obtain

the following lemma to ensure the finite-time stability of
system (28).
Lemma 4: Consider the error dynamics (28)with Assump-

tions 2 and 3, there exist some appropriate positive real
numbers k1, k2, k3, kI1 and kI2 such that e1 and e2 converge
to zero in a finite time, if the control law is designed by

τ ′ = 2̈ref − k1‖e1‖
1
3 sign(e1)− k2‖e3‖

1
3 sign(e3)

−m
∫ t

0
kI1sign(e1 + kI2e3)dt (29)

where e3 is an augmented variable which can be obtained
according to Theorem 2 with a similar form in (17) and (18).
For brevity, it is omitted here. The proof of the lemma follows
directly from Theorem 2. It should be noted that the real
control torque can be calculated by τ = IW−1τ ′ when τ ′

is available due to the non-singularity of the matrixW under
Assumption 3.

V. SIMULATION AND DISCUSSION
In this section, the numerical simulation is provided to vali-
date the efficiency of the developed algorithm. The physical
parameters for a typical quadrotor UAV are summarized as:
Ix = 2.3 × 10−3kgm2, Iy = 2.4 × 10−3kgm2 and Iz =
2.6 × 10−3kgm2. The controller parameters are selected as:
k1 = 5, k2 = 25, k3 = 3, kI1 = 8, kI2 = 0.5. To ver-
ify the robustness of the proposed method, the disturbances
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FIGURE 3. Disturbance estimation curves.

FIGURE 4. Attitude tracking errors with Monte Carlo simulation.

1 = 0.5(1 + sin(t) + cos(t))[1 1 1]T I are added in the
simulation. The initial values of the attitude and attitude
angular velocity are set to 2 = [−0.1, 0, 0.1]rad and
� = [0, 0, 0]rad/s. The tracking curves of attitude are shown
in Fig. 2, from which it can be observed that the desired
attitude can be tracked effectively by the proposed control
scheme even only the attitude angle is used. Fig. 3 shows
the disturbance estimation of F + 1δ , where ‘‘Disturbance
estimation i",i = 1, 2, 3 represents the i-th element ofF+1δ .
The good tracking performance illustrates the effectiveness of
the disturbance estimator. To further demonstrate the robust-
ness of the proposed algorithm, aMonte Carlo with 200 times
runs is carried out. The model parameter uncertainty 1I
determined randomly in [−30%,+30%]I is added in this
case, which means that the real inertia matrix I + 1I is
used in the simulation. In this case, the simulation results

FIGURE 5. Control torques with Monte Carlo simulation.

are plotted in Figs. 4 and 5. Fig. 4 demonstrates the attitude
tracking errors of pitch, roll and yaw angles, from that it can
be seen that the tracking errors converge to zero quickly even
in the presence of external disturbances, model parameter
uncertainties and unmeasurable attitude angular velocity. The
control torques including pitch, roll and yaw are plotted
in Fig. 5.

VI. CONCLUSION
A scalar and vector finite-time stabilizing output feedback
control law is developed for double integrator systems with
non-vanishing disturbances. The remarkable features of the
algorithm is that it avoids the dependence of state observer,
which is generally used in output feedback framework.
To reject the non-vanishing disturbance, a discontinuous inte-
gral control signal is included, which also can be used to
estimate the non-vanishing disturbance after a finite time. The
application of the method in quadrotor UAV is investigated.
Finally, the efficiency of the proposed method is verified
through numerical simulation.
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