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ABSTRACT This paper proposes a novel speech signal analysis approach based on the Bloomfield (BF)
model, and provides a formulation of a time-domain BF model for speech signals with which speech signals
can be reconstructed and the relevant characteristic parameters analyzed. The relationship between the
parameters of the BF model and those of the linear prediction (LP) model are derived, and the speech feature
sets derived via the LP and BF models are compared. A new algorithm is proposed for the recognition of
isolated digit speech that utilizes a vector quantization approach and is based on the BF Model. The result
is obtained with this BF approach that provides better results than those of the LP model when predicting
speech signals. In particular, the BF approach has several advantages, including fewer parameters, a lower
computational complexity, and accurate characterization of speakers. These advantages ensure the utility of
the BF model in speech processing applications.

INDEX TERMS Mathematical modeling, bloomfield model, speech signal modeling, speech recognition.

I. INTRODUCTION
The speech signal processing technology is important to the
quality of experience in the networks. The efficient speech
coding and precise speech conversion is significant to the
communication networks limited by the bandwidth and chan-
nel quality. The speech signal detection is also critical to
the network security in the person identification applica-
tions [1], [2]. The method of Linear Prediction (LP) anal-
ysis is one of the most widely used technique. Many new
means and theories have been brought forward since this tech-
nique [3]–[6]. The natural basis of the LP model is an all-pole
autoregressive moving model AR(p) [7], [8] when it approxi-
mates the original speech signal; however, the AR model has
some defects that need to be entered in practical applications,
such as spectral estimation. There is a big correlation between
AR spectral resolution and the signal-to-noise ratio (SNR) of
the input signals, and the order p affects the quality of the
spectral estimate. If p increases, the mean square error (MSE)
of the prediction becomes smaller, accordingly, computa-
tional efficiency increases significantly at the same time.
The limited capacity of computer processing in networks
caused the parameter estimation is also worsened. We can
select a more optimum order to minimizing the MSE which

can achieve a compromise between the computational com-
plexity and precision of the model, the defects of increased
computations is still evident [9].

This paper mainly focuses on the technology of speech
signal modeling, and can also be used in new areas [10]–[12].
We introduce one new speech analysis approach using
Bloomfield’s (BF) model [13] that addresses the above prob-
lems. The simulation results show the BF method has a
good advantage to curve fitting, spectral estimation, and
the modeling of speech signals. We present the results of
our experiments on pitch detection and speaker recognition.
Even though the BF method was proposed in 1973, very
little is known about the effect of the use of this method in
speech processing in the literature since regarding. Our paper
addresses this gap by demonstrating that the BF model is
broadly applicable in many areas of speech processing.

The remainder of this paper is organized as follows.
In Section 2, we review the previous work in Bloom-
field’s (BF) model. Section 3 provides a formulation of
a time-domain BF model for speech signals. We speech
reconstructed signals and analyzed the relevant characteris-
tic parameters. Section 4 proposed a new algorithm based
on the BF Model for the recognition of isolated digit
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FIGURE 1. Comparison of the actual and BF spectral density distributions.

speech that utilizes a vector quantization (VQ) approach,
presents experimental show that our approach provides better
results than those of the LP model. We conclude this paper
in Section 5.

II. BLOOMFIELD’S MODEL
The ARMA model is well known in linear time sequences.
We have found the BF model is also convenient.

The idea of estimating the spectrum by Bloomfield in [13]
which assumed the time series {xt} was stationary. The spec-
tral density function of the series can be written as:

S(w) = (2π )−1σ 2 exp

2
p∑
j=1

γj cos (jw)

 w ∈ [−π, π]

(1)

where the γ 1, γ 2, · · · , γ p, σ 2 are real. Themethod for deter-
mining the order p will be described in detail.
In previous studies, the BF model has been ignored by

scholars, especially in speech signal processing. It is found
in the experiment that the spectral density of the BF model
is remarkably similar to that of real spectrum density of the
speech in Fig. 1. As can be seen from the figure, the two dis-
tributions are very similar, which leads us to conclude that the
BF model is able to accurately describe the spectral density
distribution. For this, we have reason to believe the BF model
can be used in the frequency domain. Analytical methods in
the time domain have many advantages, especially since their
results can be directly computed. Next, we model signals in
the time domain [14].

Suppose f (z) denoted a complex function, it satisfies the
following conditions [15]:

(a) f (0) = 1;
(b) f (z) 6= ∞, |z| ≤ 1;

(c) f (z) is analytical in the zone |z| ≤ 1, f (eiλ) ∈ L1, then

f (z) = 1+ f
′

(0)z+ · · · +
1
n!
f (n)(0)zn + · · ·

= 1+
∞∑
n=1

(1/n!)f (n)(0)zn (2)

where the variable z is a backward-shift operator, which can
be defined as follows:

f (z)Xt = Xt +
∞∑
i=1

(1/i!)f (i)(0)Xt−i (3)

where Xt is an arbitrary stationary time series.
If we assume:
(d) (1/n!)f (n)(0) = o(n−s), s > 1/2;
Then the above series converges in the sense of the mean

square, i.e., there exists a stationary time series Yt that allows:

E

∣∣∣∣∣Yt − Xt −
N∑
i=1

1
i!
f (i)(0)Xt−i

∣∣∣∣∣
2

→ 0, N →∞.

Thus, we can denote

f (z)Xt = Yt (4)

If we assume that:
(e). (1/n!)f (n)(0) = o(n−s), s > 1.
Then the above infinite series converges almost every-

where on almost every track. If we choose limits for Yt ,
the same relationship can be obtained as in Eq. (4).

In particular, if Xt is a white noise sequence, then Yt is
normally a physically realizable generic linear sequence that
satisfies conditions (a), (b), (c), and (d), or a linear sequence
that satisfies conditions (a), (b), (c), (d), and (e). The latter
case also allows f −1(z)Yt = Xt . On the other hand, if we let
εt represent white noise, and

Xt =
∞∑
j=1

ajεt−j

be a physically realizable linear sequence with a0 = 1 and∑
|aj| <∞, then series then series

∑
ajzj uniformly con-

verges in |z| ≤ 1, which is denoted as g(z).
Thus, according to the above convention, Xt can be

expressed as Xt = g(z)εt . Furthermore, if we assume∑
ajzj 6= 0 with |z| < 1, we obtain εt = g−1(z)Xt .
It can be shown that, on the one hand, physically realizable

linear sequences Xt can be represented in the form Xt =
f (z)εt , while on the other hand, the time series of Eq. (4) is a
physically realizable linear stationary time series if a certain
condition f (z) is satisfied. So, Eq. (4) can be referred to as the
generic linear time series model, and the research on Xt can
be substituted with that of f (z).
The equivalent of the model is (f (z))−1 Xt = εt , and

model (5) in [13], is continuous, and the spectral density can
be written:

S(w) = (2π )−1σ 2
∣∣∣f (e−iw)∣∣∣2 (5)
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Suppose f (z) is a polynomial and it is rootless, Eq. (4) is
considered to be MA (p), and f (z)Xt = εt is considered to
be AR(p). Model (4) can be considered to be an ARMA.

Let us consider Eq. (4). Suppose f (z) satisfies assumptions
(a), (b), (c), and (d), εt is the same as previous, and Gn =
(1/n!)f (n)(0), then {Gn} has the same meaning as the usual
Green function. Therefore, we refer to it as the Green function
of Eq. (3). The correlation function of Xt can be calculated as
follows:

γ (τ ) = E(XtXt+τ )

= E[(
∞∑
k=0

Gkεt−k )(
∞∑
j=0

Gjεt−j+τ )]

= σ 2
∑
k,j

GkGkδ(−k, τ − j)

= σ 2
∞∑
k=0

GkGk+τ

where δ satisfies:

δ(i, j) =

{
0, i 6= j
1, i = j

In particular, if f (z) is located on the real axis, thenwe have:

γ (τ ) = σ 2
∞∑
k=0

GkGk+τ , γ (0) = σ 2
∞∑
k=0

G2
k (6)

On the surface, for a model with the general form of (6), its
characteristics are not able to be studied in detail. However,
with limited parameters and equations in known forms,model
(6) can still be used inmany cases to solve practical problems.

In the next section, we establish the time domain BF
model.If the BF model satisfies conditions (a), (b), and (c),
the time sequence Xt determined by

Xt = exp

 p∑
j=1

γjzj

 εt
can be considered to be a stable linear zero-mean time
sequence, so the time-domain BF model is as follows:

Xt = exp

 p∑
j=1

γjzj

 εt .
However, the equivalent model in Eq. (7) is sometimes used
instead.

exp

− p∑
j=1

γjzj

Xt = εt (7)

III. DERIVING SPEECH PARMATERS BASAED
ON THE BF MODE
A. LINEAR PREDICTIVE ANALYSIS OF A SPEECH SIGNAL
In modeling a stationary time sequence using the BF model,
we estimate γ 1, γ 2, · · · , γ p, σ 2 [15] using x1, x2, ....xn.

When p has been selected, the estimation formula of γ j and
σ 2 are as follows:

∧
γj =

2
N

N0∑
k=1

[log IN (2kN−1π )] cos(2kN−1jπ ) (8)

∧

σ 2
= 2π exp ( 0.57722+ 2N−1

N0∑
k=1

log IN (2kN−1π ) ) (9)

where N0 = ( (N − 1)/2 ), 0.55772 called Euler ′s constant,
and the period gram is:

IN (λ) =
1

2πN

∣∣∣∣∣
N∑
k=1

Xk exp(−ikλ)

∣∣∣∣∣
2

, λ ∈ [−π, π] (10)

we use the following formula to calculate the order p:

AIC(s) = 2π
∧

σ−2

π∫
−π

IN (λ) exp ( − 2
s∑

j==1

∧

γj
cos jλ ) dλ

+ 2s/N (11)

In a speech signal, there is a large correlation between the
adjacent sample values. The signal value at a certain time
can be predicted based on the past sampled values, i.e., each
sample value can be approximated by linear combinations of
several past sampled values:

s(n) = Ge(n)+
p∑
i=1

ais(n− i) (12)

The purpose of linear predictive analysis is to derive the
prediction coefficients under theminimummean-square error
criterion. The error ε(n) is:

ε(n) = s(n)−
p∑
i=1

ais(n− i) (13)

B. DERIVING THE LP PARAMETER
Speech signals can be described by various parameters.
By using the LP method to analyze the speech signal in a
frame, a set of LP parameters and features can be derived that
are applicable to different aspects of speech signal process-
ing. These features are the Linear Predictive Cepstral Coeffi-
cients (LPCCs), part of the correlation coefficient or reflec-
tion coefficient (REFL) (ki, i = 1, 2, · · · , p), the log area
ratio (LAR) coefficient (gi, i = 1, 2, · · · , p), the coefficient
of sine (ARCSIN), the line spectral frequencies (LSF), etc.
BF model estimation is based on speech sampling point data,
which utilizes parameters, and we can derive the equivalent
LP model ({a1, a2, . . . ap}) and other parameters from the
model features (γi, σ 2).

We now compare the time domain BF-model in Eq. (7)
and {a1, a2, . . . ap} derived from Eq. (13) with the mean
square error criterion. In both the time domain BF model
and LP models, the current sample value is related to the
past samples. However, the LP model is linear while the BF
model is exponential. In the LP model, the linear prediction
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coefficients {a1, a2, . . . ap} are derived via the smallest mean
square criterion. Nevertheless, the predicted coefficients in
the BF model are obtained by calculating the parameters γ j
when the model is adapted to a form similar to that of the
LP model, which means that the prediction coefficients are
derived from γ j and the inference criterion is a criterion of
the model itself. Because speech signals are correlated over
short periods of time, the predicted coefficients obtained from
the two models converge within the allowable range of error,
as long as the time scope and order are reasonable.

We now approximate the 10th-order LP model using a
second-order Taylor expansion of the BF model, and obtain
the following:

a1 = γ1,

a2 = −
γ 2
1

2
+ γ2,

a3 =
γ 3
1

6
− γ1γ2,

a4 = −
γ 4
1

24
+
γ 2
1 γ2

2
−
γ 2
2

2
,

a5 =
γ 5
1

120
−
γ 3
1 γ2

6
+
γ1γ

2
2

2
,

a6 = −
γ 6
1

720
+
γ 4
1 γ2

24
−
γ 2
1 γ

2
2

4
+
γ 3
2

6
,

a7 =
γ 7
1

5040
−
γ 5
1 γ2

120
+
γ 3
1 γ

2
2

12
−
γ1γ

3
2

6
,

a8 = −
γ 8
1

40320
+
γ 6
1 γ2

720
−
γ 4
1 γ

2
2

48
+
γ 2
1 γ

3
2

12
−
γ 4
2

24
,

a9 =
γ 9
1

362880
−
γ 7
1 γ2

5040
+
γ 5
1 γ

2
2

240
−
γ 3
1 γ

3
2

36
+
γ1γ

4
2

24
,

a10 = −
γ 10
1

3628800
+
γ 8
1 γ2

40320
+
γ 6
1 γ

2
2

1440
+
γ 4
1 γ

3
2

144

−
γ 2
1 γ

4
2

48
+
γ 5
2

120
(14)

In Eq. (14), the 10 parameters of the LP model are rep-
resented by two parameters of the BF model, which greatly
reduces the computational complexity. In the next section,
we evaluate new model and illustrate applications in speech
signal processing.

IV. APPLICABILITY OF THE BF MODEL TO
SPEECH PROCESSING
A. COMPARISON OF SPEECH PREDICTION WAVEFORMS
Many new techniques have been used In parametric speech
synthesis over the past decade [17]–[20]. The literature [21]
proposed a time-domain deterministic plus noisemodel based
hybrid source modeling framework. In this paper, we model
the original speech signal using time-domain BF model.
In this experiment, A voice segment is sampled.We illustrates
results of the 3− order BF model and 12− order LPmodel.
The experiment shows that the waveform fitting with BF
model is closer to the original voice waveform in the peaks

FIGURE 2. Speech waveforms comparison.

FIGURE 3. Speech signal reconstruction via a 10th-order LP model, and
first- and second-order BF models.

and valleys. BF model has a good advantage with fewer
parameters and a lower computational complexity.

The speech samples are of a female voice reciting
‘‘1234567890,’’ and a sampling frequency of 8 KHz was
used. The following processing steps were performed on
the input speech: pre-emphasis using a 1 − 0.975z−1 filter,
windowing, endpoint detection, setting the frame length to
128 points, moving the frame through 64 points, and then
reconstructing the voice signal via frame-by-frame calcu-
lation using the BF and LP models. Shown in Fig. 3 are
the ‘‘1234567890’’ speech signal reconstructions using a
10th-order LPmodel, and first- and second-order BF models,
respectively. The results show that, compared to the tradi-
tional LP model, the BF model restores the speech with very
little cost, i.e., little distortion.

B. SPEECH SIGNAL FEATURE EXTRACTION
Ooi Chia Ai discussed the comparison of speech param-
eterization methods: mel-frequency cepstrum coefficients
(MFCC) and linear prediction cepstrum coefficients (LPCC)
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FIGURE 4. (a) MLPCC parameters derived from a 10th-order LP model.
(b) LPCC parameters derived from a second-order BF model.

for recognizing stuttered events. The experimental investiga-
tion determined that the LPCC features slightly outperformed
the MFCC features [22]. In the LP model, other equiva-
lent speech parameters can be derived. They are the LPCC ,
part of the correlation coefficient or reflectance (REFL)
(ki, i = 1, 2, . . . , p), the log area ratio coefficient (LAR)
(gi, i = 1, 2, . . . , p), the coefficient of sine (ARCSIN), and
the line spectrum pair (LSP). According to the algorithm of
this paper, the 18th-order LPCC parameters can be derived,
which are shown in Fig. 4, where the x-axis represents the
cepstrum coefficient, the y-axis represents an experimental
voice frame, the z-axis represents the corresponding value
of the cepstral, and the LPCC parameter is 17 (c1, · · · c18).
Considering the case where the value of the first-dimension
energy c0 is very large. Generally, in speech recognition
systems, c0 is called the energy factor and not the cepstrum.
In the second-order BF model reconstructed speech, there are
more LPCC burrs, and the noise immunity is worse. This is

FIGURE 5. (a) LSP parameters derived 10th-order LP model. (b) LSP
parameters derived third-order BF model.

FIGURE 6. The the comparison diagram of pitch trajectories using Two
models.

because the error is large when the LPmodel is approximated
with a small order BF model.
Fig. 5 shows the LSP parameters derived from a 10-order

LP model, and first- and third-order BF models, respec-
tively. Our experiments show that the LSP parameters derived
from the BF model exhibited more detailed characteris-
tics and better frequency resolution than those from the
LP model [23].

VOLUME 6, 2018 19069



C. Yao et al.: BF Model Based Signal Process for Networks

FIGURE 7. Speech recognition system based on the VQ algorithm.

Furthermore, the frequency resolution increased when the
order of the model increased. Nevertheless, the reflected
channel amplitude spectrum on the LP model is better than
that of the BF model, i.e., the LP model better represents the
overall frequency trend.

C. ESTIMATE THE SPEECH PICH USING THE BF MODEL
Until now, the Voiced/Unvoiced determination is an impor-
tant issue in pitch detection. An improved method is put for-
warded to estimate the speech pitch, where the speech would
be inverse-filtered before the pitch is observed. The simula-
tion results of the new method are shown to be smoother. The
general form of inverse filter:

A(z) = 1+
∑M

i=1
aiz−i

is defined by determining {ai}, that is achieved by BF model.
The model would produce the time-domain waveform. As
a result, it is alike for the two-pitch trajectory from [24]
(see Fig. 6).

In [21], the error detection rate (EDR) and valid
pitch err (VPE) would be adopted to show the perfor-
mances of the traditional autocorrelation and the improved

FIGURE 8. Two-dimensional features and codebook images from a 20th-order MFCC and second-order BF model. (a) Features from the 20th-order MFCC.
(b) Codebook images from the 20th-order MFCC. (c) MFCC Features from the second-order BF model. (d) Codebook images from the second-order BF.
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TABLE 1. The comparison of two model.

approach. Table 1 shows, as the improved approach is worse
than that the traditional approach on VPE , but the improved
approach has better EDR performance, and the new model
generally performs better. This also verifies the positive deter-
mination of the previous work [24].

D. SPEECH IDENTIFICATION USING THE BF MOEDL
Speech recognition technology is an important part of speech
signal processing, and is widely used as an effective inter-
face in many devices, including personal computers, robots,
mobile phones, and vehicle navigation systems [25]–[28].
An important aspect of speech recognition is feature param-
eter extraction, i.e., identifying a group of voice features that
are robust and less prone to interference, and can maintain
a certain level of recognition performance with different
speakers and background noise. Our experiments began with
voice signal pretreatment, extraction of the mel-cepstrum
coefficients and BF parameters of speech, and isolated-word
recognition. Then, we compared the recognition results to
verify that the BF model parameters are applicable to speech
recognition.

As for the issues in speech identification, because the
purpose of this paper is to validate the feasibility of the
parameters of the BF model, we use small vocabularies
and an isolated-Word vector quantization (VQ) method to
implement the speech recognition simulation. Fig. 7 shows
a diagram of the speech recognition system based on the
VQ algorithm.

In order to obtain experimental data, four college students
(two boys and two girls, each approximately 20 years of age)
participated by recording their voices and setting up a voice
library. The voice-recording software used was Cool Edit Pro
2.0. All the recorded data used a sampling rate of 8 KHz,
a mono voice channel, 16-bit quantization, and was stored on
a PCmachine in wave (∗.wav) format. The voice sample base
used in the experiment was based on Chinese digits (1–9),
pronounced 270 times per person (each digit was pronounced
30 times), for a total of 1,080 samples. Of these, 540 samples
were used as the training samples, and the other half were
used as the testing samples. After preprocessing, feature
extraction on the training voice samples was performed with
256 samples per frame, followed by a frame shift of 100,
before extracting the coefficients of the 20th-order
MFCC [29] and the parameters of the second-order BF .
Because the BF model is of order two, i.e., it extracts

two phonological parameters per frame, two dimensions of
MFCC coefficients are also extracted for comparison pur-
poses. Over the course of the trials, it was found that the
two-dimensional image constructed from the fifth and sixth

dimensions of the 20th-order MFCC coefficients reasonably
reflects the characteristics of the speech signals. To use the
VQ method in the BF model, the Linde–Buzo–Gray (LBG)
algorithm was utilized with the two-dimensional values clus-
tered from the same fifth- and sixth-dimensional coefficients
to characterize the feature parameters of the speech. In Fig. 8,
where the fifth and sixth dimensions of the 20th-order MFCC
and second-order BF model parameters are used as coordi-
nates, the two-dimensional images depicted by the codebooks
clustered using the LBG algorithm are shown.

V. CONCLUSION
In this paper, we systematically applied Bloomfield’s model
to speech processing and formulated a model of the speech
signal. We introduced the basic concept and theory of the
BF model, reconstructed a speech signal based on the BF
model, and analyzed the relevant characteristic parameters.
We derived the relationship between the parameters of the
BF and LP models, and surveyed the LP- and BF-derived
feature sets. We proposed a new algorithm for isolated digit
speech recognition based on the BF Model by utilizing easily
realized VQ techniques, and validated the applicability of the
newmodel for speech recognition. The experiments show that
the BF model of speech signals is useful and has excellent
characteristics, such as being able to accurately synthesize
voice signals and perform small vocabulary isolated-word
recognition tasks with only a few parameters. The experi-
mental results of the BF model compared favorably to those
of the LP model. Based on these results, this model should
prove useful in a variety of applications; however, further
development is required. In the future, we intend to study the
applicability of the model to efficient speech coding schemes
and precise speech conversion techniques.
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