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ABSTRACT Focused beamformers are widely used in passive underwater acoustic localization. Many
pseudo-peaks (spurious peaks not corresponding to a real source) are produced by focused beamformers,
impacting the performance and reliability of related algorithms. After describing both the received signal
model of near-field sources with a uniform line array, and the basic principle of passive localization based on
focused beamformers, we define pseudo-peaks in the focused beamformer’s spectra and give the procedure to
quantify these pseudo-peaks. The performance of conventional focused beamformers (C-FBs) and minimum
variance distortionless response focused beamformers (MVDR-FBs) are studied, focusing on the number of
pseudo-peaks in passive underwater acoustic localization. After establishing a simulation model based on an
underwater acoustic environment, the algorithms are compared in terms of signal-to-noise ratio, frequency,
distance of the source signal, and detection threshold. In all cases, the MVDR-FB method shows superior
performance to the C-FB method in minimizing the number of pseudo-peaks. Finally, a method of selecting
the detection threshold based on the convergence of pseudo-peak number is proposed.

INDEX TERMS Focused beamformer, performance analysis, sensor arrays, underwater acoustics.

I. INTRODUCTION
Passive localization technology is widely used in sonar.
Its advantage is that, without transmitting, the delivery plat-
form retains good concealment. Most existing sensor array
signal processing techniques for passive localization assume
that the signal sources are relatively far from the array of
sensors, so the waves impinging on the array are far-field and
thus appear as plane waves [1], [2]. Therefore, those methods
can only estimate the source’s direction and cannot estimate
the source’s distance.

In the near-field environment, the plane-wave approx-
imation of the spherical wave-fronts is no longer valid.
The spherical wave-fronts model is more accurate [3]–[5].
Recently, many methods have been proposed to estimate the
target’s direction and distance in the near-field, or mixed
near-field and far-field, environment [2]–[15]. The con-
ventional focused beamformer (C-FB) method and mini-
mum variance distortionless response focused beamformer
(MVDR-FB) method are two such methods. Hui et al. [6]
used a C-FB to measure the distribution image (underwa-

ter image) of a ship’s noise sources. Shi et al. [7] and
Shi and Yang [8] proposed two new methods of coherent
broadband MVDR-FBs based on vector sensor array pro-
cessing. Kumar and Hegde [9] used MVDR-FBs to address
the method of near-field source localization using a spheri-
cal microphone array. Somasundaram et al. [10] proposed a
low-complexity, quickly-converging, robust adaptive beam-
former method for large arrays in snapshot deficient scenar-
ios. Salvati et al. [11] proposed a weighted MVDR algorithm
based on a machine learning component for near-field sound
localization in a reverberant environment. For the mixed far-
field and near-field sources localization problem, Liang and
Liu [4] presented a fourth-order cumulants-based Toeplitz
matrix reconstruction method. Liu and Sun [12] and [13]
presented a covariance difference algorithm and a novel clas-
sification localization algorithm. Thus, both the C-FB and
MVDR-FB methods have proven their usefulness in a wide
variety of applications.

However, many pseudo-peaks (spurious peaks which do
not correspond to an actual source) are produced by focused
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beamformers in passive localization, and those pseudo-peaks
may seriously impact the performance of the algorithms
when there are multiple sound sources. In the spatial spec-
trum of sonar detection, the number of pseudo-peaks is seri-
ously affected by the detection threshold. When the detection
threshold is small, many pseudo-peaks appear in the spatial
spectrum, and the target energy spectrum is submerged in
a number of spurious peaks, forming a ‘sky star’ detection
pattern. It is difficult to determine which targets are real and
which are spurious. When the detection threshold is large,
the number of pseudo-peaks is greatly reduced, but the true
target energy spectrum may be filtered out, resulting in a
false negative. Therefore, the choice of pseudo-peak detection
threshold is very important.

There are few papers about the pseudo-peaks made by
focused beamformers [14], or about the pseudo-peak detec-
tion threshold setting, in passive underwater acoustic local-
ization. In this paper, we provide criteria for identifying
pseudo-peaks in the focused beamformer’s spectra and show
how to derive the quantity of pseudo-peaks. After establishing
a simulation model based on a typical underwater acoustic
environment, simulation results are presented to compare the
performance of the C-FB and MVDR-FB, and the influence
of the detection threshold on the number of pseudo-peaks,
in a variety of different conditions. The conditions varied are
signal to noise ratio (SNR), the sound source’s frequency,
the distance between sound source and hydrophones, and the
detection threshold value. Finally, we propose a method to
set the detection threshold according to the convergence of
the number of pseudo-peaks.

The rest of this paper is organized as follows. The signal
model for the near-field is introduced in Section 2. The two
types of focused beamformer, the pseudo-peak definition, and
the pseudo-peak quantity survey are developed in Section 3.
Simulation results are presented in Section 4. Conclusions are
drawn in Section 5.

II. NEAR-FIELD SIGNAL MODEL
Following Cirpan and Cekli [1], we consider the near-field
underwater acoustic environment with a uniform linear array
in which narrowband signals from d sources are received by
an M element hydrophone. Let the first hydrophone be the
phase reference point with index ‘1’ as shown in Fig. 1.

Assuming the spacing of sensors is 1, the narrowband
output signal of the sensor m is given by

xm(t) =
d∑
i=1

si(t − τim)+ nm(t), (1)

FIGURE 1. The principle of focused beamformer passive localization with
a uniform linear array.

where si(t) denotes the complex envelope of the source sig-
nal i, nm(t) is an additive complex Gaussian noise, and τim is
the delay of the source signal i relative to the reference sensor.
The analytic signal of (1) is:

xm(t) =
d∑
i=1

si(t)e−jφim + nm(t), (2)

where φim is the phase difference of the signal i collected at
sensor m with respect to the signal i collected at reference
sensor ‘1’. Due to our narrowband assumption, the phase
difference is given by

φim =
2π
λ
(rim − ri) , (3)

where λ is the wavelength of the source signal. The distance
rim between the source i and the sensor m equals

rim =
√
r2i + (m− 1)212 − 2ri (m− 1)1 sin θi

= ri

√
1+

(m− 1)212

r2i
−

2 (m− 1)1
ri

sin θi, (4)

Substituting (4) and (3) into (2), we obtain (5), as shown at
the bottom of this page.

For a collection of M observed sensor outputs X =

[x1(t), · · · , xM (t)]T, and the matrix formulation of (5) is
obtained as follows:

X = A (θ, r) · S+ N, (6)

where N = [n1(t), · · · , nM (t)]T is Gaussian white noise.
S = [s1(t), · · · , sd (t)]T is the collection of d imping-
ing signals written as a column vector, and A (θ, r) =
[a(θ1, r1), · · · , a(θd , rd )] is the array steering matrix in the
near-field case which is a function of an unknown set of
parameters {θ, r} = {(θ1, r1) , · · · , (θd , rd )}.

xm(t) =
d∑
i=1

si(t) exp
−j2π

(√
r2i + (m− 1)212 − 2ri (m− 1)1 sin θi − ri

)
λ

+ nm(t)
, (5)

VOLUME 6, 2018 18201



J. Li et al.: Performance Analysis for Focused Beamformers in Passive Underwater Acoustic Localization

III. FOCUSED BEAMFORMER AND ITS PSEUDO-PEAK
A. CONVENTIONAL FOCUSED BEAMFORMER
Following the work of Hui et al. [6] and Shi et al. [7], the prin-
ciple of focused beamformer passive underwater acoustic
localization is shown in Fig. 1. Using each array element’s
source radius of curvature, the delay difference is compen-
sated based on the spherical wave-fronts model. The delay
difference is a two-dimensional function determined by the
source’s direction and distance. By scanning the different
focal points of the scanning plane, the sound intensity dia-
gram of the scanning plane is obtained. When the scanning
point coincides with the target position, the output of the
focused beam will peak. Therefore, the target’s direction
and distance information can both be obtained via a focused
beamformer.

According to the model of the uniform linear array, the out-
put of a C-FB is obtained as follows:

y(t) =
M∑
i=1

xi

(
t +

r1i − r1
c

)
, (7)

where c is the underwater sound velocity, r1 is the
distance of a scanning point to the reference array ele-
ment, and r1i is the distance of scanning point (θ1, r1)
to the array element i. According to (4), r1i =√
r21 − 2(i− 1)r11 sin θ1 + (i− 1)212, where θ1 is the

direction of the scanning point to the reference array element.
The output is obtained as follows:

y (t) =
M∑
i=1

xim (t) exp
(
j2π

r1i − r1
λ

)
= WHX, (8)

where the weight vectorW is

W = [1, e
j2π

r12−r1
λ
, · · · , e

j2π
r1M−r1

λ ]T , (9)

and the output spatial spectrum is

PC−FB(θ, r) = E{|y(t)|2} = E
{∣∣∣WHX

∣∣∣2}
= WHE

{
X(t)XH (t)

}
W = WHRXXW , (10)

where RXX = E
{
X(t)XH(t)

}
is the covariance matrix of the

uniform linear array output.
When the scanning point coincides with the target position,

the output of PC−FB(θ, r) will peak and we can obtain the
maximum output in the spatial spectrum.

B. MVDR FOCUSED BEAMFORMER
The MVDR-FB is an adaptive beamformer method [7]–[11].
It can suppress noise in nonsource directions, and ensure
that the energy of the signal in the source direction remains
constant. Bell et al. [16] and Capon [17] proposed the opti-
mization criterion for determining direction, and this section
extends this optimization criterion to directional and distance
spaces.

We assume that there is a desired signal d(t) (its
spatial position is (θd , rd )) and J interference signals
zj(t), j = 1, · · · , J (their spatial positions are

(
θzj, rzj

)
) in

the space. Then the received signals of each element can be
expressed as:

X(t) = AS(t)+ N(t)

= a(θd , rd )d(t)+
J∑
j=1

a(θzj, rzj)zj(t)+ N(t), (11)

Substituting (11) into (10) and simplifying, we obtain the
output spatial spectrum:

P(θd , rd )

= E
{
|d(t)|2

} ∣∣∣WHa(θd , rd )
∣∣∣2

+

J∑
j=1

E
{∣∣zj(t)∣∣2} ∣∣∣WHa(θzj, rzj)

∣∣∣2 + σ 2
n ‖W‖

2 , (12)

The expression in (12) is divided into three parts: the output
energy of the desired signal E

{
|d(t)|2

} ∣∣WHa(θd , rd )
∣∣2,

the output energy of interference signals
J∑
j=1

E
{∣∣zj(t)∣∣2} ∣∣WHa(θzj, rzj)

∣∣2, and the output energy of noise
σ 2
n ‖W‖

2.
In order to ensure the correct reception of the desired

signal from the position (θd , rd ) and completely suppress the
J interference in other positions, we obtain the constraint
conditions on the weight vector from (12):

WHa(θd , rd ) = 1, (13)

WHa(θzj, rzj) = 0, (14)

Under these two constraints, (12) reduces to:

P(θd , rd ) = WHRXXW = E
{
|d(t)|2

}
+ σ 2

n ‖W‖
2 , (15)

According to (13) and (14), although the selected weight
vector can maximum the desired signal output energy, and
reduce the interference output to zero, it may also make the
noise output energy more prominent. Therefore, the suppres-
sion of interference and noise should be considered together.
In (15), E

{
|d(t)|2

}
is a constant, and σ 2

n ‖W‖
2 is the energy

of noise. If we want to minimize the noise output energy,
we have to minimum the P(θd , rd ). Therefore, the optimal
weight vector of MVDR-FB can be described by the follow-
ing optimization problem:

min
W

WHRXXW

s.t. WHa(θd , rd ) = 1, (16)

where W = [w1,w2, · · ·wM ]T is a weight vector, a(θd , rd )
is the direction and distance vector of the uniform linear
array, and R is the covariance matrix of the uniform linear
array output. The Lagrange method is usually used to solve
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the above constrained optimization problems [16], [17]. The
optimal weight vector is obtained as follows:

Wopt =
R−1A (θ, r)

A (θ, r)H R−1A (θ, r)
, (17)

where (θ, r) is the scanning point. The spatial spectrum of
MVDR-FB equals:

PMVDR−FB(θ, r) = WH
optRWopt =

1

A(θ, r)HR−1A(θ, r)
,

(18)

From (18), the output spatial spectrum is a two-
dimensional function determined by the source’s direction
and distance. When the scanning point (θ, r) coincides with
the true target position (θs, rs), the output of PMVDR−FB(θ, r)
will reach a maximum value, and the source location can be
estimated from the peak of the spatial spectrum.

C. PSEUDO-PEAKS AND QUANTITY SURVEY
Note that the output matrix P is a normalized spatial spec-
trum, whose elements P(θm, rn) are functions of direction θ
and range r . For convenience, we assume that the target is
located in the range of the scanning space and not at the
edge of the spatial spectrum matrix P. Thus, in the process
of calculating the pseudo-peak, the edge elements of P are
excluded, and we can only find pseudo-peaks in P̃, which
is composed of P without P’s edge elements. P̃ has the
following form:

P̃

=


P(θ2, r2) P(θ2, r3) · · · P(θ2, rN−1)
P(θ3, r2) P(θ3, r3) · · · P(θ3, rN−1)

...
...

. . .
...

P(θM−1, r2) P(θM−1, r3) · · · P(θM−1, rN−1)

 ,
(19)

In addition, we identify P(θm, rn−1), P(θm, rn+1),
P(θm+1, rn), and P(θm−1, rn) as the adjacent elements of
P(θm, rn). The element P(θm, rn) and its adjacent elements are
shown in Fig. 2. Each of P̃’s elements has four adjacent ele-
ments in P. To handle elements with small values, we assume
that there is a detection threshold γ . If P(θm, rn) < γ ,
the element P(θm, rn) is not a pseudo-peak.

FIGURE 2. One element and its adjacent elements.

Based on the aforementioned analyses, the protocol for
determining the pseudo-peaks in P is proposed as follows.
The necessary conditions for the element P(θm, rn) to be a
pseudo-peak are:

1. The sound sources (target) are not at (θm, rn).
If the sound sources are at (θm, rn), P(θm, rn) will be a main

peak. The pseudo-peaks are those peaks that do not contain
targets.

2. P(θm, rn) ∈ P̃.
In this condition, we need not consider the edge elements

of P, and the pseudo-peaks can be found easily.
3. P(θm, rn) ≥ γ .
The value of γ can affect the number of pseudo-peaks

greatly. If γ varies from a small value to a large value, the
estimated quantity of pseudo-peaks will decrease. Through
estimating the number of pseudo-peaks in terms of γ , we
can find the main distribution range of the pseudo-peaks’
amplitudes.

4. The element P(θm, rn) must meet one of the following
conditions:

a. P(θm, rn) is greater than its all adjacent elements:

P(θm, rn) > P(θm, rn−1),P(θm, rn) > P(θm, rn+1)

P(θm, rn) > P(θm−1, rn),P(θm, rn) > P(θm+1, rn), (20)

b. Q is a continuous area with many elements in P, and
each element of Q is equal to a fixed value αQ, where αQ
is greater than all Q’s adjacent elements. An example of
such a continuous area Q and its adjacent elements is shown
in Fig. 3. From Fig. 3, we can see that the points 1–12 areQ’s
elements and the points 13–25 are Q’s adjacent elements.

FIGURE 3. A continuous area Q with many elements, and its adjacent
elements.

Some representative examples of pseudo-peaks in a part
of the spatial spectrum are shown in Fig. 4. We assume that
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FIGURE 4. Some representative examples of pseudo-peaks.

the sound source (target) is only at point A and the detection
threshold γ is equal to the value of point H, so the peak at
point A is the main peak. In addition, the peak at point B
is a typical pseudo-peak, because it meets conditions 1-3 as
well as 4a. However, the peak at point G is not a pseudo-
peak, because G’s value is less than the detection threshold
γ (thus, it does not meet condition 3). We conclude that the
peaks at points C, D, E, and F are only one pseudo-peak
because the values at C, D, E, and F are equal. Following
the above discussion, we can easily evaluate the quantity of
pseudo-peaks in a normalized output spatial spectrum, and
also study the relationship between the detection threshold
and the quantity of pseudo-peaks.

IV. SIMULATIONS
Four simulations were conducted to evaluate the performance
of the proposed algorithms. We considered a 32-element
uniform linear array with element spacing d = 1m, where
the sound source was a single-frequency signal. In addition,
the scan distance range was 1–3000 m with a 1 m step length
and the scan direction range was (−60◦, 60◦ ) with a 1◦

step length. The number of snapshots was K = 2048 and
the sampling frequency was fs = 125 kHz. We assumed
that the received signals were polluted by additive white
Gaussian noise and the speed of sound was c = 1500m/s. The
performances of the proposed algorithms were measured by
the estimated pseudo-peaks’ quantity over 100 independent
Monte Carlo runs.

A. SNR IMPACT
In this simulation, the C-FB and MVDR-FB algorithms were
used to analyze a near-field source which was located at
(θ = 20◦, r = 2500 m). The frequency of the source was
set to 20 kHz. The spatial spectra achieved by C-FB and
MVDR-FB with two different SNRs (0 dB, 10 dB) are shown
in Fig. 5 and Fig. 6.

From Fig. 5 and Fig. 6, we can see that when the SNR
decreases, more pseudo-peaks in the spatial spectra are
obtained by both C-FB and MVDR-FB. The pseudo-peaks
represent numerous false targets which may affect the accu-
racy of localization.

As the SNR in the marine environment is generally dis-
tributed between −20 dB and 20 dB, we studied the effect of

FIGURE 5. Localization results of C-FB with different SNRs.
(a) SNR = 0 dB. (b) SNR = 10 dB.

the SNR in this interval on the performance of the algorithms.
When SNR varies from −20 to 20 dB and the detection
threshold γ is fixed at 0.2 or 0.4, the number of pseudo-
peaks produced by C-FB andMVDR-FB are shown in Fig. 7.
This figure shows that the noise immunity of MVDR-FB
outperforms that of C-FB. In addition, the direction and
distance estimation accuracy of MVDR-FB also surpass the
conventional method. When the SNR increases, the number
of pseudo-peaks in spatial spectra obtained by MVDR-FB
decreases more quickly than C-FB, and the number of
pseudo-peaks converges.

The pseudo-peaks produced by C-FB will always exist.
When the threshold value γ was set equal to 0.2 or 0.4,
the pseudo-peaks’ quantity converged to 28 or 8, respectively.
However, the pseudo-peaks produced by MVDR-FB disap-
peared when the SNR increased to about 10 dB. Thus, for
modestly high SNR, the MVDR-FB method eliminates the
problem of pseudo-peaks entirely, unlike C-FB.
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FIGURE 6. Localization results of MVDR-FB with different SNRs.
(a) SNR = 0 dB. (b) SNR = 10 dB.

FIGURE 7. The number of pseudo-peaks in terms of SNR.

B. FREQUENCY IMPACT
In this simulation, the influence of the sound source’s
frequency on the algorithm’s performance was studied.

FIGURE 8. Localization results of MVDR with different frequencies.
(a) frequency = 0.2 kHz. (b) frequency = 0.5 kHz. (c) frequency = 2 kHz.

The SNR was set equal to 5 dB and other conditions
were the same as case 1. The spatial spectra achieved by
MVDR-FB with three different frequencies (0.2 kHz,
0.5 kHz, and 2 kHz) are shown in Fig. 8.
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From Fig. 8, we can see that when the frequency of the
sound source was lower than 0.5 kHz, MVDR-FB could only
obtain the target’s direction accurately, and could not estimate
the distance accurately. However, as the frequency increased,
the spatial spectra gradually became sharper. When the fre-
quency was above 2 kHz, the target’s direction and distance
could be estimated accurately by MVDR-FB.

The working frequencies of most sonars are in the range
of 1-50 kHz, so it is more practical to study the performance
of the algorithm in that frequency band. When the frequency
was varied from 1 to 50 kHz and the SNR was set equal to
0 dB, the number of pseudo-peaks produced by C-FB and
MVDR-FB are shown in Fig. 9 and Fig. 10, respectively. The
detection threshold γ was fixed at 0.1, 0.12, 0.15, and 0.2 for
C-FB, and at 0.012, 0.015, 0.017, and 0.05 for MVDR-FB.

FIGURE 9. The number of pseudo-peaks with C-FB in terms of frequency.

FIGURE 10. The number of pseudo-peaks with MVDR-FB in terms of
frequency.

From Fig. 9 and Fig. 10, it can be seen that the num-
ber of pseudo-peaks increased as the frequency increased.
However, this does not mean that the performance of the
methods will drop as the frequency increases. The spectral

peaks (including the main peak and pseudo-peaks) became
sharper as the frequency increased, so the precision of esti-
mation will be improved. Additionally, the amplitude of most
pseudo-peaks was low, so they will have little effect on the
estimation performance. In the spatial spectra achieved by
C-FB, most of the pseudo-peaks’ amplitudes were between
0.1 and 0.15. By comparison, in MVDR-FB’s spatial spectra,
most of the pseudo-peaks’ amplitudes were only between
0.012 and 0.015. The performance of MVDR-FB was thus
much higher than that of C-FB.

C. DISTANCE IMPACT
In this simulation, the influence of the sound source’s distance
on the algorithm’s performance was studied. The SNR and
frequency were set at 5 dB and 20 kHz respectively, and the
other conditions were the same as case 1. The spatial spectra
achieved by MVDR-FB with two different distances (200 m
and 1000 m) are shown in Fig. 11.

FIGURE 11. Localization results of MVDR-FB with different distances.
(a) distance = 200 m. (b) distance = 1000 m.

From Fig. 11, we can see that when the distance of the
sound source was shorter than 200 m, there were few pseudo-
peaks in the spatial spectrum and the target’s location can be
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obtained accurately byMVDR-FB. As the distance increased,
more pseudo-peaks in the spatial spectra were obtained by
MVDR-FB.

When the distances varied from 50 to 2950 m and the SNR
was set equal to 0 dB, the number of pseudo-peaks produced
by C-FB and MVDR-FB are shown in Fig. 12 and Fig. 13,
respectively. The detection threshold γ was fixed at 0.2, 0.3,
and 0.4 for C-FB, and at 0.1, 0.2, and 0.4 for MVDR-FB.

FIGURE 12. The number of pseudo-peaks with C-FB in terms of range.

FIGURE 13. The number of pseudo-peaks with MVDR-FB in terms of
range.

From Fig. 12 and Fig. 13, when the distances increased,
the number of pseudo-peaks increased initially and then
decreased. In the spatial spectra achieved by C-FB, most
of the pseudo-peaks’ amplitudes were between 0.2 and 0.3.
By comparison, in MVDR-FB’s spatial spectra, most of the
pseudo-peaks’ amplitudes were between 0.1 and 0.4. The
number of pseudo-peaks obtained by MVDR-FB was less
than C-FB.

D. THE DETECTION THRESHOLD IMPACT
In this simulation, the relationship between the number of
pseudo-peaks and the detection threshold γ was studied. The
SNRs were set at −10 dB and 0 dB, and the other conditions

were the same as case 1. When the detection threshold γ
varied from 0 to 1, the number of pseudo-peaks produced by
the C-FB and MVDR-FB methods are shown in Fig. 14.

FIGURE 14. The number of pseudo-peaks in terms of the detection
threshold.

In the practical application of sonar detection, if the detec-
tion threshold γ is set smaller, pseudo-peaks will appear in
large numbers and seriously interfere with target detection,
but when the γ is set larger, many real targets may be
lost; thus, one needs a criterion for choosing an interme-
diate value of the threshold. Fig. 14 shows that the num-
ber of pseudo-peaks was strongly affected by the detection
threshold γ . At the beginning, the number of pseudo-peaks
changed rapidly, but with the increase of γ , the change grad-
ually slowed down and eventually converged. This conver-
gence shows that the real impact on detection performance
and multitarget resolution is caused by a fixed number of
pseudo-peaks.

From the simulation in this section, we concluded that the
value of γ should be set where the number of pseudo-peaks
tends to change slowly or converge. For example, according
to Fig. 14, when the C-FBmethod is used and the SNR is 0 dB
or −10 dB, we suggest that the value of γ should be fixed at
0.3 or 0.4. For MVDR-FB, when the SNR is 0 dB or−10 dB,
the value of γ should be fixed at 0.1 or 0.2. The lower value
of detection threshold needed for MVDR-FB reflects the fact
that it generates fewer pseudo-peaks than C-FB.

V. CONCLUSION
In this paper, focused beamformers were used in passive
underwater acoustic localization. The pseudo-peak in the
focused beamformer spectrum was defined, and the method
of its quantity survey was given. The performances of the
C-FB and MVDR-FB algorithms were compared based on
the number of pseudo-peaks generated. Simulations were
performed in a typical underwater acoustic environment, and
the localization results were plotted under different condi-
tions, such as different SNRs, distances, frequencies, and
detection thresholds. These simulations consistently showed
MVDR-FB to be superior to C-FB, producing fewer and
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smaller pseudo-peaks. For a modestly high SNR (10 dB),
MVDR-FB eliminated pseudo-peaks entirely, unlike C-FB.
Its superior performance allowed us to set a lower detec-
tion threshold when using MVDR-FB, reflecting a greater
sensitivity to weak signals. We also found that the number
of pseudo-peaks is affected by this detection threshold, but
in a regular manner. As the detection threshold increases,
the number of pseudo-peaks tends to change slowly or con-
verge; therefore, we proposed that the detection threshold
should be set at this point of changing slowly or convergence.
This not only ensures the detection of the target, but also
removes unnecessary interference. This proposal for setting
detection threshold can be applied to sonar improvement for
underwater target detection and identification in the future,
whether using the C-FB or the superior MVDR-FB method.
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