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ABSTRACT Wind energy has seen great development during the past decade. However, wind turbine
availability and reliability, especially for offshore sites, still need to be improved, which strongly affect
the cost of wind energy. Wind turbine operational cost is closely depending on component failure and repair
rate, while fault detection and isolation will be very helpful to improve the availability and reliability factors.
In this paper, an efficient machine learning method, random forests (RFs) in combination with extreme
gradient boosting (XGBoost), is used to establish the data-driven wind turbine fault detection framework.
In the proposed design, RF is used to rank the features by importance, which are either direct sensor
signals or constructed variables from prior knowledge. Then, based on the top-ranking features, XGBoost
trains the ensemble classifier for each specific fault. In order to verify the effectiveness of the proposed
approach, numerical simulations using the state-of-the-art wind turbine simulator FAST are conducted for
three different types of wind turbines in both the below and above rated conditions. It is shown that the
proposed approach is robust to various wind turbine models including offshore ones in different working
conditions. Besides, the proposed ensemble classifier is able to protect against overfitting, and it achieves
better wind turbine fault detection results than the support vector machine method when dealing with
multidimensional data.

INDEX TERMS Wind turbines, fault detection, data-driven, random forests, extreme gradient boosting.

I. INTRODUCTION
Wind energy in the world has been developed rapidly in
the past decade. Global wind energy new capacity addi-
tions in 2016 totalled nearly 54GW, bringing the cumulative
installed capacity to 486GW [1]. Particularly, offshore wind
has an exciting performance, the new capacity of which
in 2016 totalled 2.3GW, and the global number has reached
14GW [2]–[4]. Although offshore wind farm has better wind
resource and wide operating space for large turbines, the cost
of offshore wind is still much higher than onshore [5]. The
high cost of machinery and infrastructure demands that the
availability and reliability need to be concerned. If main-
tenance or fault tolerant control is not implemented timely
as a minor fault happens, the collateral damage to other
components will bring a huge loss [6]. Besides, compared
to onshore wind turbines, offshore ones have higher failure
rate due to harsh and complex wind and wave environment.
The expensive offshore operation and maintenance is also

a barrier to low cost of energy (CoE) [7], [8]. In order to
improve system reliability and reduce CoE, advanced fault
detection (FD) and fault tolerant control (FTC) schemes are
required [9], [10]. The FD process evaluates the measured
data and rises a warning at an early stage when a fault has
occurred. Then the controller can apply a suitable approach
to extend the turbine availability and also protect the turbine
from further damage [11].

FD methods have been widely applied in industry, and
they can usually be divided into two categories, model-
based [12]–[15] and data-driven approaches [16]–[18].
Model-based FDmethods rely on accurate systemmodelling,
which are able to perform efficient and accurate FD if the
system dynamics can be well described. However, model
based methods have difficulty in practice if the application
cannot fit sufficiently well with the assumptions about the
models and objectives. On the contrary, system modelling
is not needed for data-driven methods [18]–[20], with only
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requiring data that can be stored and transmitted easily with
the condition monitoring process using appropriate sensors.
Since no model parameters are used to establish the classifier,
data-driven methods are supposed to be more robust [17].
This feature makes the methods practical in industrial appli-
cations, especially on the occasions where accurate system
models are not available, such as wind turbines. However, one
problem for data-driven methods is their statistical instability,
so there are also other FD strategies combining both model-
based and data-driven approaches [21], [22].

Among data-driven methods, support vector machines
(SVM) is a popular supervised learning algorithm which
many researchers use to train a classifier for FD [23], [24].
SVM has its own merit of efficiency and robustness that
it usually has a good performance when dealing with low
dimensional data. However, SVM is vulnerable to overfit-
ting in front of high dimensional inputs, which will lead to
deceptive diagnostic results [25]. In contrast, an ensemble
learning method does not overfit easily in multi-dimensional
classifier design. Besides, it will aggregate multiple weighted
base learning models to obtain a combined model, which
outperforms each single classification or regression model in
it [26]. In this work, two ensemble learning models, random
forests (RF) and extreme gradient boosting(XGBoost), are
combined to improve the performance of wind turbine fault
classifier. These two ensemble models have already been
employed in various classification or regression applications,
which have shown that RF and XGBoost are effective and
efficient classifier design algorithms [27].

This paper is organized as follows. Section 2 describes
the wind turbine FD benchmark model, where the state-
of-the-art wind turbine simulator FAST is used [28], and
ten different kinds of assumed typical fault scenarios are
described. Section 3 introduces the proposed data-driven
ensemble classifier design process, where RF and XGBoost
are combined to improve the FD robustness and accuracy.
Numerical simulation results are given in Section 4, including
both performance comparison studies and robustness tests,
which are used to verify the effectiveness of the proposed
method. Conclusions are drawn in the last section.

II. BENCHMARK MODEL
This section introduces the wind turbine FD framework
benchmark and ten different kinds of fault scenarios. Refer-
ence wind turbine models used in this work are introduced
here as well.

A. WIND TURBINE FAULT DETECTION FRAMEWORK
Thewind turbine FD framework, as shown in Fig. 1, proposed
by Odgaard and Johnson [29] is used as the simulation
benchmark. The simulations are based on the state-of-the-
art wind turbine simulator FAST version 8 [28] and imple-
mented in Matlab/Simulink environment. In this benchmark,
it is assumed that fifteen signals from the wind turbine
can be monitored by various kinds of sensors, including
wind velocity at hub height Vhub, rotor angular velocity ωr ,

FIGURE 1. Simulation Framework.

generator angular velocity ωg, generator torque τg, generator
power Pg, blade 1-3 pitch angle βi(i = 1, 2, 3), low speed
shaft azimuth ϕ, torque at blade root of blade 1-3 MB, i
(i = 1, 2, 3), nacelle fore-art and side-side accelerations
ẍX , ẍY , and nacelle yaw error estimate 4e. These measure-
ment data are then used as the inputs of the wind turbine FD
subsystem and wind turbine fault tolerant controller. It can
also be seen from Fig. 1 that out from the wind turbine
controller blocks, three different control signals, i.e. generator
torque, blade pitch angle, and yaw position/rate, are sent into
corresponding actuators, respectively.

1) SENSOR MODEL
In this benchmark model, signals monitored by sensors are
modelled by combining FAST outputs and band limited white
noises with different noise power levels [29]. Without intro-
ducing other sensor characteristics, e.g. calibration error, drift
and delay, this simple structure of sensor models is used here
since noises are the main uncertainties for sensor measure-
ments.

2) ACTUATOR MODEL
Dynamics for wind turbine actuators, including blade pitch
actuator, generator torque actuator, and nacelle yaw actuator,
are not characterized within the FAST block, and they have
to be modelled, respectively.

The actual blade pitch angle β and the pitch reference βr
are modelled as a second order closed loop transfer function

β(s)
βr (s)

=
ω2
n

s2 + 2 · ζωn · s+ ω2
n
, (1)

where the ζ is the damping factor and the ωn denotes the
natural frequency. For the no-fault case, ζ is set to be 0.6,
and the ωn is set to be 11.11. The pitch angle is limited from
−2 deg to 90 deg. The pitch rate is limited from −8 deg/s to
8 deg/s. The generator and convertor torque are modelled by
a first order transfer function

τg(s)
τg, τ (s)

=
αgc

s+ αgc
, (2)

where the coefficient αgc depends on the generator and con-
vertor, and it is set as 50 in this study. The power produced
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TABLE 1. Description of the faults.

by the generator is given by

Pg = ηgωgτg, (3)

where ηg is the generator efficiency which is defined as
0.98 in the tests. Although the pitch and generator models are
implemented in Simulink, the yaw dynamics are not required,
where only the yaw angular velocityωy,r and the yaw angular
position reference ψy,r are needed for the FAST block.

B. FAULT DESCRIPTIONS
Sensor and actuator faults are both considered in the wind
turbine FD simulation framework. Ten different fault scenar-
ios are defined, including six sensor faults and four actuator
faults. Sensor faults cause measurement stuck, scaled or off-
set from the true values, while actuator faults lead to param-
eter changes in the actuators. Details for all the ten types of
faults in a ten minute simulation are described in Table 1.

C. REFERENCE WIND TURBINE MODELS
The National Renewable Energy Laboratory (NREL)’s 5MW
baseline wind turbine models [30], [31], including onshore,
offshore fixed-bottom and floating types, are seen as the
reference wind turbine models in this work. Properties of
these three models are shown in table 2. Detailed properties
of the semisubmersible floating wind turbine are not given in
this table, which can be found in [30].

III. DATA-DRIVEN ENSEMBLE CLASSIFIER DESIGN
The proposed data-driven ensemble classifier design process
for wind turbine FD is introduced in this section.

Before designing the classifier, new features for each
specific fault are constructed with feature analysis process.
In fact, feature analysis is an essential step to make sure
the classifier works well, since learning algorithms only rely
on given data signals without building new features, which
are sometimes combination of different sensor measurements
instead of signals from individual sensor. Besides, in order to
deal with the sensor noises, proper filtering process should
also be performed before the ensemble model training.

After the preprocessing, the data driven fault classifier
design, which is a combination of RF and XGBoost, is pro-
posed. In the classifier design, RFmodel is applied to evaluate

TABLE 2. Properties of wind models.

and sort the importance of features for all the faults, which are
either direct sensor signals or constructed data with different
sensor measurements. Then, the fault classifier is trained
based on XGBoost model with three top-ranking features
selected by the RF model.

The base learning model of RF and XGBoost is the deci-
sion tree. Each internal node in the decision tree is labeled
with an input feature. The arcs are labeled with different
possible output values. Trees grow deeper with splitting at a
node, which is determined by a certain generation algorithm.
A single decision tree model has to grow very deep to learn
highly irregular patterns, which will result in overfitting and
produce low bias but high variance classification results.
In contrast, against overfitting, RF and XGBoost utilize the
ensemble strategies bagging and gradient boosting, which are
adopted in this work for the wind turbine FD classifier design.

A. FEATURE ANALYSIS
Before training the classifier, feature analysis should be per-
formed to include all possible indicators from sensor mea-
surements. It should be noted that although wind turbine
system knowledge has been used to find new features, this
is still a data-driven FD approach that no wind turbine related
models are built. Feature analysis is conducted for all the ten
faults, which are described as follows.

1) Fault 1 results that the sensor output of blade root
flapwise bending momentMflap,m for blade 2 scaled by 0.95.
This is a minor fault for sensor measurement, which is not
easy to be detected from the statistics point of view. In fact,
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no strong correlation between this fault and the given 15 sen-
sor measurements was found, so it is difficult to establish
a new feature for this fault . Besides, this sensor fault has
no influence on wind turbine normal operation, so it can-
not be reflected from the wind turbine dynamics. Therefore,
no proper feature was found fault 1 in this work.

2) Fault 2 causes a -0.5m/s2 offset on the tower top
accelerometer output in both fore-aft and side-side directions.
These two accelerometers are within the 15 sensors, so that it
is unnecessary to build a new feature.

3) Fault 3 causes the generator speed sensor to be scaled
by a factor of 0.95. The gear ratio for the drivetrain will be
abruptly changed when this fault happens, which can be seen
as a new feature. Based on the rotor angular velocity ωr and
the generator angular velocity ωg, the gear ratio ηr,g can be
given by

ηr,g =
ωr

ωg
. (4)

4) Fault 4 leads to that the pitch angle sensor of blade 1 has
a stuck value of 1 degree. For this fault, sensor outputs at
previous time steps can be stored to calculate the slope K of
blade pitch angle,

K =
βt − βt−1

1t
, (5)

where the sample time 1t = 0.0125s.
5) Fault 5 causes the generator power sensor scaled by a

factor of 1.1. Expected generator powerPg,e can be calculated
using other sensor signals, and the difference1P = Pg−Pg,e
can be given by

1P1 = Pg − ηgωgτg, (6)

1P2 = Pg − ηg
ωr

ηr,g
τg, (7)

where Pg refers to the measurements of generator power.
Based on the measured generator angular velocity ωg and
rotor generator angular velocity ωr , these two features can
be respectively constructed.

6) Fault 6 causes a random offset on the low speed shaft
encoder. When this fault happens, the first order derivative
of the encoder output will change from a constant value
to an oscillating signal. Two storage modules are used to
obtain the second derivative of ϕ, and ϕ̈ is seen as the new
constructed feature. Besides, once the low speed shaft rotates
every 360 degrees, the sensor value will be reset to 0, so that
drastic changes for ϕ̇ have to be deleted in order to keep a
stable feature signal.

7) Fault 7 is an actuator fault happened in the pitch actuator
of blade 2. Due to the increasing air content, ωn and ζ in the
pitch transfer function will change slowly after the fault is
activated. In fact, according to the baseline collective blade
control strategy, the pitch angle for all the three blades should
be the same. Therefore, the difference between β1 and β2 can
be seen as a new feature.

8) Fault 8 is similar to fault 7. Due to the hydraulic
power drop, ωn and ζ in the actuator transfer function will

be abruptly changed when the fault is activated. Difference
between β1 and β3 will be abruptly changed as well.
9) Fault 9 causes an offset on the measured generator

torque. Control signal of generator torque is used to compare
the real torque and the expected torque τe.
Difference between them is given by

1τ = (
Pg
ηgωg

− τe). (8)

10) Fault 10 results in a stuck of yaw actuator. Similar to
fault 1, no satisfactory new feature is found with the given
15 sensor signals. Model based methods will probably be
suitable to deal with this fault.

B. SENSOR DATA FILTERING
Different types of filters have been tested in the numerical
tests, while the first order filter is chosen in the end due to its
comprehensive behaviour. The discrete form of the first order
filter can be given by

Y (n) = αX (n)+ (1− α)Y (n− 1), (9)

where α is a parameter controlling the filter cutoff frequency.
Filtered signals always have time delay within the real-

time filtering process. The lower the corner frequency is,
the longer the time delay is, whichwill affect the FD accuracy.
On the contrary, higher cutoff frequency will reserve more
noises, so that signals may not be clear enough to train a
classifier. Since the ensemble classifier is able to deal with
multi-dimensional dataset, the filtered signals using differ-
ent α are all included in the input in order to balance the
delay-sensitivity trade-off. Actually, RF is able to choose the
best α candidate by ranking the given features, the principle
of which will be introduced in next part.

It is worth noting that time delay caused by filters is a
serious problem for FD accuracy. In other word, the training
process will be influenced by the filtering delay. For instance,
when the fault has already been activated, the sensor signals
might be still at a non-fault level due to the time delay, thus
the error labeled data will decrease the classifier training
accuracy. Therefore, it is necessary to correct these wrongly
labeled data in the training process.

C. RANDOM FORESTS FEATURE RANKING
Random forests is an ensemble machine learning method,
which is operated by constructing a multitude of decision
trees at training time and outputting the class that is aver-
aged or voted by every individual tree [32]. RF was proposed
by Breiman in 2001, who added an additional layer of ran-
domness to bagging method. RF is not only applicable in
regression and classification, but also has excellent behavior
in variable selection [33]. A sketch map for RF is given
in Fig. 2.

Bagging, which refers to bootstrap aggregating, is an
ensemble algorithm designed to improve the stability and
accuracy of individual predictive model such as trees [34].
Bagging helps decision trees to reduce their variance and the
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FIGURE 2. Flow chart of random forests.

influence of overfitting. Assumed that a training set is given
by X = x1,2...n with response Y = y1,2...n, bagging will
repeat K times to select a random sample with replacement
of the training set and fits trees to these samples. A tree
hk , (k = 1, 2...K ) will be trained every time. After training,
the produced prediction model can be established by averag-
ing the predictions from K regression trees or by taking the
majority vote from K decision trees. Note that samples are
selected with replacement, and the probability that a certain
sample is not selected after K times selection can be given by

P = (1−
1
n
)K . (10)

In the bagging process of RF, K usually equals to n. When n
is big enough, about 36.8% of the training samples will not
be selected, and they are called out-of-bag samples.

Besides, RF improves the general tree growing scheme,
where at each candidate split in the tree model, a random
subset of the features are used instead of selecting a certain
feature from all the candidates. Whereas in a traditional tree
ensembling scheme, if a few features are very strong pre-
dictors for the response, these features will be selected in
many of the base estimators. Then, these trees will be much
correlated, thus weakening the prediction abilities.

The theoretical background of RF can be basically divided
into two parts: RF convergence theorem and generalization
error bound. All the proof procedure can be found in [32],
while a brief description is given as follows.

A RF model can be assumed as a collection of tree-
structured classifiers h(x,2k )(k = 1, 2, 3 . . .), where the 2k
are independent and identically distributed random vectors.
Also, a performance index is needed to describe the confi-
dence level of the RF model, which is defined as a margin
function mg(·),

mg(x, y)=avk I (hk (x,2k ) = y)−max
j 6=y

avk I (hk (x,2k )= j),

(11)

where I (·) is the indicator function, and av(·) denotes an
average value. First half of this index is the average number of

votes at (x, y) for the right class, while the second half refers
to the average vote for the most class except the right class.
Confidence level will be higher as the margin is larger. Then,
the generalization error PE∗ is given by

PE∗ = Px,y(mg(x, y) < 0), (12)

where P(·) represents probability. As the number of trees
increases, for almost surely all sequences 2k , PE∗ con-
verges to

Px,y(P2(h(x,2) = y)−max
j 6=y

P2(h(x,2) = j) < 0). (13)

The convergence of generalization error shows that RF can
produce a limiting value of the generalization error and do
not overfit as more trees are added. The upper bound for the
PE∗ is given by

PE∗ ≤
ρ̄(1− s2)

s2
, (14)

where ρ̄ is the mean value of the correlation, s is the strength
of an individual tree in the RFmodel. It meanswith increasing
the strength of individual tree and reducing the correlation
between trees, the RF model will achieve more accurate
prediction results.

Besides, as described above, in order to increase the indi-
vidual tree strength in the RF model, feature analysis has to
be firstly performed to determine the dominant signals for
each fault. In other words, proper features, either sensor mea-
surements or combination of sensor signals, closely related
to each specific fault have to be designed before ranking
the features. Then, based on the out-of-bag samples, all the
features can be sorted by the prediction ability with the out-
of-bag estimates.More specifically, tree-structured classifiers
in RF that have important variables at nodes are supposed to
be highly related to the response, so that important variables
can be selected in these strong trees. In this work, three top-
ranking features are chosen for further FD classifier design.

D. XGBOOST CLASSIFIER DESIGN
Based on the three features chosen by RF, XGBoost is then
adopted to train the wind turbine fault classifier.

XGBoost is a scalable machine learning system for tree
boosting that proposed by Chen and Guestrin [35] in 2016.
Among the 29 winning solutions in the machine learning
competition Kaggle in 2015, XGBoost was the most pop-
ular method that 17 solutions used XGBoost. The superior
performance of XGBoost in supervised machine learning is
the reason why it is chosen to train the wind turbine fault
classifier in this work.

Gradient boosting is the original model of XGBoost, com-
bining weak base learning models into a stronger learner in
an iterative fashion [36]. As shown in Fig. 3, at each iteration
of gradient boosting, the residual will be used to correct the
previous predictor that the specified loss function can be
optimized. As an improvement, regularization is added to the

21024 VOLUME 6, 2018



D. Zhang et al.: Data-Driven Design for Fault Detection of Wind Turbines

FIGURE 3. Flow chart of extreme gradient boosting.

loss function to establish the objective function in XGBoost
measuring the model performance, which is given by

J (2) = L(2)+�(2). (15)

The parameters trained from given data are denoted as 2.
L is the training loss function, such as square loss or logistic
loss, which measures how well the model fits on training
data. � is the regularization term, such as L1 norm or L2
norm, which measures the complexity of the model. Simpler
models tends to have better performance against overfitting.
Since the base model is decision tree, the output of model ŷi
is voted or averaged by a collection F of k trees:

ŷi =
k∑
i=1

fk (xi), fk ∈ F . (16)

Objective function at the t time iteration can be concrete into

J (t) =
n∑
i=1

L(yi, ŷi)+
t∑

k=1

�(fk ), (17)

where the n is number of predictions. Here the ŷ(t)i can be
given as

ŷ(t)i =
t∑

k=1

fk (xi) = ŷ(t−1)i + ft (xi). (18)

In [35], regularization term �(fk ) for a decision tree is
defined as

�(fk ) = γT +
1
2
λ

T∑
j=1

wj2, (19)

where the γ is the complexity of each leaf. T is the number of
leaves in a decision tree. λ is a parameter to scale the penalty.
w is the vector of scores on leaves. Then, second-order Taylor
expansion, instead of first-order in general gradient boosting,
is taken to the loss function in XGBoost. Assumed that the

loss function is mean square error (MSE), the objective func-
tion can be finally derived as

J (t)≈
n∑
i=1

[giwq(xi)+
1
2
(hiw2

q(xi))]+γT+
1
2
λ

T∑
j=1

wj2, (20)

with the constants removed. Here the q(·) is a function that
assigns data point to the corresponding leaf. gi and hi is the
first and second derivative of MSE loss function. In (20),
the loss function is determined by sum of loss value for each
data sample. Because each data sample corresponds to only
one leaf node, the loss function can also be expressed by the
sum of loss value for each leaf node. Thus,

J (t) ≈
T∑
j=1

[(
∑
i∈Ij

gi)ωj +
1
2
(
∑
i∈Ij

hi + λ)ω2
j )]+ γT . (21)

According to (21), Gj and Hj can be defined as

Gj =
∑
i∈Ij

gi, Hj =
∑
i∈Ij

hi, (22)

where Ij represents all the data samples in leaf node j. Hence,
the optimization of objective function can be transformed into
a problem of finding the minimum of a quadratic function.
In other words, after a certain node split in the decision tree,
the change of model performance can be evaluated based on
the objective function. If the decision tree model performance
is improved after this node split, this change will be adopted,
otherwise the split will be stopped. Besides, because of the
regularization when optimizing the objective function, a pre-
dictive classifier can be trained against overfitting.

In this work, the machine learning models are trained on
python 3.6.1 with several scientific computing libraries, such
as numpy 1.12.1 and pandas 0.19.2, which provides efficient
data structures and preprocessing methods. Besides, Scikit-
learn 0.18.1 and Xgboost 0.6 are imported to support SVM,
RF and XGBoost learning models [37].

IV. SIMULATIONS AND RESULTS
In this section, the entire simulation process of wind turbine
FD is described, and then the robustness analysis and com-
parison study are presented to demonstrate the effectiveness
of the proposed approach.

A. SIMULATION SETUP
As mentioned above, the wind turbine FD simulations in this
work are based on FAST, which is packaged as an S-Function
within the Matlab/Simulink framework. Fig. 1 has illustrated
the schematic diagram of the simulation model. The wind
turbine parameters and operation settings for simulations are
described in the FAST input files, and all the intermediate
data can be read from the Matlab workplace. Particularly,
sensor data are read from the FAST S-function outputs and
added with noises of different levels. We have uploaded all
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FIGURE 4. Wind and wave conditions. (a) Below rated. (b) Above rated.

the simulation files in this work onto the Matlab Central file
exchange server.1

A fixed time step 0.0125s was used for all the simulations.
In the training process, simulations for 200s long, including
16000 sets of data for each test, have been used to train the
learning model for one faulty scenario, where each specific
fault was both activated and deactivated for 5 times. While in
the testing process, simulations last 630s long, and two types
of design load cases, as shown in Fig. 4, were considered
for each fault, i.e. below and above rated conditions. The
wind data were generated by the NREL’s Turbsim [38], where
Kaimal spectra and the power law exponent of 0.14 are used.
The mean wind speed at the reference height 90m is set as
8 m/s and 14 m/s, respectively, representing the below and
above rated cases, while the normal turbulence intensity is
set as 18% (8 m/s case) and 15%(14 m/s case). Wave data
used in this work were generated by HydroDyn within FAST,
where the JONSWAP spectrum is utilized to generate the

1https://cn.mathworks.com/matlabcentral/fileexchange/65213-data-
driven-design-for-wind-turbine-fault-detection

stochastic wave inputs. The significant wave height is set as
2.3 m (8 m/s case) and 3.7 m (14 m/s case), and the peak
spectral period is defined as 14s.

B. SIMULATION RESULTS AND ANALYSIS
Parts of the wind turbine FD simulation results are shown
in Fig. 5-6, which illustrate the fault prediction time series
for three types of wind turbines as faults are activated and
deactivated. Notice that FD results for fault 1 and 10 are
not shown here, since no sensible results have been found
for these two fault scenarios. This is because the produced
learning models have poor generalization abilities due to lack
of appropriate features, although they have good performance
on the training datasets.

Firstly, it can be observed that classifiers have better per-
formance with regards to sensor faults compared with actu-
ator faults. Particularly, the proposed approach is good at
detecting fault 4, since the constructed feature, i.e. the first
and second derivatives of pitch angle sensor measurement,
has an immediate response to the fault signal. In comparison,
the performance of actuator fault classifiers are a bit worse,
especially fault 7 and 8 in the above rated condition. Regard-
ing fault 7, transfer function of the pitch actuator is gradually
changed due to the slow growing air content, which will lead
to a 5-20s delay in the FD process.While for fault 8, nomatter
the pitch actuator fault is abruptly introduced or eliminated,
the constructed feature, i.e. the pitch angle difference between
blade 1 and 3, will have an impulse response sounding the
fault alarm.

Secondly, it can be easily found that some of the FD
results have a long time delay for several seconds after the
fault deactivation, such as fault 2, 5, 6 and 9. The statistical
dispersion of samples is considered to be themain reason. The
optimal classifier will be closer to the normal samples with a
low-dispersion than those dispersed fault samples. In these
fault scenarios, due to the first-order filter, fault alarm will
always have a shorter delay in the fault activation transient
process than that in the fault deactivation procedure.

Thirdly, wind turbine faults are relatively easier to be
detected in the above rated conditions. It can be seen that
unstable prediction output leads to many false detections for
fault 5 in the below rated condition as shown in Fig. 5(d). The
signal-to-noise ratio is considered to be the key reason for
the error prediction, where the power output below rated is
lower than that above rated. This explanation may also apply
to fault 9 as the generator torque is closely related with power
output. It is even more serious for fault 7 and 8, which totally
fail in the below rated conditions when blade pitch actuators
are kept still.

Fourthly, it is worth mentioning that the hit rate for
fault 7 and 8 in the below rated condition is meaningless since
there is no blade pitch in this region. Although their classifiers
can be trained with low bias results, they do not perform well
on the test data as shown in Fig. 6(b)-(c). This is because
the designed classifier might wrongly fit unrelated features,
so that prior knowledge is required on this kind of occasions.
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FIGURE 5. Fault detection results for fault 2-5 (left: below rated, right: above rated). (a) Fault 2.
(b) Fault 3. (c) Fault 4. (d) Fault 5.

Fifthly, for different types of wind turbines, the perfor-
mance of fault classifiers are very close. It kind of shows
the robustness of the proposed method as it applies for both
onshore, offshore, and even floating wind turbines.

Statistics of the wind turbine FD simulation results and
the comparison with different learning models are listed
in Table 3. The labels ‘‘1st’’, ‘‘2nd’’ and ‘‘3rd’’ refer to the
top three features from the importance ranking by RF model.
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FIGURE 6. Fault detection results for fault 6-9 (left: below rated, right: above rated). (a) Fault 6.
(b) Fault 7. (c) Fault 8. (d) Fault 9.

‘‘CF’’ refers to ‘‘constructed feature.’’ ‘‘g’’ and ‘‘r’’ denote
the constructed features using the rotor speed and generator
speed, respectively. ‘‘HR’’ in the table represents the ‘‘hit
rate.’’

Note that RF is used to perform feature ranking in this
work, while RF is still a complete ensemble learning method,
which is also able to perform data classification. Therefore,
the prediction results of RF are also listed in Table 4 as a

21028 VOLUME 6, 2018



D. Zhang et al.: Data-Driven Design for Fault Detection of Wind Turbines

TABLE 3. Top-ranking features.

.

TABLE 4. Wind turbine fault detection hit rate statistics.

comparison. Besides, as a popular data-driven classifier
design approach, SVM is applied as well in the comparison
study. In the SVM classifier design process, model training
and testing are also based on the scikit-learn package in
python 3.0, and the parameter C is set to 1. Meanwhile,
the kernel function are set to ‘radial based function’.

It can be seen from the table that the classifier based on RF
has a much higher hit rate than SVM, which are both using all
the features as training inputs. This is because the ensemble
learning methods are able to mitigate overfitting, which will
produce better classification results when dealing with high-
dimensional inputs.

Similarly, the XGBoost with RF method also has much
better performance than SVM, while it has slightly higher
hit rate than RF. Particularly, XGBoost are trained only with
the three top-ranking features given by RF, instead of all
the features for SVM and RF. This has again demonstrated
that overfitting is a heavy problem while dealing with high-
dimensional features, and proper feature selecting process
is beneficial for classification improvement whether using
automatic feature rankingmethod or prior knowledge. In fact,
SVM based classifier will also has good FD result if proper
features are selected.

V. CONCLUSIONS
In this paper, a data-driven wind turbine FD model based on
XGBoost and RF is presented. There are four main steps in
designing the classifier. Firstly, feature analysis is conducted
in order to find the most relevant features for each specific
fault. Secondly, signals are filtered using the first-order filters
with proper coefficients to reduce noise disturbances. Thirdly,
in order to select the three most relevant features, RF is used
to perform feature ranking with the out-of-bag estimates.
At last, FD classifiers are trained using the XGBoost model
with the three selected top-ranking features.

Numerical simulations have been conducted for both
onshore and offshore wind turbines in different operat-
ing conditions. The results have shown that the proposed
design is robust to different wind turbine models includ-
ing offshore ones in various working conditions. Besides,
it is observed that the designed classifier has better perfor-
mance with regards to sensor faults compared with actuator
faults. Moreover, the designed fault classifier in most of the
faulty scenarios is more accurate as the wind turbine works
in the above rated condition. Statistics of the simulation
results demonstrate that, compared with SVM, the proposed
ensemble learning method has strong anti-overfitting ability,
which has significant improvement when dealing with multi-
dimensional signals. Additionally, with the feature ranking
process, XGBoost is able to give better FD results than the
RF method.

In future works, more comprehensive training data in var-
ious wind turbine working conditions should be used and
tested, and more faulty scenarios should be well taken into
account in the wind turbine FD design, including fault 1 and
10 as well as other unconsidered faults.

REFERENCES
[1] Global Wind Energy Council. (Apr. 2017). Global Wind Report 2016.

[Online]. Available: gwec.net/publications/global-wind-report-2/
[2] B. K. Sahu, ‘‘Wind energy developments and policies in China: A short

review,’’ Renew. Sustain. Energy Rev., vol. 81, pp. 1393–1405, Jan. 2018.
[3] N. Akbari, C. A. Irawan, D. F. Jones, and D. Menachof, ‘‘A multi-criteria

port suitability assessment for developments in the offshore wind indus-
try,’’ Renew. Energy, vol. 102, pp. 118–133, Mar. 2017.

[4] R. Damiani, A. Ning, B. Maples, A. Smith, and K. Dykes, ‘‘Scenario
analysis for techno-economic model development of U.S. offshore wind
support structures,’’ Wind Energy, vol. 20, no. 4, pp. 731–747, 2017.

[5] C. Mone et al., ‘‘2015 cost of wind energy review,’’ Nat. Renew. Energy
Lab., Golden, CO, USA, Tech. Rep. NREL/TP-6A20-66861, 2015.

[6] J. M. P. Pérez, F. P. G. Márquez, A. Tobias, and M. Papaelias, ‘‘Wind
turbine reliability analysis,’’ Renew. Sustain. Energy Rev., vol. 23,
pp. 463–472, Jul. 2013.

VOLUME 6, 2018 21029



D. Zhang et al.: Data-Driven Design for Fault Detection of Wind Turbines

[7] X. Zhang et al., ‘‘Floating offshore wind turbine reliability analysis based
on system grading and dynamic,’’ J. Wind Eng. Ind. Aerodyn., vol. 154,
pp. 21–33, Jul. 2016.

[8] J. Carroll, A. McDonald, and D. McMillan, ‘‘Failure rate, repair time and
unscheduled O&M cost analysis of offshore wind turbines,’’Wind Energy,
vol. 19, no. 6, pp. 1107–1119, 2016.

[9] P. F. Odgaard, J. Stoustrup, and M. Kinnaert, ‘‘Fault-tolerant control of
wind turbines: A benchmark model,’’ IEEE Trans. Control Syst. Technol.,
vol. 21, no. 4, pp. 1168–1182, Jul. 2013.

[10] T. Wu, F. Li, C. Yang, and W. Gui, ‘‘Event-based fault detection filtering
for complex networked jump systems,’’ IEEE/ASME Trans. Mechatronics,
pp. 1–8, 2017.

[11] Z. Hameed, Y. S. Hong, S. H. Ahn, and C. K. Song, ‘‘Condition monitoring
and fault detection of wind turbines and related algorithms: A review,’’
Renew. Sustain. Energy Rev., vol. 13, no. 1, pp. 1–39, 2009.

[12] P. Odgaard, ‘‘Unknown input observer based scheme for detecting faults
in a wind turbine converter,’’ IFAC Proc. Vol., vol. 42, no. 8, pp. 161–168,
2009.

[13] X. Zhang, Q. Zhang, S. Zhao, R. Ferrari, M. M. Polycarpou, and
T. Parisini, ‘‘Fault detection and isolation of the wind turbine bench-
mark: An estimation-based approach,’’ IFAC Proc. Vol., vol. 44, no. 1,
pp. 8295–8300, 2011.

[14] H. Sanchez, T. Escobet, V. Puig, and P. F. Odgaard, ‘‘Fault diagnosis
of an advanced wind turbine benchmark using interval-based ARRs and
observers,’’ IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3783–3793,
Jun. 2015.

[15] S. Dey, P. Pisu, and B. Ayalew, ‘‘A comparative study of three fault
diagnosis schemes for wind turbines,’’ IEEE Trans. Control Syst. Technol.,
vol. 23, no. 5, pp. 1853–1868, Sep. 2015.

[16] S. Yin, H. Gao, J. Qiu, and O. Kaynak, ‘‘Fault detection for nonlinear
process with deterministic disturbances: A just-in-time learning based data
driven method,’’ IEEE Trans. Cybern., vol. 47, no. 11, pp. 3649–3657,
Nov. 2016.

[17] S. Yin, G. Wang, and H. R. Karimi, ‘‘Data-driven design of robust
fault detection system for wind turbines,’’ Mechatronics, vol. 24, no. 4,
pp. 298–306, 2014.

[18] S. Yin, G. Wang, and H. J. Gao, ‘‘Data-driven process monitoring based on
modified orthogonal projections to latent structures,’’ IEEE Trans. Control
Syst. Technol., vol. 24, no. 4, pp. 1480–1487, Jul. 2016.

[19] I. V. de Bessa et al., ‘‘Data-driven fault detection and isolation scheme
for a wind turbine benchmark,’’ Renew. Energy, vol. 87, pp. 634–645,
Mar. 2016.

[20] V. Pashazadeh, F. R. Salmasi, and B. N. Araabi, ‘‘Data driven sensor
and actuator fault detection and isolation in wind turbine using classifier
fusion,’’ Renew. Energy, vol. 116, pp. 99–106, Feb. 2018.

[21] N. Sheibat-Othman, S. Othman,M. Benlahrache, and P. F. Odgaard, ‘‘Fault
detection and isolation in wind turbines using support vector machines and
observers,’’ Proc. IEEE Amer. Control Conf., Jun. 2013, pp. 4459–4464.

[22] J. Zeng, D. Lu, Y. Zhao, Z. Zhang, W. Qiao, and X. Gong, ‘‘Wind
turbine fault detection and isolation using support vector machine and a
residual-based method,’’ in Proc. IEEE Amer. Control Conf., Jun. 2013,
pp. 3661–3666.

[23] B. Tang, T. Song, F. Li, and L. Deng, ‘‘Fault diagnosis for a wind turbine
transmission system based on manifold learning and Shannon wavelet
support vector machine,’’ Renew. Energy, vol. 62, pp. 1–9, Feb. 2014.

[24] W. Liu, Z. Wang, J. Han, and G. Wang, ‘‘Wind turbine fault diagnosis
method based on diagonal spectrum and clustering binary tree SVM,’’
Renew. Energy, vol. 50, pp. 1–6, Feb. 2013.

[25] S. U. Jan, Y. D. Lee, J. Shin, and I. Koo, ‘‘Sensor fault classification based
on support vector machine and statistical time-domain features,’’ IEEE
Access, vol. 5, pp. 8682–8690, May 2017.

[26] A. Dutta and P. Dasgupta, ‘‘Ensemble learning with weak classifiers for
fast and reliable unknown terrain classification using mobile robots,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 11, pp. 2933–2944,
Nov. 2017.

[27] C. Lindner, P. A. Bromiley, M. C. Ionita, and T. F. Cootes, ‘‘Robust and
accurate shape model matching using random forest regression-voting,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1862–1874,
Sep. 2015.

[28] J. Jonkman and M. Buhl, Jr., ‘‘FAST user’s guide,’’ Nat. Renew. Energy
Lab., Golden, CO, USA, Tech. Rep. NREL/EL-500-38230, 2005.

[29] P. F. Odgaard and K. E. Johnson, ‘‘Wind turbine fault detection and
fault tolerant control—An enhanced benchmark challenge,’’ in Proc. IEEE
Amer. Control Conf., Jun. 2013, pp. 4447–4452.

[30] J. Jonkman, S. Butterfield,W.Musial, andG. Scott, ‘‘Definition of a 5-MW
reference wind turbine for offshore system development,’’ Nat. Renew.
Energy Lab., Golden, CO, USA, Tech. Rep. NREL/TP-500-38060, 2009.

[31] A. Robertson et al., ‘‘Definition of the semisubmersible floating system
for phase II of OC4,’’ Nat. Renew. Energy Lab., Golden, CO, USA, Tech.
Rep. NREL/TP-5000-60601, 2014.

[32] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[33] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, ‘‘Variable selection using
random forests,’’ Pattern Recognit. Lett., vol. 31, no. 14, pp. 2225–2236,
2010.

[34] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[35] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 785–794.

[36] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[37] F. Pedregosa et al., ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[38] B. J. Jonkman, ‘‘TurbSim user’s guide: Version 1.50,’’ Nat. Renew. Energy
Lab., Tech. Rep. NREL/TP-500-46198, 2009.

DAHAI ZHANG was born in China in 1981. He
received the Ph.D. degree from Zhejiang Univer-
sity in 2010. From 2011 to 2013, he was a Post-
Doctoral Researcher with Zhejiang University and
Lancaster University, respectively. He has been an
Associate Professor with the Ocean College, Zhe-
jiang University, since 2013. He has been the PI of
various research projects in regards to modeling,
design, and measurements of renewable energy
electrical machines, such as wind turbines, tidal

current turbines, and wave energy converters.

LIYANG QIAN received the bachelor’s and
master’s degrees in ocean engineering and tech-
nology from Zhejiang University in 2015 and
2018, respectively. His research interests include
machine learning, fault diagnosis, and fault toler-
ant control of offshore wind turbines.

21030 VOLUME 6, 2018



D. Zhang et al.: Data-Driven Design for Fault Detection of Wind Turbines

BAIJIN MAO received the bachelor’s degree in
mechanical design, manufacturing, and automa-
tion from Huazhong Agricultural University in
2017. He is currently pursuing the master’s degree
in ocean engineering and technology with Zhe-
jiang University. His research interests mainly
focus on advanced control and load reduction of
floating offshore wind turbines.

CAN HUANG received the bachelor’s degree in
thermal and dynamic engineering from the Agri-
cultural University of Hebei in 2009, and the Ph.D.
degree in fluid dynamics from the Beijing Insti-
tute of Technology in 2016. He holds a post-
doctoral position with Zhejiang University. His
current research interests include mesh-less meth-
ods, computational fluid dynamics, fluid- structure
interaction, and wave and wind energy converter.

BIN HUANG received the bachelor’s degree from
Sichuan University in 2008 and the Ph.D. degree
from Zhejiang University in 2013. He was an
Assistant Professor with the Kyushu Institute of
Technology from 2014 to 2016. He joined Zhe-
jiang University and has been promoted to Asso-
ciate Professor since 2018. His current research
interests include theoretical design, CFD analysis,
and optimization of hydraulic turbines.

YULIN SI (M’16) received the bachelor’s and
master’s degrees in control science and engi-
neering from the Harbin Institute of Technology
in 2009 and 2011, respectively, and the Ph.D.
degree in offshorewind energy from theUniversity
of Agder, Norway, in 2016. He joined Zhejiang
University as an Assistant Professor. His current
research interests include fault diagnosis and fault
tolerant control, advanced control design, and load
reduction of offshore wind turbines.

VOLUME 6, 2018 21031


	INTRODUCTION
	BENCHMARK MODEL
	WIND TURBINE FAULT DETECTION FRAMEWORK
	SENSOR MODEL
	ACTUATOR MODEL

	FAULT DESCRIPTIONS
	REFERENCE WIND TURBINE MODELS

	DATA-DRIVEN ENSEMBLE CLASSIFIER DESIGN
	FEATURE ANALYSIS
	SENSOR DATA FILTERING
	RANDOM FORESTS FEATURE RANKING
	XGBOOST CLASSIFIER DESIGN

	SIMULATIONS AND RESULTS
	SIMULATION SETUP
	SIMULATION RESULTS AND ANALYSIS

	CONCLUSIONS
	REFERENCES
	Biographies
	DAHAI ZHANG
	LIYANG QIAN
	BAIJIN MAO
	CAN HUANG
	BIN HUANG
	YULIN SI


