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ABSTRACT This paper investigates the event-triggeredH∞ filtering for networked control systems (NCSs)
with quantization and network-induced delays. With consideration of the limited capacity of the commu-
nication channels in NCSs, a quantizer is proposed to quantize control signals before being transmitted
into the next node. First, an event-triggered scheme is addressed between the quantizer and the fuzzy filter,
which aims to mitigate transmission rate and improve the usage of network resource. Based on the event-
triggered scheme, the fuzzy filtering error system is establishedwith quantization and delays. Second, a novel
Lyapunov-Krasovskii functional is constructed, and the Writinger inequality is used to deal with the integral
item of the derivative of the Lyapunov-Krasovskii functional, which can obtain more useful items. Then,
a new stability criterion is addressed to ensure that the filtering error system is asymptotically stable with a
prescribe H∞ performance level. By introducing matrix decoupling technique, the fuzzy filter is designed
without the coupling matrices. Finally, numerical simulations are given to show the effectiveness of the
proposed method.

INDEX TERMS Event-triggered scheme, quantization, fuzzy filter, networked control systems, Writinger
inequality.

I. INTRODUCTION
Networked control systems (NCSs) are such a class of sys-
tems connecting the sensor devices, control facilities and
actuating units through a common communication network.
There are many advantages in NCSs such as flexibility, low
installation and high reliability which makes it has been
widely applied in many fields. For example, the artificial
intelligence, robots, smart grids, and Driver-less cars.

However, data packet transmission via communication net-
work, the network time delays, packet dropouts and disorder
may degrade the performance of NCSs and even destabilize
the systems, which would be great challenges that the NCSs
have to face. So, up to now, many efforts have been taken
to modeling, analysis and design of NCSs in the undesired
environment. The phenomenon of network-induced delays
was studied to analysis and design control systems via an
integral-inequality approach [1]. Aiming at the problem of
data loss, the NCSs were modeled as the uncertain Markov
jump linear system and designed fault detection filter in [2].

In view of the limited communication capacity of the network
and the usage of the digital devices, a general logarithmic
quantizer was proposed in [3].

In addition, the fuzzy control theory has been received
considerable development because traditional linear systems
theory can not be directly used for nonlinear systems. In 1985,
Takagi and Sugeno firstly proposed T-S fuzzy system and
then it became the most popular method to handle nonlinear
systems in terms of its high capacity on model nonlinear
systems [4]. Based on T-S fuzzy system, the author in [5]
proposed a new stabilization condition to reduce conser-
vatism. Non-fragile control with guaranteed cost for nonlin-
ear systems and the networked induced delay was studied
in [6] and [7], respectively. An and Li considered uncertain
T-S fuzzy systems with interval time-varying delay, a novel
Laypunov-Krasovskii function was employed to derive a
new stability condition [8]. He et al. [9] investigated the
problem of filtering for discrete-time nonlinear time-varying
systems.
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Note that the aforementioned statements are based on time-
triggered. In time-triggered control environment, the sample
data will be transmitted into the controller via network com-
munication whether the data are desired or not, which leads
to the waste of network resource and low efficiency [10].
Therefore, in recent years, an event-triggered scheme has
been proposed to determine the data packet to transmit or not
in network [11]. Static and dynamic event-triggered strate-
gies were developed to reduce the utilization communication
resources under packet losses [12]. Robust output feedback
controller was designed base on an event-triggered scheme
to save network resources and maintain desired performance
in [13]. In the practical control loops, some state variables
are not measured in disturbance systems. Therefore, filter
is important for estimating the unmeasured states and elim-
inating the effects of extern disturbances. Yan et al. [14]
discussed filtering for the linear system with time-varying
delay. Zhang and Peng investigated filtering for networked
T-S fuzzy systems [15]. For the NCSs with network-induced
delays, how to propose an appropriate event-triggered scheme
and design a suitable filter is practically valuable and still
unresolved in [16]–[18]. Tackling these issues is one of the
motivation of the current paper.

It is well known that the analog data signals must be
converted into digital signals when the data signals were
transmitted from sensor to controller. But in the limited
precision of sensor and the limited networked bandwidth,
the integrity of packet and the performance of systems can
not be guaranteed. Hence, data signals must be quantized
before transmission. To the best of our knowledge, little
research has focused on the quantization for event-triggered
control system, taking event-triggered scheme, filtering and
quantization for networked control systems into account have
not been investigated yet. Therefore, how to co-design the
quantizer, filter and event-triggered scheme for NCSs is still
needed. This is another motivation of the current paper.

Motivated by discussions above, this paper aims to handle
the waste of network resources, quantization and filtering
problems for NCSs with network-induced delays. The rest
of this paper is organized as follows. The problem formula-
tion is statemented in Section 2, a quantizer and an event-
triggered scheme are employed to save network resources
and energy. Stability analysis and fuzzy filter design are
obtained in Section 3, by constructing a Lyapunov-Krasovskii
functional, a new stability criterion is proposed to prove a
less conservative than exist ones. An applicable fuzzy filter
is co-designed with the quantization and the event-triggered
scheme, which guarantee stability and a desire performance
of the filtering error system. Simulation results are presented
in Section 4 to show the effectiveness of the proposedmethod.
Notations:
Throughout this paper, <n denote the n dimensional

Euclidean space,<n×m is the set of n×m real matrices. Super-
script (•)T stands for thematrix transposition, I represents the
identity matrix, diag{. . .} denotes the block-diagonal matrix.
The notation P > 0(P < 0) means that the matrix P is a real

FIGURE 1. Framework of event-triggered filtering for NCSs with
quantization and delays.

symmetric positive define matrix. In symmetric block matri-
ces, ‘∗’ is used as ellipsis for terms induced by symmetric.

II. PROBLEM FORMULATION
In this section, we consider the NCSs with quantizer, event-
generator and filter shown in Fig 1. The physical plant is given
by: 

ẋ(t) = f1(x(t))+ g1(x(t))w(t)
z(t) = f2(x(t))+ g2(x(t))w(t)
y(t) = f3(x(t))

(1)

where x(t) is the state vector, y(t) is the measurement output,
z(t) is the signal to be estimated, w(t) represent the input
disturbance which belong to L2[0,∞), and fi(x) (i = 1, 2, 3)
and gi(x) (i = 1, 2) are continuous function of x.
The nonlinear plant is modeled by the following T-S fuzzy

model,
Plant Rule: If θ1(t) is Mi1, and θ2(t) is Mi2, and, . . . , and

θp(t) is Mip.
Then : 

ẋ(t) = Aix(t)+ Biw(t)
z(t) = Cix(t)+ Diw(t)
y(t) = Eix(t)

(2)

where Mij are the fuzzy sets, i = 1, 2, . . . , r , j = 1, 2, . . . , p
is the number of fuzzy rules,θ1(t), θ2(t), . . . , θp(t) are the
premise variables. Ai, Bi, Ci, Di, Ei are known parameter
matrices with appropriate dimensions.

By employing product inference, singleton fuzzifier and
centre defuzzifier in system (2). The fuzzy system is inferred
as : 

ẋ(t) =
r∑
i=1

µi(θ (t))(Aix(t)+ Biw(t))

z(t) =
r∑
i=1

µi(θ (t))(Cix(t)+ Diw(t))

y(t) =
r∑
i=1

µi(θ (t))Eix(t)

(3)
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where θ (t) = [θ1(t), θ2(t), . . . , θp(t)]T , the fuzzy basis func-
tion are given by

µi(θ (t)) =
∂i(θ (t))
r∑
i=1
∂i(θ (t))

, ∂i(θ (t)) =
p∏
j=1

Mij(θj(t))

Mij(θj(t)) represents the grade of membership for θj(t) in
Mij,0 ≤ ∂i(θ (t)) ≤ 1, (i = 1, 2, . . . , r).
Obviously, we have

µi(θ (t)) ≥ 0, (i = 1, 2, . . . , r),
r∑
i=1

µi(θ (t)) = 1 (4)

To be able to further development, we adopt the following
assumptions.
Assumption 1: The measurement output are sampled at kh

by sampler with a constant period h.
Assumption 2: Network-induced delays from the sensor to

the quantizer, the quantizer to the event generator, the event
generator to the filter, and the waiting delay are lumped
together as τk , where

0 < τm ≤ τk ≤ τM (5)

where τm and τM are the lower and upper bound of τk ,
respectively.
Assumption 3: The packets are transmitted with a single

packet, and the packets losses do not occur in whole control
process.

A. QUANTIZER
As depicted in Fig 1, we consider the limited capacity of the
network and the usage of the digital devices, the sampled
signals are quantized before transmit into the digital devices.
We first construct a quantizer between the sampler and the
event-generator. The quantizer is defined as

q(yq) = [q1(y1)q2(y2) . . . qn(yn)]T (6)

the quantizer is a logarithmic quantizer with quantization
levels :

µ = {±ui : ui = ρiu0, i = ±1,±2, . . .} ∪ {±u0}

∪ {0}, 0 < ρi < 1, u0 > 0 (7)

The corresponding quantizer of q are defined as follows :

q(v) =


ui, if

1
1+ σi

ui < v <
1

1− σi
ui, v > 0

0, if v = 0
−q(−v), if v < 0

(8)

where

σi =
1− ρi
1+ ρi

(9)

ρi denote the quantization density. Without loss of generality,
we define

1q = diag{1q1 ,1q2 , . . . ,1qn} (10)

where 1qi ∈ [−σi, σi] .

Inspired by [19] and [20], the quantized signal q(yq) is
represented as:

yq(t) = q(yq) = (I +1q)y(t) (11)

B. EVENT-TRIGGERED SCHEME
To reduce the data transmission rate and save the limited
network resource. Inspired by [11], we address an event-
triggered communication scheme, which can be expressed as:

tk+1h = tkh+min
j≥1
{o(tkh+ jh)} (12)

for

o(tkh+ jh) = ek (tkh+ jh)TV1ek (tkh+ jh) ≥ εy(tkh)TV2y(tkh),

where 0 < ε < 1 and Vi > 0, i = 1, 2 are triggered
parameters. e(tkh+ jh) = ye(tkh+ jh)−y(tkh) is the threshold
error. y(tkh) is the last transmitted data, ye(tkh + jh) is the
current sampling data via quantized, which is expressed as

ye(tkh+ jh) = yq(tkh+ jh) = (I +1q)y(tkh+ jh) (13)

Remark 1: Note that all the quantized data are transmitted
periodically into the communication network for traditional
time-triggered control system. But in this paper, the event-
triggered scheme is addressed to determine the current quan-
tized data should be transmitted or not be. Only the current
quantized data and the last transmitted data satisfied the trig-
gered threshold, the current quantized data will transmit to the
filter. In comparison with traditional time-triggered control
system, it is obvious that the data transmission rate can be
reduced. Meanwhile, the network resource can be saved.
Remark 2: If ε = 0, the system is degraded as periodically

transmitted system. It should be mentioned that V1 6= V2>0
is different from the works in [11]. When V1 = V2 6= 0,
the event-triggered scheme is the same as in [11]. Therefore,
the event-triggered scheme design method is more flexible in
this paper. Note that the next triggered instant depend not only
on the trigger parameter ε, V1 and V2, but also depend on the
quantized output data.

C. FUZZY FILTER
In this section, consider the effect of quantizer, event-
triggered scheme and networked induced delays, we sup-
posed that a full-order fuzzy filter is designed to estimate the
signal z(t) as the following form:
Plant rule: If θ1(tkh) is Wi1, and θ2(tkh) is Wi2, and, . . . ,

and θp(tkh) is Wip.
Then: {

ẋf (t) = Afjxf (t)+ Bfjŷ(t)
zf (t) = Cfjxf (t)+ Dfjŷ(t)

(14)

where xf (t) ∈ <n is the filter state, ŷ(t) is the real input of
the filter, zf (t) is the estimate of z(t). Afj, Bfj, Cfj, Dfj are filter
parameters to be determined.
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Using the same method as in (3), we can infer the fuzzy
filter as the following form:

ẋf (t) =
r∑
j=1

uj(θ (tkh))(Afjxf (t)+ Bfjŷ(t))

zf (t) =
r∑
j=1

uj(θ (tkh))(Cfjxf (t)+ Dfjŷ(t))

(15)

Remark 3:Due to the effects of the event-triggered scheme,
the premise variables θ (t) are available in equation (3), but
not available in equation (15). The premise variables for
the fuzzy filter are θ (tkh), which is different from θ (t) in
equation (3).

Note that ŷ(t) 6= y(t), because the effects of the event-
triggered communication scheme and the networked induced
delay. Therefore, consider the effect of ZOH and the event-
triggered communication scheme, the input of filter is mod-
eled as ŷ(t) = y(tkh). The ZOH holds the last transmitted
signal until the next signal update from the event-triggered
mechanism.

In addition, the input signal of the fuzzy filter instant can
be described as

t ∈ [tkh+ τtk , tk+1h+ τtk+1 ) (16)

Then, we divide (16) into sub-intervals as

[tkh+ τtk , tk+1h+ τtk+1 ) =
m⋃
l=0

�l (17)

where

�i = [tkh+ lh+ τtk+i , tkh+ lh+ τtk+i+1 ), l = 0, 1, . . . ,m.

Next, defining function τ (t) as

τ (t) =


t − tkh t ∈ �0

t − tkh− h t ∈ �1
...

...

t − tkh− (m− 1)h t ∈ �m

(18)

Note that τ (t) is a piecewise function, which satisfies

0 < τm = τ1 ≤ τ (t) ≤ h+ τM = τ3, τ̇ (t) = 1, t ∈ �i,

and τ (t) = t − ikh, where ikh = tkh+ lh.
Hence, the final input of the fuzzy filter is rewrote as

ŷ(t) = y(tkh) = (I +1q)y(t − τ (t))− ek (t − τ (t)) (19)

D. FUZZY FILTERING ERROR SYSTEM
In this section, we construct a filtering error system according
to the aforementioned. Denote

x̃ = col{x(t), xf (t)}, e(t) = z(t)− zf (t).

Combing (3), (15) and (19), the filtering error system is
represented as

˙̃x(t) =
r∑
i=i

r∑
j=1

uiuj{Ãijx̃(t)+ B̃ij1x(t − τ (t))

+B̃ij2ek (t − τ (t))+ B̃wijw(t)}

e(t) =
r∑
i=1

r∑
j=1

uiuj{C̃ijx̃(t)+ D̃ij1x(t − τ (t))

+D̃ij2ek (t − τ (t))+ Diw(t)}

(20)

where

Ãij =
[
Ai 0
0 Afi

]
, B̃ij1 =

[
0

Bfi(I +1q)Ei

]
,

B̃ij2 =
[

0
−Bfj

]
, B̃wij =

[
Bi
0

]
,

C̃ij =
[
Ci −Cfj

]
, D̃ij1 = −Dfj(I +1q)Ei, D̃ij2 = Dfj

Before end of this section, we make the following defini-
tion and some lemmas, which will be made the theoretical
development easier.
Definition 1: The fuzzy filtering error system is asymptot-

ically stable with an H∞ performance, if the following two
conditions hold:

1) The filtering error system is asymptotically stable with
w(t) = 0.
2) Under zero initial condition, the filtering error e(t)

satisfies

‖e(t)‖2 ≤ γ ‖w(t)‖2

for any nonzero ω(t) ∈ L2[0,∞)and a prescribed γ > 0.
Lemma 1 (Schur complement [21]): For a given symmetric

matrix

A =
[
a11 a12
a21 a22

]
,

where a11 ∈ Rr×r , the following conditions are equivalent:
1) A < 0
2) a11 < 0, a22 − aT12a

−1
11 a12 < 0

3) a22 < 0, a11 − aT21a
−1
22 a21 < 0

Lemma 2 (Seuret and Gouaisbaut [22]):For a given sym-
metric and positive matrix Z > 0 of appropriate dimensions
and different signal x in [a, b]→ Rn, the following inequality
holds:

−

∫ b

a
ẋT (s)Zẋ(s)ds ≤ −

1
b− a

 ẋ(b)ẋ(a)
v

T ϑ(Z )
 ẋ(b)ẋ(a)

v


where

v =
1

b− a

∫ b

a
x(s)ds, ϑ(Z ) =

 a1Z a2Z a3Z
∗ a1Z a3Z
∗ ∗ a4Z


a1 =

π2

4
+ 1, a2 =

π2

4
− 1, a3 = −

π2

2
, a4 = π2
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III. STABILITY ANALYSIS AND FUZZY FILTER DESIGN
In this section, we will propose a Lyapunov-Krasovskii func-
tional to analyze the filtering error system. A new filter
design criterion with less conservative is provided by using
Writinger inequality.

A. STABILITY ANALYSIS
Theorem 1 : For given positive parameters τ1, τ3, γ > 0,
and 0 < ε < 1, the filtering error system in equation (20)
is asymptotically stable with H∞ performance γ under the
quantization (11) and the event-triggered scheme (12), if there
exists matrices Qi > 0(i = 1, 2), Zi > 0(i = 1, 2, 3),
Vi > 0 (i = 1, 2), ai > 0(i = 1, 2, 3, 4) P > 0, and
matrices Afj, Bfj, Cfj, Dfj with appropriate dimensions such
that the following matrix inequities hold[

411
ii 4

12
ii

∗ 422

]
< 0, i = 1, 2, . . . , r (21)[

411
ij +4

11
ji 412

ij +4
12
ji

∗ 422

]
< 0, 1 ≤ i < j ≤ r (22)

for

411
ij =

[
31 32
∗ 33

]
,

31 =


ϕ11 ϕ12 ϕ13 ϕ14 ϕ15
∗ ϕ22 ϕ23 0 ϕ25
∗ ∗ ϕ33 ϕ34 0
∗ ∗ ∗ ϕ44 0
∗ ∗ ∗ ∗ ϕ55

,

32 =


0 0 ϕ18 ϕ19 ϕ110
ϕ26 0 0 0 0
ϕ36 ϕ37 0 0 0
0 ϕ47 ϕ48 0 0
0 0 0 0 0

,

33 =


ϕ66 0 0 0 0
∗ ϕ77 0 0 0
∗ ∗ ϕ88 0 0
∗ ∗ ∗ ϕ99 0
∗ ∗ ∗ ∗ −γ 2I

,
where

ϕ11 = PÃij + ÃTijP+ H
T (Q1 + Q2)H

− a1HT (Z1 + Z3)H ,

ϕ12 = −a2HTZ1, ϕ13 = PB̃ij1, ϕ14 = −a2HTZ3,

ϕ15 = −a3HTZ1, ϕ18 = −a3HTZ3, ϕ19 = −PB̃ij2,

ϕ110 = PB̃wij, ϕ22 = −Q1 − a1Z1 − a1Z2, ϕ23 = −a2Z2,

ϕ25 = −a3Z1, ϕ26 = −a3Z2,

ϕ33 = −2a1Z2 − ε1ETi V2Ei, ϕ34 = −a2Z2,

ϕ36 = −a3Z2, ϕ37 = −a3Z2,

ϕ44 = −Q2 − a1Z2 − a1Z3, ϕ47 = −a3Z3,

ϕ48 = −a3Z3,

ϕ55 = −a4Z1, ϕ66 = −a4Z2, ϕ77 = −a4Z2,

ϕ88 = −a4Z3, ϕ99 = ε1V2 − V1,

φ1ij =
[
Ãij 0 B̃ij1 0 0 0 0 0 B̃ij2 B̃wij

]
,

φ2ij =
[
C̃ij 0 D̃ij1 0 0 0 0 0 Dfj(I +1q) Di

]
,

412
ij =

[
τ1(φ1ij)

TZ1 τ2(φ1ij)
TZ2 τ3(φ1ij)

TZ3 (φ2ij)
T
]
,

422 = diag
{
−Z1 −Z2 −Z3 −I

}
,

τ2 = τ3 − τ1, H =
[
I 0

]
.

Proof : We construct a Lyapunov-Krasovskii functional
candidate as

V (t) = V1(t)+ V2(t)+ V3(t) (23)

where

V1(t) = x̃T (t)Px̃(t),

V2(t) =
∫ t

t−τ1
xT (s)Q1x(s)ds+

∫ t

t−τ3
xT (s)Q2x(s)ds,

V3(t) = τ1

∫ 0

−τ1

∫ t

t+s
ẋT (v)Z1ẋ(v)dvds

+ τ2

∫
−τ1

−τ3

∫ t

t+s
ẋT (v)Z2ẋ(v)dvds

+ τ3

∫ 0

−τ3

∫ t

t+s
ẋT (v)Z3ẋ(v)dvds.

Taking the time derivation of V (t) for t , we have

V̇ (t) = V̇1(t)+ V̇2(t)+ V̇3(t) (24)

for

V̇1(t) = 2x̃T (t)P ˙̃x(t) (25)

V̇2(t) = xT (t)Q1x(t)− xT (t − τ1)Q1x(t − τ1)

+ xT (t)Q2x(t)− xT (t − τ3)Q2x(t − τ3) (26)

V̇3(t) = τ 21 ẋ
T (t)Z1ẋ(t)− τ1

∫ t

t−τ1
ẋT (v)Z1ẋ(v)dv

+ τ 22 ẋ
T (t)Z2ẋ(t)− τ2

∫ t−τ1

t−τ3
ẋT (v)Z2ẋ(v)dv

+ τ 23 ẋ
T (t)Z3ẋ(t)− τ3

∫ t

t−τ3
ẋT (v)Z3ẋ(v)dv (27)

Note that the integral items in V̇3(t), we apply Lemma 2 to
deal with it and obtain

− τ1

∫ t

t−τ1
ẋT (v)Z1ẋ(v)dv ≤ −ηT1 (t)ϑ1(Z1)η1(t) (28)

− τ3

∫ t

t−τ3
ẋT (v)Z3ẋ(v)dv ≤ −ηT4 (t)ϑ4(Z3)η4(t) (29)

− τ2

∫ t−τ1

t−τ3
ẋT (v)Z2ẋ(v)dv

≤ −τ2

(∫ t−τ1

t−τ (t)
ẋT (v)Z2ẋ(v)dv+

∫ t−τ (t)

t−τ3
ẋT (v)Z2ẋ(v)dv

)
≤ −ηT2 (t)ϑ2(Z2)η2(t)− η

T
3 (t)ϑ3(Z2)η3(t) (30)
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where

ηT1 =
[
xT (t) xT (t − τ1) υT1

]
,

ηT2 =
[
xT (t − τ1) xT (t − τ (t)) υT2

]
,

ηT3 =
[
xT (t − τ (t)) xT (t − τ3) υT3

]
,

ηT4 =
[
xT (t) xT (t − τ3) υT4

]
,

ϑ1(Z1) =

 a1Z1 a2Z1 a3Z1
∗ a1Z1 a3Z1
∗ ∗ a4Z1

,
ϑ2(Z2) = ϑ3(Z2) =

 a1Z2 a2Z2 a3Z2
∗ a1Z2 a3Z2
∗ ∗ a4Z2

,
ϑ4(Z3) =

 a1Z3 a2Z3 a3Z3
∗ a1Z3 a3Z3
∗ ∗ a4Z3

,
υ1 =

1
τ1

∫ t

t−τ1‘
x(s)ds, υ2 =

1
τ (t)− τ1

∫ t−τ1

t−τ (t)
x(s)ds

υ3 =
1

τ3 − τ (t)

∫ t−τ (t)

t−τ3
x(s)ds, υ4 =

1
τ3

∫ t

t−τ3
x(s)ds

By adding the right -side of (28), (29), (30) to (27), and
combing with (24), (25), (26) and (27), we obtain

V̇ (t)+ eT (t)e(t)− γ 2wT (t)w(t) ≤ ξT (t)4ξ (t) (31)

where

ξ (t) = col{x̃(t), x(t − τ1), x(t − τ (t)),

x(t − τ3), υ1, υ2, υ3, υ4, ek (t − τ (t)),w(t)} (32)

4 =

r∑
i=1

µ2
i (θ (t))4̄ii

+

r−1∑
i=1

r∑
j=i+1

µi(θ (t))µj(θ (tkh))(4̄ij + 4̄ji) (33)

4̄ij = 4
11
ij − (412

ij )
T4−122 4

12
ij (34)

411
ij , 4

12
ij , 422 are defined above.

By the Lemma 1 (Schur complement) and from (21), (22),
(33) and (34), we can conclude that the filtering error system
(20) with ω(t) = 0 is asymptotically stable. Therefore, the
inequality (31) is rewrote as the following:

V̇ (t)+ eT (t)e(t)− γ 2wT (t)w(t) ≤ 0 (35)

Integrating the right and left sides of (35) from 0 to∞ on t ,
and considering under the zero initial condition, we derives∫

∞

0
eT (t)e(t)d(t) ≤ γ 2

∫
∞

0
wT (t)w(t)d(t) (36)

obviously, ‖e(t)‖2 ≤ γ ‖ω(t)‖2. This completes the proof.
Remark 4: It is worth mentioning that in the previous

studies (see [15]), some negative items are ignored when the
process of stability analysis, which may lose much useful
information and lead to conservative. In this paper, the nega-
tive terms are considered in inequality (28) to (30). Mean-
while, the integral terms υi(i = 1, 2, 3, 4) in (28) to (30)

contain more useful information of the system. Therefore, by
employing the Writinger inequality in Lyapunov-Krasovskii
functional is more effective in conservatism reduction than
traditionally inequality.

B. FUZZY FILTER DESIGN
Note that theorem 1 provides a sufficient stability condition,
but the filter arguments with coupled matrix P which lead
to calculating difficultly. Thus, by using matrix decoupling
technique to tackle it, a suitable fuzzy filter is derived.
Theorem 2: For given positive parameters τ1, τ3, γ > 0,

and 0 < ε < 1, if there exists matrices X > 0, W > 0,
Qi > 0(i = 1, 2), Zi > 0(i = 1, 2, 3), Vi > 0(i = 1, 2),
ai > 0(i = 1, 2, 3, 4), and matrices Ãfj, B̃fj, C̃fj, D̃fj with
appropriate dimensions in the following hold:

X −W > 0 (37)[
2̃11
ii 2̃

12
ii

∗ 2̃22

]
< 0, i = 1, 2, . . . , r (38)[

2̃11
ij + 2̃

11
ji 2̃12

ij + 2̃
12
ji

∗ 2̃22

]
< 0, 1 ≤ i < j ≤ r (39)

for

2̃11
ij =

[
3̃1 3̃2

∗ 3̃3

]
,

3̃1 =


ϕ̃11 ϕ̃12 ϕ̃13 ϕ̃14 −a2Z3 −a3Z1
∗ ϕ̃22 0 ϕ̃24 0 0
∗ ∗ ϕ22 ϕ23 0 ϕ25
∗ ∗ ∗ ϕ33 ϕ34 0
∗ ∗ ∗ ∗ ϕ44 0
∗ ∗ ∗ ∗ ∗ ϕ55

,

3̃2 =


0 0 −a3Z3 −B̃fj XBi
0 0 0 −B̃fj WBi
ϕ26 0 0 0 0
ϕ36 ϕ37 0 0 0
0 ϕ47 ϕ48 0 0
0 0 0 0 0

,

3̃3 =


ϕ66 0 0 0 0
∗ ϕ77 0 0 0
∗ ∗ ϕ88 0 0
∗ ∗ ∗ ϕ99 0
∗ ∗ ∗ ∗ −γ 2I

.
where

ϕ̃11 = XAi + ATi X + Q1 + Q2 − a1(Z1 + Z3),

ϕ̃12 = Ãfj + ATi W , ϕ̃22 = Ãfj + ÃTfj , ϕ̃13 = −a2Z1,

ϕ̃14 = ϕ̃24 = B̃fj(I +1q)Ei,

φ̃1ij =
[
Ai 0 0 0 0 0 0 0 0 0 Bi

]
,

φ̃2ij =

[
Ci −C̃fj 0 −D̃fj̃qEi 0, . . . , 0︸ ︷︷ ︸

5

D̃fjq̃ Di
]
,

2̃12
ij =

[
τ1(φ̃1ij)

TZ1 τ2(φ̃1ij)
TZ2 τ3(φ̃1ij)

TZ3 (φ̃2ij)
T
]

2̃22 = diag
{
−Z1 −Z2 −Z3 −I

}
, q̃ = I +1q.
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TABLE 1. Minimum performance level γ for different cases (τ1 = 0.02, τ3
unknown ).

FIGURE 2. Network-induced delays.

In addition, if the above conditions are feasible, the param-
eter matrices of the fuzzy filter are given by

Afj = W−1Ãfj, Bfj = W−1B̃fj, Cfj = C̃fj, Dfj = D̃fj. (40)

Proof: Define

P =
[
P1 P2
∗ P3

]
, J1 =

[
I 0
0 P−13 PT2

]
, J2 = {I , I , I , I }.

(41)

WhereP1 > 0 and P3 > 0. For P > 0, we obtain that
P3 + PT3 > 0 and P3 is revertible.
Then, Pre- and post-multiply (21) and (22) by

J = diag

J1, I , . . . I︸ ︷︷ ︸
9

, J2


and their transposes. For the sake of convenience, we define

X = P1, W = P2P
−1
3 PT2 , Ãfj = P2AfjP

−1
3 PT2 ,

B̃fj = BfjP
−1
3 PT2 , C̃fj = Cfj, D̃fj = Dfj. (42)

Thus, (37) , (38) and (39) can be easily obtained from (21),
(22), (40) and (41) respectively.

Moreover, it is worth mentioning that P > 0 is equaled to
P1 − W > 0 by using Lemma 1, so the form of fuzzy filter
parameters are represented as follow:[

Ãfj B̃fj
C̃fj D̃fj

]
=

[
P2 0
0 I

] [
Afj Bfj
Cfj Dfj

] [
P−13 PT2 0

0 I

]
(43)

This completes the proof.

FIGURE 3. Release instant.

TABLE 2. Transmission rates and V1, V2 for differentε.

IV. NUMERICAL SIMULATION
In this section, we provide two numerical examples to illus-
trate the effectiveness of the obtained results.
Example 1: Considering the fuzzy system in [21], the sys-

tem parameters as follow:

A1 =

 −3 1 0
0.3 −2.5 1
−0.1 0.3 −3.8

, B1 =

 1
0
1

,
C1 =

[
0.8 0.3 0

]
, D1 = 0.2,

E1 =
[
0.5 −0.1 1

]
,

A2 =

−2.5 0.5 −0.1
0.1 −3.5 0.3
−0.1 1 −2

,
B2 =

−0.60.5
0

,
C2 =

[
−0.5 0.2 0.3

]
, D2 = 0.5,

E2 =
[
0 1 0.6

]
.

Then, choosing the membership function and external distur-
bance as follows:

h1 =
1

1+ e−x1
, h2 = 1− h1, w(t) =

1
1+ 3t2
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FIGURE 4. State trajectories of x1.

FIGURE 5. State trajectories of x2.

Considering the induced delay maximum and minimum are
τ1 = 0.002, τ3 = 0.2, respectively. Choosing ε = 0.2,
ρ = 0.8, sampling period h = 10ms, by Theorem 2 we
obtain the minimum performance level is γ = 0.3095 after
58 iterations, which is less than previous studied γ = 0.6157
in [21]. Then, we consider different τ3 to find the minimum
performance level, the results are listed in Table 1. The event-
triggered arguments

V1 = 112.9096, V2 = 139.5361,

and the fuzzy filter parameters are

Af 1 =

−7.4570 2.5462 −1.0454
2.5872 −7.3962 3.4256
−1.0257 3.1925 −9.6245

,
Af 2 =

−7.1526 2.4057 −1.1008
2.3554 −7.6137 2.9972
−1.1641 3.2708 −8.3402

,

FIGURE 6. State trajectories of x3.

FIGURE 7. The trajectories of output signal after quantized.

Bf 1 =

−0.15470.1701
−0.2791

, Bf 2 =

−0.02800.0279
−0.1878


Cf 1 =

[
−3.3362 −2.1929 0.4319

]
,

Cf 2 =
[
0.1584 −1.5944 −0.9051

]
,

Df 1 = 0.1659, Df 2 = 0.2125.

The distribution of network-induced delays (100 times) and
the triggered time are described in Fig 2 and Fig 3, respec-
tively. During the ten seconds, only 11 times are triggered
in 1000 times. The transmission rates less than the existing
ones in [21]. Meanwhile, we consider the different event-
triggered scheme parameter ε to obtain corresponding trigger
parameters matrix and transmission rate in Table 2. Based
upon the Table 2, we can see that the event-triggered param-
eters V1 nearly equal to V2 when ε = 0, and the trans-
mission rates is 100% because the event-triggered systems
are degraded as time-triggered systems. On the contrary,
the transmission rates are sharply decreased form 100% to
1.5 % in ε = 0.1. Observing ε change from 0.1 to 0.9, we can
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FIGURE 8. The trajectories of original signal, estimate signal and filter
error.

FIGURE 9. Release instant.

find that the event-triggered parameters Vi(i = 1, 2) are
automatic adjustment and the transmission rates are nearly
maintain to 0.8%. It is obvious that the network resource are
greatly saved by employing the event-triggered scheme and
the quantizer.

Moreover, the response of the original state is shown in
Fig 4, and the filter state are depicted in Fig 5 and Fig 6. It is
clear that the fuzzy filter system is asymptotically stable. The
output signal of quantizer is shown in Fig 7. The trajectory of
estimate signal error, original signal and estimate signal are
shown in Fig 8. Obviously, the curve of estimate error tends
to zero, which demonstrates the effectiveness of the proposed
method.
Example 2: Considering the following fuzzy system [23]:

ẋ(t) =
r∑
i=1
µi(θ (t))(Aix(t)+ Biw(t))

y(t) =
r∑
i=1
µi(θ (t))Eix(t)

z(t) =
r∑
i=1
µi(θ (t))(Cix(t)+ Diw(t))

(44)

FIGURE 10. State trajectories of x1.

FIGURE 11. State trajectories of x2.

where

A1 =
[
−2.1 0.1
1 −2

]
, B1 =

[
1
−0.2

]
,

C1 =
[
1 0

]
,

D1 = 0.3,E1 =
[
1 −0.5

]
,

A2 =
[
−1.9 0
−0.2 −1.1

]
, B2 =

[
0.3
0.1

]
,

C2 =
[
0.5 −0.6

]
,

D2 = 0.6,E2 =
[
−0.2 0.3

]
.

To compare with ones existing in [23]. We choose

τ1 = 0.002, τ3 = 0.2, ε = 0.2, ρ = 0.85.

The membership function and disturbance are the same as in
Example 1. Using Theorem 2, we obtain the event-triggered
parameters V1 = 23.6026, V2 = 27.0494, and the parameters
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FIGURE 12. The trajectories of estimate error.

FIGURE 13. The trajectories of quantized output.

of the fuzzy filter are given by

Af 1 =
[
−17.4366 8.5268
7.7146 −11.2453

]
, Bf 1 =

[
0.4852
−0.3343

]
,

Cf 1 =
[
−2.3715 0.2475

]
,Df 1 = −0.0727,

Af 2 =
[
−16.9835 8.5268
7.7146 −9.1581

]
, Bf 2 =

[
0.2106
−0.1013

]
,

Cf 2 =
[
−1.8903 1.1024

]
,Df 2 = −0.0290.

In addition, we obtain a less minimum performance level
γ = 0.3856 than in [23]. It should be mentioned that if the
event-triggered scheme is not considered, the transmission
rate should be 100%(every quantized data should be trans-
mitted). But From Fig 9, one can see that the addressed even-
triggered scheme is effective in reducing transmission rate
(only about 1% data should be transmitted) and saving the
network resource. It is more effective than some previously
known results [22]–[23]. From Fig 10 and Fig 11, it is clear

that the state of filter is stable only five seconds. The tra-
jectories of estimate error are depicted in Fig 12, one can
see that the fuzzy filter is effective in estimating unmeasured
states. From Fig 13, one can see that the proposed quantizer
is effective. The finding from Fig 9 to Fig 13 shows that the
proposed novel fuzzy filtering is effective, which is especially
important for wireless communication and industrial control.

V. CONCLUSION
In this paper, the event-triggered H∞ fuzzy filtering stability
analysis and design problem have been investigated for NSCs
with quantization and delays. The Writinger inequality has
been applied to deal with the derivation of the Lyapunov-
Krasovskii functional and a less conservative stability
conditions are derived. The event-triggered scheme and
the quantizer has been proposed to improve the network
resources utilization and save network bandwidth. Numerical
simulations are given to demonstrate the effectiveness of the
proposed approach.

Future research includes event-triggered fuzzy fault filter
design for NCSs considering packet dropout and network-
induced delays. Moreover, event-triggered type-2 fuzzy filter
design for NCSs with network-induced delays also can be
further considered for the future investigation.
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