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ABSTRACT In this paper, the problem of 2-D direction-of-arrival (2-D-DOA) estimation for coprime planar
arrays is investigated, and a method based on the polynomial root finding technique with high accuracy
and computational efficiency is proposed. In conventional methods, the whole coprime planar array is
usually divided into two subarrays to individually estimate 2-D-DOA, and then the true 2-D-DOA can be
distinguished from the ambiguous result utilizing the coprime property. Different from the conventional
methods, the proposed method utilizes the signal space and noise space of all data to improve the estimation
accuracy. In addition, the computational complexity is reduced by converting the 2-D spectral peak searching
problem into double polynomial root finding problem. Furthermore, the matching error is eliminated in the
scenario of multiple targets. Simulation results demonstrate that the proposed method achieves not only
higher estimation accuracy but also lower computational complexity over conventional methods.

INDEX TERMS 2D-DOA, coprime planar array, polynomial root finding, matching error, improvedMUSIC
algorithm.

I. INTRODUCTION
Direction of arrival (DOA) estimation is an important
problem in array signal processing and has been widely
used in radar, sonar, wireless communications, navigation,
etc [1]–[4]. Due to the Vandermonde structure of steering
vector of uniform linear array (ULA) which is easy to deal
with mathematically [5], a series of spatial spectrum estima-
tion algorithms are proposed to get the DOA estimation of
ULA [6].

Recently, non-uniform linear array has attracted much
attention due to its high resolution and large degrees of
freedom (DOFs) [7]–[10], among which coprime linear array
has become a hot research direction for its closed form
solution about array design and good mutual coupling resis-
tance [11], [12]. A coprime linear array consists of two
ULAs whose number of array elements areM and N respec-
tively. And the inter-element spacing of the two ULAs are
M times and N times half wavelength respectively, where
M and N are coprime integers. It is easy to obtain the

degree of freedom of O(MN) by usingM +N array elements
and improve the estimation accuracy [13]. Zhou et al. [14]
proposed a DECOM method where the entire matrix was
first decomposed into two uniform subarrays and then the
unique DOA estimation can be reached by combing the
total spectral search results of two subarrays. Moreover,
a projection-like search-free DOA estimation algorithm for
coprime linear array was investigated in [15]. Reference [16]
proposed a combined ESPRIT method which can reduce
the complexity significantly. Sun et al. [17] derived a partial
spectral search method which can improve the computational
efficiency. Zhang et al. [18] put forward an improved DOA
estimationmethodwhich avoided thematching error problem
and improved the estimation accuracy with less complexity.
The above work researched the coprime linear array from the
theoretical aspect. Some experimental works about coprime
linear array are listed as follows: the super resolution of
the coprime linear microphone array is confirmed by the
experiment in [19]; the broadband implementation of coprime
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linear microphone arrays is confirmed in [20]; the feasibility
of N-Tuple coprime array is verified in [21]. The above
experimental works verified the feasibility of the coprime
array.

All the aforementioned methods focus on the coprime
linear array and can obtain one dimensional angle estima-
tion result. In comparison, 2D DOA has wider applications
in practice, which is attracted extensive attention. Next,
the research works of coprime planar array are introduced.
Shi et al. [22] addressed the issue of 2D DOA estimation
with coprime planar arrays via sparse representation which
can achieve aperture extension. An improved coprime planar
matrix was proposed in [23] which obtained a higher degree
of freedom than square coprime planar array. Wu et al. [24]
presented the 2D partial spectral search method (2D-PSS)
for coprime planar array, by which the computational com-
plexity can be reduced. Then, Zheng et al. [25] utilized the
operation of decreasing dimensions and proposed 1D partial
spectral search (1D-PSS) method which further reduces the
complexity. However, there are some imperfections in the
aboveworks. In [22], the selection of the regulation parameter
affects the estimation accuracy of DOA. In [23], the operation
of two dimensional search results in a very large amount of
computation. In [24] and [25], they both decomposed the
whole coprime planar array into two uniform planar arrays to
perform DOA estimation respectively, and some information
in the data is lost which affects the estimation accuracy. The
search-based algorithms in [24] and [25] have high compu-
tational complexity, especially with high estimation accuracy
requirement. In the situation of multiple targets, the methods
in [24] and [25] may produce false targets when eliminating
the ambiguity of DOA and extra operation is need to eliminate
them. The reason of producing false targets is that the coprime
property only ensure the elimination of angle ambiguity in the
situation of single target.

Considering the drawbacksmentioned above in convention
methods, a 2D-DOA estimation method based on polynomial
root finding technique in coprime planar arrays is proposed.
Firstly, signal subspace of all data is used to estimate the
relation between the directionalmatrices of the two sub planar
arrays. Then, by utilizing the estimated relation and noise
subspace, the 2D-DOA estimation problem can be converted
into two sub problems of double polynomial root finding.
Lastly, the pairing of the same target under the two sub-
arrays is realized using the estimated relation between the
directional matrices, and the ambiguities of all targets are
solved successively. The proposed method make use of the
signal subspace and noise subspace of all data to improve
the estimation accuracy with low computational complex-
ity. Besides, by using the relation of the subarray direction
matrix, the problem of eliminating ambiguity with multiple
targets is transformed into a series of single-target ambiguity
elimination problems, and the false target is avoided.

The main contribution of this paper can be summarized as
follows:(i) a 2D-DOA estimation method with high accuracy
is proposed; (ii) the computational complexity is reduced

FIGURE 1. Array structure of coprime planar array with M = 4 and N = 3.

by utilizing two double polynomial root finding technique;
(iii) the false targets is avoided using the relation between
the direction matrix. The rest of this paper is summarized as
follows:

Section 2 describes the signal model of coprime planar
array. Section 3 derives the proposed method. Section 4 ana-
lyzes the performance of the proposed method. Section 5 pro-
vides the simulation results. And Section 6 concludes the
work.

Notations: Vectors (matrices) are denoted as lower-case
(upper-case) bold characters. (·)T represents the transpose
and (·)H represents the conjugate transpose. diag (·) repre-
sents a diagonal matrix which uses matrix elements as its
diagonal elements. E (·) represents statistical expectation.
⊗ and ⊕ denotes the Kronecker product and Hadamard
product respectively. angle (·) represents the extraction of
phase operator and d·e denotes the ceiling function. (·)+

represents the pseudo inversion. IM represents the M × M
identity matrix. angle (·) represents the determinant of square
matrix

II. SIGNAL MODEL OF COPRIME PLANAR ARRAY
Assuming there is a coprime planar array which contains
two uniform planar subarrays. The first subarray consists of
M ×M sensors and the inter-element spacing is d1 = Nλ/2.
The second subarray consists of N ×N sensors and the inter-
element spacing is d2 = Mλ/2, where λ is the wavelength,
M and N are coprime integers. And the positions of all the
elements are in the set LS = {(md1, nd1) |0 ≤ m, n ≤ M } ∪
{(pd2, qd2) |0 ≤ p, q ≤ N − 1}.

As shown in Fig. 1, there is only one common sensor
between the two subarrays which is located in the position
(0, 0). Thus, there are T = M2

+ N 2
− 1 sensors in total.

The Fig. 1 gives an example of the coprime planar array with
M = 4 and N = 3.
Assume there are K far-field uncorrelated signals are inci-

dent on the planar array from {(θk , φk) |k = 1, 2, . . . ,K },
where θk is the elevation angle and φk is the azimuth angle
of the kth signal. In order to facilitate processing, the formula
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can be defined as follows:{
uk = sin θk cosφk
vk = sin θk sinφk .

(1)

Because of the non-uniform distribution of element posi-
tion, it is tedious to express the steering vector of coprime
planar array. In brief expression, the whole coprime array
can be formulated by two uniform planar subarrays. Then the
whole received data can be represented as

X =
[
X1

X2

]
=

[
A1

A2

]
S+ N (2)

where X = [x (1) , x (2) , . . . , x (L)] represents the
whole time domain data. L represents the number
of snapshots. X1 = [x1 (1) , x1 (2) , . . . , x1 (L)] and
X2 = [x2 (1) , x2 (2) , . . . , x2 (L)] represent the receiv-
ing data of the two subarrays respectively. S =

[s1, s2, . . . , sK ]T denote the incident signals and sk =
[sk (1) , sk (2) , . . . , sk (L)] (k = 1, 2, . . . ,K ). N denotes
white Gaussian noise with mean value zero and variance σ 2.
Ai ∈ CM2

i ×K (i = 1, 2) denotes the steering matrix of the ith
subarray, where M1 = M , M2 = N and

Ai = [ai (u1, v1) , ai (u2, v2) , . . . , ai (uK , vK )]

=
[
ayi (v1)⊗ axi (u1) , ayi (v2)⊗ axi (u2) , . . . ,

ayi (vK )⊗ axi (uK )
]

(3)

where axi (uk) (k = 1, 2, . . . ,K ) and ayi (vk) (k = 1, 2, . . . ,K )
denote the x-direction and y-direction steering vectors of the
ith subarray respectively. And the specific forms is as follows

axi (uk) =
[
1, exp (−j2πdiuk/λ) , . . . ,

exp (−j2π (Mi − 1) diuk/λ)
]T (4)

ayi (vk) =
[
1, exp (−j2πdivk/λ) , . . . ,

exp (−j2π (Mi − 1) divk/λ)
]T
. (5)

The steering vector of the whole coprime array can be
represented as

a (uk , vk) =
[
a1 (uk , vk)
a2 (uk , vk)

]
(k = 1, 2, . . . ,K ) . (6)

Both the 2D partial spectral search method and the 1D par-
tial spectral search method divide the all data into two parts to
estimate the 2D-DOA respectively. Therefore, the estimation
of two covariance matrices can be obtained as follows

R̂i = (1/L)
L∑
l=1

xi (l)xHi (l) (i = 1, 2) , (7)

which is used to estimate the 2D-DOA estimation results. Due
to the large space between adjacent array elements, the two
estimation results are ambiguous which can be eliminated
utilizing the coprime property. However, the partition of the
whole array restricts the estimation accuracy. Furthermore,
the elimination of ambiguity is only guaranteed in the sce-
nario of single target and may result in false target in the
situation of multiple targets. In addition, small search step

has to be selected to get high precision which leads to a great
number of search times and high computational complexity.
The quantitative analysis is given in (34)-(36) of Subsec-
tion A, Section IV.

Considering the drawbacksmentioned above, the 2D-DOA
estimation method based on polynomial root finding tech-
nique is proposed. It can make use of the all data to estimate
the angles, which has higher estimation accuracy. Besides,
the proposed method does not need any spectral search oper-
ation and it just needs polynomial root finding operation,
so that the complexity is optimized. In addition, the relation
between the direction matrices of the two planar subarrays is
used to pair the same target, then the ambiguity of all targets
can be successively eliminated. Therefore, different targets
will not affect each other and the false targets can be avoided.

III. PROPOSED 2D-DOA ESTIMATION METHOD
In the proposed method, the covariance matrix of the whole
array is estimated as

R̂ = (1/L)
L∑
l=1

[
x1 (l)
x2 (l)

] [
x1 (l)
x2 (l)

]H
. (8)

Then the eigenvalue decomposition is carried out

R̂ = ÊsD̂sÊ
H
s + ÊnD̂nÊ

H
n (9)

where D̂s denotes the K ×K diagonal matrix which contains
the largestK eigenvalues of R̂, where D̂n denotes the diagonal
matrix which contains the other eigenvalues. Ês stands for the
signal subspace which is made up of the eigenvectors of the
largest K eigenvalues, while Ên stands for the noise subspace
which consists of the other eigenvectors.

A. RELATION DERIVATION
The signal subspace and the direction matrix span the same
space

Ês =
[
A1
A2

]
T (10)

where T ∈ CK×K denotes a non-singular matrix. And the
signal subspace is decomposed into two parts

Ês =
[
Es1
Es2

]
=

[
A1
A2

]
T . (11)

Then, H1 and H2 are obtained as follows:

H1 = Es2E+s1 = A2TT−1A+1 = A2A+1 (12)

H2 = Es1E+s2 = A1TT−1A+2 = A1A+2 (13)

which means

A2 = H1A1 (14)

A1 = H2A2. (15)

In this way, the relation between the two direction matrices
is obtained by using the signal subspace. How to use these
relation to pair the same target under different subarrays is
shown in Subsection D, Section III. The double polynomial
rooting algorithm is derived in the following two subsections.
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B. IMPROVED MUSIC SPECTRUM
According to [26], the MUSIC spectrum of the all data is

f (u, v) =
1

aH (u, v)EnEHn a (u, v)

=
1[

aH1 (u, v) a
H
2 (u, v)

]
EnEHn

[
a1 (u, v)
a2 (u, v)

] . (16)

Due to the specific formulation of the coprime array steer-
ing vector, a direct application of the polynomial root finding
technique has to be adopted involving (14) and (15) so as to
transform the MUSIC spectrum of the all data into

f1 (u, v) =
1[

aH1 (u, v) a
H
1 (u, v)H

H
1

]
EnEHn

[
a1 (u, v)
H1a1 (u, v)

]
=

1

aH1 (u, v)Q1Q
H
1 a1 (u, v)

(17)

f2 (u, v) =
1[

aH2 (u, v)H
H
2 a

H
2 (u, v)

]
EnEHn

[
H2a2 (u, v)
a2 (u, v)

]
=

1

aH2 (u, v)Q2Q
H
2 a2 (u, v)

(18)

where Q1 =
[
IM2HH

1

]
En and Q2 =

[
HH

2 IN 2
]
En.

(17) and (18) are the deformations of (16). That is to say,
(17) and (18) both contain all the data of the whole plane
array. So the above two MUSIC spectral use the all output
to estimate the 2D-DOA. In [24] and [25], the whole plane
array is divided into two parts to be processed respectively.
Therefore, higher estimation accuracy can be expected than
that of algorithms in [24] and [25].

C. DOUBLE POLYNOMIAL ROOTING ALGORITHM
2D-PSS or 1D-PSS can be applied to (17) and (18) to estimate
the 2D-DOA, but it has large complexity which need to be
further improved. To consider this problem, the polynomial
root finding procedure is used to estimate the 2D-DOA [27].
Now the specific operation is derived as follows:

Define the function Vi (u, v) (i = 1, 2) as

Vi (u, v) = aHi (u, v)QiQ
H
i ai (u, v) (19)

where Vi(u, v) is the denominator of fi(u, v), thus the spectral
peak search can be converted to finding the null point of (19).
According to (3), (19) can be represented as

Vi (u, v)

=
(
ayi (v)⊗ axi (u)

)H QiQHi (ayi (v)⊗ axi (u)
)

= aHxi (u)
(
ayi (v)⊗ IMi

)H QiQHi (ayi (v)⊗ IMi

)
axi (u)

= aHxi (u)Gi (v) axi (u) (20)

where Gi (v) =
(
ayi (v)⊗ IMi

)H QiQHi (ayi (v)⊗ IMi

)
.

Denote zyi = e−j2πdiv/λ, zxi = e−j2πdiu/λ (i = 1, 2). The
steering vector ayi (v) and axi (u) can be rewritten as follows:

ayi (v) = a
(
zyi
)
=

[
1, zyi, z2yi, . . . , z

Mi−1
yi

]T
(21)

axi (u) = a (zxi) =
[
1, zxi, z2xi, . . . , z

Mi−1
xi

]T
. (22)

Then, (19) can be written as

Vi
(
zxi, zyi

)
= aH (zxi)G

(
zyi
)
a (zxi) (23)

where G
(
zyi
)
=
(
a
(
zyi
)
⊗ IMi

)H QiQHi (a (zyi)⊗ IMi

)
.

Then the spectrum peak of (17) and (18) is turned into the
root of the following equation:

aH (zxi)G
(
zyi
)
a (zxi) = 0 (i = 1, 2) . (24)

Essentially, the above states derivations convert the estima-
tion of the 2D-DOA into finding the roots of polynomial (24).
If zyi does not match with one target and if

Rank
(
Qi
)
≥ Mi, (25)

then the matrixG
(
zyi
)
is invertible, and the determinant is not

equal to zero.
To solve the polynomial (24), we can find that zyi satisfies

D
(
zyi
)
= det

(
G
(
zyi
))
= 0. (26)

The degree of this polynomial is 2M2
i −2. TheK roots clos-

est to the unit circle of the polynomial D
(
zyi
)
, ẑ(k)yi

∣∣k=1,...,K ,
allow to estimate the

v̂(k)i = angle
(
ẑ(k)yi

)
λ/2πdi. (27)

Then, substitute the roots ẑ(k)yi into (24), the following equa-
tions can be obtained:

aH (zxi)G
(
ẑ(k)yi

)
a (zxi) = 0

∣∣k=1,...,K . (28)

In order to solve the above polynomial, the root finding
technique can be used again. According to the principle of
MUSIC algorithm, the above polynomial become zero if(
zxi, zyi

)
matcheswith one target. Thus, for each ẑ(k)yi , the poly-

nomial of degree 2Mi − 2 has p roots close to the unit cycle
where p denotes the number of targets having the same ẑ(k)yi .

The roots ẑ(k)xi of the polynomial (28) which is closest to the
unit circle determine the

û(k)i = angle
(
ẑ(k)xi

)
λ/2πdi. (29)

It is noted that, the û(k)i and v̂(k)i are automatically paired.
The transformation of two dimension DOA estimation into

two double polynomial root finding procedure (The reason
for two is that i = 1, 2) can reduce the computational
complexity significantly. Comparison of the computational
complexity between conventional methods (2D-PSS method
and 1D-PSS method) and the proposed method is presented
in Subsection A, Section IV.

Through the double polynomial rooting, the ambiguous
value is obtained, then the pairing of same target and the elim-
ination of ambiguity can be done. So the double polynomial
rooting is the foundation of the proposed method.
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D. MULTI TARGET PAIRING AND AMBIGUITY
ELIMINATION
Because of the large distance between the array elements,
the estimated û(k)i and v̂(k)i (i = 1, 2; k = 1, 2, . . . ,K ) are
ambiguous, which needs to be further optimized by refer-
ring [24, Th. 1].
Theorem 1: Suppose (θk , φk) is the actual 2D-DOA of

the kth target, which presents multiple ambiguous 2D-DOAs
for each subarray, i.e., multiple peaks in the 2-D MUSIC
spectrum. By intersecting the two MUSIC spectrums of the
kth target, there exists and uniquely exists one 2-D DOA(
θ̂k , φ̂k

)
that presents a peak in both the spectrums, where(

θ̂k , φ̂k

)
is the estimated 2-D DOA of the kth target.

It is noted that, Theorem 1 illustrates that in the situation
of single target, the MUSIC spectrum of the two subarrays
has only one common peak in the true DOA. While in the
situation of multiple targets, except for the true DOA, it may
produce common peaks for the spectrum of different targets
in different subarrays. Fortunately, if the same targets in dif-
ferent sub arrays is paired, the ambiguity can be successively
eliminated.

Next, the relation obtained in Subsection A of Section III
is used to pair the same target in different sub arrays.

The previous analysis in Subsection C of Section III
indicates that the roots ẑ(k)y1

∣∣k=1,...,K (ẑ(j)y2
∣∣j=1,...,K ) and

ẑ(k)x1
∣∣k=1,...,K (ẑ(j)x2

∣∣j=1,...,K ) are intrinsically coupled. Once
the roots ẑ(k)y1

∣∣k=1,...,K (ẑ(j)y2
∣∣j=1,...,K ) and ẑ(k)x1

∣∣k=1,...,K
(ẑ(j)x2

∣∣j=1,...,K ) are solved, the steering vector of subarray 1
(subarray 2) can be obtained as follows

a1
(
ûk , v̂k

)
= ay1

(
v̂k
)
⊗ ax1

(
ûk
)

=

[
1, ẑ(k)y1 ,

(
ẑ(k)y1

)2
, . . . ,

(
ẑ(k)y1

)Mi−1
]T

⊗

[
1, ẑ(k)x1 ,

(
ẑ(k)x1

)2
, . . . ,

(
ẑ(k)x1

)Mi−1
]T
. (30)

a2
(
ûj, v̂j

)
= ay2

(
v̂j
)
⊗ ax2

(
ûj
)

=

[
1, ẑ(j)y2 ,

(
ẑ(j)y2
)2
, . . . ,

(
ẑ(j)y2
)Mi−1

]T
⊗

[
1, ẑ(j)x2,

(
ẑ(j)x2
)2
, . . . ,

(
ẑ(j)x2
)Mi−1

]T
. (31)

Now, pairing the same targets in different sub array is
converted to the problem of pairing the sequence of index k
and index j.
Then, the relation â2

(
ûk , v̂k

)
= H1a1

(
ûk , v̂k

)
is applied

to estimate the steering vector of kth target in second sub-
array. Based on the minimum Euclidean distance criterion,
the index k and j can be paired by finding

jk = argmin
j=1,2,...,K

∥∥â2 (ûk , v̂k)− a2 (ûj, v̂j)∥∥ (k=1, 2, . . . ,K )

Now the pairing of same target in the two subarrays is
achieved and the ambiguity can be eliminated one by one. The

specific operations of ambiguity elimination of each target is
same with the operation in [24] and [25].

After the unambiguous values
(
ũ(k)1 , ṽ(k)1

)
and

(
ũ(k)2 , ṽ(k)2

)
of kth target are obtained by the two subarrays respectively,
the following equation can be used to estimate the 2D-DOA
of targets. 

ũ(k) =
ũ(k)1 + ũ

(k)
2

2

ṽ(k) =
ṽ(k)1 + ṽ

(k)
2

2

(32)

{
θ̂ (k) = asin

(
abs

(
ũ(k) + jṽ(k)

))
φ̂(k) = angle

(
ũ(k) + jṽ(k)

) (33)

where θ̂ (k) and φ̂(k) are the final estimation results of kth
target.

IV. PERFORMANCE ANALYSIS
A. COMPLEXITY ANALYSIS
The computational complexity of the 2D-MUSIC with UPA
is

O
(
M2
uN

2
u L +M

3
uN

3
u + J1J2MuNu (MuNu − K )

)
= O

(
M2
uN

2
u L +M

3
uN

3
u +

2MuNu (MuNu − K )
12

)
(34)

where J1 and J2 are the times of total search with u ∈ (−1, 1)
and v ∈ (0, 1).1 denotes the search step size. So J1 = 2

1
and

J2 = 1
1
. MuNu = M2

+ N 2
− 1.

The computational complexity of the 2D-PSS is

O
(
M4L +M6

+ N 4L + N 6
+ l21M

2
(
M2
− K

)
+l22N

2
(
N 2
− K

) )

= O

M4L +M6
+ N 4L + N 6

+
4M2(M2

−K
)

N 212

+
4N 2(N 2

−K
)

M212

 (35)

where l1 and l2 are the times of partial search with v ∈
(0, 2/N ) and v ∈ (0, 2/M), thus l1 = 2

N1 and l2 = 2
M1

The computational cost of the 1D-PSS is

O
(
M4L +M6

+ N 4L + N 6
+ l1M3

(
M2
− K + 1

)
+l2N 3

(
N 2
− K + 1

) )
= O

(
M4L+M6

+N 4L+N 6
+

2M3(M2
−K+1

)
N1

+
2N 3(N 2

−K+1
)

M1

)
. (36)

The proposed method consists of estimation of covari-
ance matrix and feature decomposition and polynomial root
finding procedure. By calculating, the total computational
complexity is

O

( (
M2
+ N 2

)2
L +

(
M2
+ N 2

)3
+
(
2M2
− 2

)3
+,K (2M − 2)3 +

(
2N 2
− 2

)3
+ K (2N − 2)3

)
.

(37)

In Fig. 2, the complexity of these methods is compared
through one specific example, where M = 4, L = 100,
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FIGURE 2. Comparison of computational complexity with different N .

FIGURE 3. Comparison of computational complexity versus different
snapshots.

K = 2, 1 = 0.00005, and for pair comparison, MuNu =
M2
+N 2

−1. As shown in the figure, the proposed algorithm
is the fastest compared with the other algorithms.

In Fig. 3, the complexity of these algorithms versus
different snapshots is compared. The parameters are set
as M = 5, N = 4, Mu = 8,Nu = 5, K = 2,
1 = 0.00005. In comparison, the proposed algorithm
has the lowest computational complexity among these
algorithms which proves the efficiency of the proposed
method.

Moreover, the computation time of thesemethods are given
in Table 1. They are computed by the MATLAB R2014a
with Inter Core i7-3770 @3.4 GHz and 16GB RAM, and the
parameters are set asM = 4,N = 3,Mu = 6,Nu = 4,K = 2,
L = 100 1 = 0.00005. It is obvious that the computation
time of the proposed algorithm is the shortest compared with
the other algorithms.

B. MAXIMUM ESTIMATED NUMBER OF TARGETS
The maximum number of targets that can be esti-
mated by the proposed algorithm is connected with (25),
i.e., Rank

(
Qi
)
≥ Mi. Because of Rank

(
Qi
)
≤

min
[(
M2
+ N 2

− 1− K
)
,M2

i

]
. So the maximum number

of sources can be expected to be estimated by the proposed

TABLE 1. Computation time of different methods.

FIGURE 4. Comparison of estimation accuracy of different algorithms:
(a) Azimuth angle and (b) Elevation angle

method ismin
[(
M2
+ N 2

− 1−M
)
,
(
M2
+ N 2

− 1− N
)]
.

While the number of sources that can be resolved
by the 2D-PSS and 1D-PSS approach is at most{
min

(
M2,N 2

)
− 1

}
. IfM andN are very large, the proposed

method can expect to estimate more targets.

C. ADVANTAGES
The advantages of the proposed algorithm are shown as fol-
lows:

(i) The proposedmethod needs two double polynomial root
finding procedure and does not require any search operation
which has low complexity;
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FIGURE 5. Estimation accuracy comparison with different N and M = 4:
(a) Azimuth angle and (b) Elevation angle.

(ii) The proposed algorithm utilizes the signal subspace
and noise subspace of all data to estimate the DOA of targets,
which obtains high estimation accuracy;

(iii) The proposed method avoids the false targets by uti-
lizing the relation between the two direction matrices;

(iv) The proposed method obtains automatically paired
DOA estimation.

It is noted that, small distance between adjacent elements
results in mutual coupling which restricts the accuracy of
DOA estimation. Therefore, large values of M and N should
be adopted to reduce the effect of mutual coupling.

D. CRAMÉR-RAO BOUND (CRB)
The derivation of the CRB can be found in [22].

V. SIMULATION RESULTS
In this section, several simulation experiments are conducted
to test the performance of the proposed method.

The CPA consists of two uniform planar subarrays with
4 × 4 and 3 × 3 sensors, respectively. The inter-element
spacing are d1 = 3λ/2 and d2 = 4λ/2 = 2λ, and
the inter-element spacing of UPA is set to half wavelength.

FIGURE 6. Comparison of estimation accuracy with different snapshots:
(a) Azimuth angle and (b) Elevation angle.

For fair comparison, the number of sensors in UPA is 6× 4.
The search step 1 = 0.00005. The noise is white Gaussian
noise. Assume there are 2 targets. The 2D-DOA of them are
(θ, φ) = (20◦, 60◦) and (θ, φ) = (50◦, 35◦) respectively.

The root mean square error (RMSE) is defined as follows

RMSE =

√√√√ 1
CK

C∑
c=1

K∑
k=1

(
αk − α̂k,c

)2
where C denotes the simulation times and α̂k,c represents the
estimation result of the kth target in the cth simulation. The
simulation times is set as C = 200. αk represents the true
value of θ or φ.

A. COMPARISON OF ESTIMATION ACCURACY OF
DIFFERENT ALGORITHMS
Firstly, the estimation accuracy is compared between con-
ventional methods (2D-MUSICwith UPA, 2D-PSS, 1D-PSS)
and the proposed method. L = 500 and SNR varies from
−10dB to 15dB. As shown in Fig. 4, the RMSE curve of the

19546 VOLUME 6, 2018



D. Zhang et al.: 2-D-DOA Estimation for Coprime Planar Arrays via Polynomial Root Finding Technique

FIGURE 7. The comparison of estimation performance under a special
case: (a) Azimuth angle and (b) Elevation angle.

proposed algorithm is the lowest among these methods which
proves the effectiveness of the proposed method.

B. COMPARISON OF ESTIMATION ACCURACY WITH
DIFFERENT N
Secondly, the estimation performance of the proposed algo-
rithm with different N is presented in Fig. 5. M = 4. The
other parameters are same with the first simulation. It can
be seen that the estimation accuracy of the proposed method
increases with the increasing of N which is caused by the
diversity gain.

C. COMPARISON OF ESTIMATION ACCURACY WITH
DIFFERENT L
Thirdly, the estimation accuracy of these algorithms versus
different L is compared. SNR=0dB. L varies from 20 to 300.
The other parameters are samewith the first simulation. Fig. 6
gives the simulation results. It is shown that the estimation
accuracy increases with the increasing of snapshots which

FIGURE 8. The estimation performance with two adjacent sources:
(a) Azimuth angle and (b) Elevation angle.

is caused by the more accuracy estimation of covariance
matrix. It is noted that the estimation accuracy of the proposed
method is the best among these methods which proves the
effectiveness of the proposed method.

D. COMPARISON OF ESTIMATION ACCURACY UNDER A
SPECIAL CASE
Fourthly, the DOA estimation performance under a special
case is researched, where M = 4, N = 5, L = 500,
(θ1, φ1) = (34.2◦, 65.5◦), (θ2, φ2) = (38.7◦, 77.7◦) and
convert the 2D-DOA into the transformed domain (u1, v1) =
(0.2331, 0.5116), (u2, v2) = (0.1331, 0.6116). For v1 −
2/N = v2 − 2/M and u1 + 2/N = u2 + 2/M , in this
situation, the 1D-PSS method and 2D-PSS method will result
in false targets when eliminating the ambiguous angle. And
they need additional operation to eliminate them. However
the proposed method does not need this operation. And the
simulation result is shown in Fig. 7. It can be seen that the
proposed method can obtain correct estimation under this
special situation and it achieves a lower RMSE than the
1D-PSS method.
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FIGURE 9. Scatter figure of two close sources.

E. COMPARISON OF DOA ESTIMATION ACCURACY WITH
ADJACENT TARGETS
The DOA estimation performance of two adjacent targets
is shown in Fig. 8. The parameters are set as 1v =
[0.016, 0.018, 0.02, 0.022, 0.024, 0.026], M = 7, N = 5,
K = 2, L = 100 and SNR = 8dB. The scatter figure of
two adjacent targets is plotted in Fig. 9, where (θ1, φ1) =
(20◦, 30◦) and (θ2, φ2) = (21◦, 31◦). The two figures show
that the proposed algorithm can work well and has a better
DOA estimation accuracy than the 1D-PSS method.

VI. CONCLUSION
In this paper, the 2D-DOA estimation problem for coprime
planar arrays is considered and a high accuracy and com-
putational efficient method based on polynomial root find-
ing technique is proposed. It make use of the signal space
and noise space of all data to improve the estimation accu-
racy. In addition, the computational complexity is reduced
by converting the 2D spectral peak searching problem into
two double polynomial root finding problem. Furthermore,
the matching error problem in the situation of multiple
targets is avoided. Simulation results prove that the pro-
posed method achieves not only higher estimation accuracy
but also lower computational complexity than conventional
methods.
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