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ABSTRACT The first step in statistical reliability studies of coherent systems is the estimation of the
reliability of each system component. For the cases of parallel and series systems, the literature is abundant,
but it seems that the present paper is the first to present the general case of component inferences in coherent
systems. The failure time model considered here is the three-parameter Weibull distribution. Furthermore,
identically distributed failure times are not a required restriction. An important result is proved: without
the assumption that components’ lifetimes are mutually independent, a given set of sub-reliability functions
does not identify the corresponding marginal reliability function. The proposed model is general in the sense
that it can be used for components of any coherent system, from the simplest to the most complex designs.
It can be considered for all kinds of censored data, including interval-censored data. An important property
obtained for the Weibull model is that the posterior distributions are proper, even for non-informative priors.
Using several simulations, the excellent performance of the model is illustrated. As real examples, boys’
first use of marijuana and a device from a field-tracking data set are considered to show the efficiency of the
solution even when censored data occurs.

INDEX TERMS Bayesian paradigm, bridge system, coherent system, component lifetime, parallel system,
parametric estimation, series system, Weibull model, 2-out-of-3 system.

I. INTRODUCTION
As motivation, the reliability estimation of a device with two
components in series is considered [1]. The device has two
possible causes of failure: 1) an electrical surge failure or
2) a wear-out failure. This is a field-tracking study, and the
cause of failure can be observed. Clearly, the failure of either
component 1 or 2 leads to device failure. Here, the failure
of a component implies that the possible future failure time
of the other becomes invisible, i.e., censored data. The sta-
tistical inference for the reliability of the device depends on
both marginal components’ probability models, even in the
presence of censoring. In addition, it is important to estimate
the lifetime distribution of a particular component for future
system design and maintenance planning [2]. Hence, infer-
ences for both components are needed.

Statistical inference of component reliability is not an easy
task: censoring, dependence, and unequal distributions are
some of the troubles. Considering a sample of the device
discussed above, the n sample units are observed up to death.

For each system unit, one of the components produces its
failure time, and the remaining component lifetime is cen-
sored. It is reasonable to say that the two types of components
are not identically distributed, since it is likely that one of
the components may suffer more censoring than the other.
For a system with m components, the last component to
fail is the responsible for the system failure at time t (the
time when the system failed), implying that all the remaining
components are also censored at time t , although the types
of censoring could be different (some components can be
failed at time t , and some could be working). It is clear
that all components are important for system reliability and
are in some way responsible for the failure of the system.
We define the component responsible for the system failure
as the component whose failure time is not censored, that is,
it was the last component to fail and then the system failed.

The reliability of a system and its components also depends
on the system design: the way components are intercon-
nected. The device example described previously is a series
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FIGURE 1. (a) Representation of a series system with 4 components;
(b) Representation of a parallel system with 3 components.

system with two components, a simple case known as a com-
peting risks problem. Figure 1a is a series system with four
components. At the time the system fails, only one component
is uncensored; the other three components are right-censored
at the system failure time. A parallel system, as in Figure 1b,
works whenever at least one component is working. Again,
only one component has its failure time uncensored; the other
components are left-censored observations.

The literature on the reliability of either parallel or series
systems is abundant, and different solutions have been
presented. For series systems, [3] treated the estimation prob-
lem, and [4] presented the relationship between the sub-
distribution functions of the components (the probability of
the system working until a certain time and the interest
component responsible for system failure). A nonparametric
estimator for these functions and amodified Cox proportional
hazard model for competing risks were developed by [5].

References [6]–[9] discussed the Bayesian nonparametric
statistics for series and parallel systems. Under Weibull prob-
ability distributions, Bayesian inferences for system and com-
ponent reliabilities were introduced by [10]. Reference [11]
presented a hierarchical Bayesian Weibull model for com-
ponent reliability estimation for both series and parallel
systems, proposing a useful computational approach. Using
simulation for series systems and considering Weibull fam-
ilies, [12] compared the following three types of estimates:
Kaplan-Meier, maximum likelihood and Bayesian plug-in
estimators. Reference [13] also performed a comparative
study of survival function estimation. Considering the cel-
ebrated property that any coherent system can be writ-
ten as a combination of parallel and series systems, [14]
introduced Bayesian nonparametric statistics for a class of
coherent systems. Figure 2 illustrates two cases of this kind
of combination with three components. Component 2, for
example, is susceptible to both right- and left-censoring.
Reference [14] restricted themselves to cases for which no
component appears more than once in parallel-series or
series-parallel representations.

In general, for a coherent system that uses a representation
combining parallel and series systems, some components
may appear in two or more places. Figure 3 is the bridge
system described in the literature [15], and Figure 4 illustrates
its parallel-series and series-parallel combinations. Note that
each of the five components appears twice for both represen-
tations. Another important design is the k-out-of-m system
(it works only if at least k out of the m components work).

FIGURE 2. (a) Parallel-series representation; (b) Series-parallel
representation.

FIGURE 3. Bridge design.

FIGURE 4. (a) Bridge parallel-series representation; (b) Bridge
series-parallel representation.

FIGURE 5. (a) 2-out-of-3 parallel-series representation; (b) 2-out-of-3
series-parallel representation.

Figure 5 considers the simple 2-out-of-3 case in parallel-
series and series-parallel representations. Note that each
of the three components also appears twice in both
combinations.

In their nonparametric inferences for coherent systems,
[16] restricted themselves to cases of independent and iden-
tically distributed failure times; hence, all components have
the same reliability. The method introduced in the present
article is not restricted to the assumption of identically dis-
tributed component lifetimes. Another restriction, not high-
lighted in most of the literature, is that the failures of any
pair of components cannot occur at the same time. Here, this
restriction is also unnecessary. Our important restrictions are
that all component lifetimes are mutually independent and
three-parameter Weibull distributed; this is a very general
family of distributions that can approximate most lifetime
parametric distributions. Besides the left- and right-censored
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observations, the interval-censored observations can also be
handled here. An important result of this paper is that with-
out the assumption that components’ lifetimes are mutually
independent, a given set of sub-reliability functions does
not identify the corresponding marginal reliability function.
An advantage of the Weibull is that in our approach, even
with a class of improper priors, the posterior distributions are
proper. The proposed mechanism of calculation can be well
used for any other family of distributions whenever proper
priors are used.

Section II describes the Bayesian Weibull model.
Section III presents the simulation studies to show the excel-
lent performance of the proposed model, and we compare
the performance of our approach to that presented by [16].
Section IV illustrates the methodology by considering two
practical motivations: a data set of systems with two com-
ponents in series and a data set for which interval censor-
ing appears. Final considerations appear in Section V. The
Appendix shows the proofs of two important results. The first
is that mutual independence of the components’ lifetimes is
necessary to avoid non-identifiability problems. The second
is that the posterior distributions considered here are proper.

II. BAYESIAN WEIBULL MODEL
In a coherent system with m components, let Xj be the failure
time of j-th component, j = 1, . . . ,m. The system failure
time is denoted by T = h(X1, . . . ,Xm), in which h(·) is
the function that relates the system failure time to the com-
ponents’ functioning, and it depends on the system design.
For a series system, for example, T = h(X1, . . . ,Xm) =
min{X1, . . . ,Xm}. The indicator of the component whose
failure caused the system to fail is δ = j when T = Xj,
j = 1, . . . ,m.
The j-th sub-distribution function evaluated at the time t is

the probability that the system survives at most to the time
t and failure indicator is j-th component, that is, Qj(t) =

Pr
{
(T ≤ t) ∩ (δ = j)

}
.

Besides, let Gj(t) = Pr
{
(T > t) ∩ (δ = j)

}
be the

j-th sub-reliability function evaluated at the time t . Denote
by Fj(t) the marginal distribution function (DF) for the j-th
component evaluated at time t , and Rj(t) = 1 − Fj(t) the
marginal reliability function, j = 1, . . . ,m.
Our aim is to estimate the marginal distributions of com-

ponents’ lifetimes. Therefore, we assume that X1, . . . ,Xm are
mutually independent. This assumption is necessary to avoid
the non-identifiability problem of the model.

When the interest is only in the estimation of the marginal
distributions of each component in series system, [17] shows
that without the hypothesis that components’ survival times
are mutually independent, the model of survival times is
unidentifiable: the set of sub-reliability functions is consistent
with an infinity of joint reliability functions. The following
theorem is the natural extension to coherent systems.
Theorem 1: Let X1, . . . ,Xm be the failure time of the

m components involved in a coherent system. Without

the assumption that X1, . . . ,Xm are mutually independent,
a given set of sub-reliability functions (sub-distribution func-
tions) does not identify the corresponding marginal reliability
functions (distributions functions) when information from
other components are not available or not necessary.

Proof: The proof of this result is given in the
Appendix.

When a coherent system is written as series-parallel or
parallel-series subsystems, it is possible that the subsystems
share components with the original configuration. In this type
of configuration (shared components), it is clear that the com-
ponents are not independent, and the marginal distribution of
all the components will not be identifiable. This is not only
an independence problem, but also the set of jump points
will not be disjoints. This is a limitation of the nonparamet-
ric estimator from [7]–[9]. Our method does not need the
subsystem representation with shared component, and the
proposed model has the assumption of continuous random
variables, then the set of joint jump points has probability
zero.

A simple random sample of n systemswith the same design
is observed, where t1, . . . , tn is a sample of the random vari-
able T . The goal is to estimate the reliability of components.
At system failure, however, not all components would have
their failure time observed. In addition, a particular compo-
nent may be responsible for system failures in some sample
units and not in the remaining ones, which are cases of censor-
ing on component failure time. The amount and the types of
censoring depend on the design of the system. For example,
a sample of n units of a machine with a configuration as
in Figure 2a is observed: The failure of component 1 alone is
not enough for system failure. On the other hand, every failure
of the system implies the failure of component 1 either being
left-censored or being the last to fail. The latter should imply
that one of the other two components, say component 2, failed
before component 1, a case of left-censoring, and component
3 is a right-censored observation.

When a system fails, the failure time of a given component
j may not be observed, but its censored time of failure is.
For all sample units, the system failure times t1, . . . , tn are
recorded. For a specific component j that is not responsible
for one of the n systems that failed at time t , either it is
right-censored, in which case it could still continue to work
after t , or it is censored to the left if it has failed before
t . Another kind of censoring could also occur: Suppose a
machine failure time (a sample unit) is in an interval (L,U ), L
for the observed lower limit and U for the upper limit. If two
or more components failed, they are all interval-censored in
(L,U ). To generalize the notation for all cases of component
failure and censoring, consider the following notation: for a
specific component j of system unit i, let (Lji,Uji) be a general
interval of time in which
• Lji = Uji = ti, if the j-th component failure time causes
the i-th system failure time:

• Lji = ti and Uji = ∞ if the j-th component is right-
censored at ti;
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• Lji = 0 and Uji = ti if the j-th component is left-
censored at ti;

• 0 < Lji < Uji < ∞ if the j-th component is interval-
censored.

It is worth noting that in our approach, it is not necessary
to know the design of the system. The available information
of each unit is the system failure time and the status of its
components in the moment of system failure.

To complete the theoretical environment, let Xj be the
random variable representing the j-th component failure time
with density function f (xj|θj) and with reliability function
R(xj|θj). θj is the parameter, which can be either a scalar or a
vector.

Using the above notation, the likelihood function is as
follows:

L(θj | lj, uj) =
n∏
i=1

[
f (lji|θj)

]I{lji=uji}
×

[
R(lji|θj)− R(uji|θj)

]1−I{lji=uji}
, (1)

where I{TRUE} = 1 or I{FALSE} = 0, lj = (lj1, . . . , ljn) and
uj = (uj1, . . . , ujn).

The likelihood function in (1) is generic and straightfor-
ward for any probability distribution. The distribution con-
sidered here is the three-parameter Weibull. The choice of
this distribution is due to the variation of parameter values
implying changes in both distribution shape and hazard rates.
We can have increasing, decreasing and constant failure rates
in this family of Weibull distributions [18].

The Weibull reliability function is as follows:

R(xj | θj) = exp

[
−

(
xj − µj
ηj

)βj]
,

for xj > 0, where θj = (βj, ηj, µj) and βj > 0 (shape), ηj > 0
(scale) and 0 < µj < xj (location).
The Weibull distribution with two parameters (µj = 0) is

the most celebrated case in the literature. However, the loca-
tion parameter µj that represents the baseline lifetime has
an important meaning in reliability and survival analysis.
In reliability analysis, a component under test may not be
new. In medicine, for instance, a patient may have the dis-
ease before the onset medical appointment. Not taking into
account this initial time can lead to an underestimation of the
other parameters. Clearly, for new component testing,µj may
be 0.

The estimation in this work is performed under a Bayesian
perspective of inference, and thus, the a priori distribution to
θj = (βj, ηj, µj) needs to be defined.
There are situations where information about the func-

tioning of the component through expert opinion and/or past
experience can be expressed in the a priori distributions.
In this work, no prior information about the functioning of the
components is available, and the considered non-informative

prior distribution in this work is

π (βj, ηj, µj) =
1
ηj

1
βj
. (2)

The choice of the priori distribution in (2) guaranttes that
the posterior distribution is a density function, as can be seen
at Theorem 2.

The posterior density of θj = (βj, ηj, µj), combining (1)
and (2), comes out to be

π (βj, ηj, µj | lj, uj)

∝
1
ηj

1
βj
×

n∏
i=1

{(
lji − µj
ηj

)βj−1 βj
ηj

× exp
[
−

(
lji − µj
ηj

)βj]}I{lji=uji}
×

{
exp

[
−

(
lji − µj
ηj

)βj]
− exp

[
−

(
uji − µj
ηj

)βj]}1−I{lji=uji}
(3)

Even though (2) is not a proper prior (its integral is not
finite), the posterior density in (3) is still a proper, as stated
by the following result.
Theorem 2: Let a class of non-informative priors given by

π (βj, ηj, µj) =
1

ηjβ
b
j

, b ≥ 0.

Even though for b ≥ 0, n = 1 and the existence of a failure,
the posterior density in (3) is not proper, and for n > 1,
the posterior in (3) is proper.

Proof: The proof of this result is given in the
Appendix.

The importance of the above result is that one can perform
Bayesian inferences even with little prior information.

Because the posterior density in Equation (3) does not have
a closed form (it is not possible to calculate the constant of
proportionality in an analytical way), statistical inferences
about the parameters can rely on Markov-Chain Monte-
Carlo (MCMC) simulations. Here, we consider an adaptive
Metropolis-Hasting algorithm with a multivariate distribu-
tion [19].

Discarding burn-in (first generated values discarded to
eliminate the effect of the assigned initial values for param-
eters) and jump samples (spacing among generated val-
ues to avoid correlation problems), a sample of size np
from the joint posterior distribution of θj is obtained. For
the j-th component, the sample from the posterior can
be expressed as (βj1, βj2, . . . , βjnp ), (ηj1, ηj2, . . . , ηjnp ) and
(µj1, µj2, . . . , µjnp ). Consequently, posterior quantities of
reliability function R(t | θj) can be easily obtained [20]. For
instance, the posterior mean of the reliability function is

E[R(t | θj) | lj, uj] =
1
np

np∑
k=1

R(t | θjk), t > 0. (4)
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III. MODEL EVALUATION WITH SIMULATED DATA
To evaluate the quality of the model described above, this
section presents simulation studies that are divided into two
parts. First, the interest is in evaluating the effect of censor-
ship in the quality of the proposed estimator. For this purpose,
the proposed uncensored model is compared to its censored
version in different sample sizes. Second, our approach is
compared to the one presented by [16] in scenarios with
different distributions to generate the lifetime of the compo-
nents, the percentages of censor data and the types of complex
system design.

The observed information is the failure time of the n
observed systems and, for each unit that failed, the status of
each component at the system failure time.

To generate the data of each simulated example, with m
being the number of components and n the sample size,
the following steps are considered.

For each system unit i, for i = 1, . . . , n:
1) Draw Xji from a given distribution for j = 1, . . . ,m;
2) Let Ti = h(X1i, . . . ,Xmi), where Ti is the system failure

time and h(·) is the function that relates the system
failure time to the components’ functioning, and it
depends on the system design;

3) For each j component, where ti is the system failure
time:
• If Xji = ti, then lji = ti and uji = ti is recorded;
• If Xji < ti, then lji = 0 and uji = ti is recorded;
• If Xji > ti, then lji = ti and uji = ∞ is recorded;

4) The data set for the j-th component is {(lj1, uj1),
(lj2, uj2), . . . , (ljn, ujn)}.

To obtain posterior quantities, we used an MCMC proce-
dure to generate a sample from the posterior distribution of
the parameters. We generated 20, 000 samples from the pos-
terior distribution of each parameter. The first 10, 000 of these
samples were discarded as burn-in samples. A jump of size
10 was chosen to avoid correlation between the samples. The
final sample size of the parameters generated from the pos-
terior distribution was 1, 000. The chains’ convergence was
monitored in all simulation scenarios for good convergence
results to be obtained. The posterior mean is considered the
point estimator for the reliability function obtained through
our Weibull model. We will denote the posterior mean as
W3PM (Weibull 3-Parameter Model).

A. CENSORSHIP EFFECT IN DIFFERENT SAMPLE SIZES
In this first part of the simulation studies, we consider three
simulated types of data:
• Example 1: Parallel system with m = 4 components,
in which lifetimes are generated by a normal multi-
variate distribution truncated at 0 with mean vector
(205, 210, 215, 211) and covariance matrix

200 10 15 20
10 210 23 25
15 25 215 10
20 25 10 213

.

• Example 2: 2-out-of-3 system in which X1 was gen-
erated from a Weibull distribution with mean 15 and
variance 8, X2 from a gamma distribution with mean 18
and variance 12 and X3 from a log-normal distribution
with mean 20 and variance 10.

• Example 3: Bridge design in which X1 was generated
from aWeibull distribution with mean 17 and variance 8,
X2 from a log-normal distribution with mean 16 and
variance 22, X3 from a log-normal distribution with
mean 15 and variance 15, X4 from a gamma distribution
with mean 15 and variance 6 and X5 from a gamma
distribution with mean 20 and variance 12.

For each simulated example, 40 data sets with different sam-
ples sizes were generated by considering n from 25 to 1000 by
25. The goal is to compare the sample size effect to the pro-
posed estimator. For this purpose, the proposed uncensored
model is compared to its censored version in different sample
sizes.

For Example 1, the percentages of the censored data are
87% for component 1, 77% for component 2, 62% for compo-
nent 3 and 74% for component 4. In Example 2, component 1
is censored in 77.8% of systems, component 2 is censored in
54.4% of systems, and component 3 is censored in 67.8%
of systems. In the Example 3, components 1, 2, 3, 4 and 5
are censored in 80.1%, 69.3%, 90%, 80.8% and 79.8% of
systems, respectively. As one can note, all components have
high percentages of censored data.

A data set is generated for each sample size in each exam-
ple, and we compare the mean absolute error (MAE) from the
estimator in the censored scenario to the uncensored model.
R(t) and R̂(t) are the uncensored reliability function and
the estimate in the censored scenario, respectively. Hence,
the MAE is evaluated by 1

l

∑l
`=1 | R̂(g`) − R(g`) |, where

{g1, . . . , g`, . . . , gl} is a grid in the space of failure times.
The MAE values are presented in figures 6, 7, and 8.

As expected, the MAE values decrease as the sample sizes
increase. In general, the MAE value stabilizes when n = 200
for the three examples.

B. SIMULATION STUDIES WITH DIFFERENT SCENARIOS
In this section, six scenarios with different generators of com-
ponent lifetimes are considered. Also, different percentages
of censored data are considered. Two types of system designs
are used: a bridge system (Figure 3) and a 2-out-of-3 system
(Figure 5). For each scenario, five different sample sizes of
system units are considered (n = 25, 50, 100, 300, 1000).
The W3PM estimates are compared to the nonparametric

estimates of [16], which we will call BSNP (Bhattacharya-
Samaniego Nonparametric Estimator). Their approach can
be used for all components involved in the reliability of any
system, even for more-complex designs. The only necessary
types of information for the computation of the estimates
are the system design and the observed system failure times.
However, in their work, there is the strong restriction that
all the component lifetimes are mutually independent and
identically distributed. Consequently, all components have
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FIGURE 6. MAE values in scenarios with different sample sizes for
components 1 to 4 in example 1.

FIGURE 7. MAE values in scenarios with different sample sizes for
components 1 to 3 in example 2.

the same reliability. The present approach does not have this
limitation.

For each scenario, 1000 copies (data sets) are generated,
and we evaluate the MAE from the estimators to the true
distribution as the comparison measure.

Six scenarios are presented:

• Scenario 1: The same generation as example 2.
• Scenario 2: 2-out-of-3 design, in which X1 was gen-
erated from a log-normal distribution with mean 4 and
variance 7, X2 was generated from a modified Weibull
distribution [21] with mean 2.88 and variance 12.44,

FIGURE 8. MAE values in scenarios with different sample sizes for
components 1 to 5 in example 3.

and X3 was generated from a three-parameter Weibull
distribution with mean 5 and variance 3.

• Scenario 3: 2-out-of-3 design in which X1, X2 and X3
were generated from Weibull distributions with means
10, 11, 10 and variances 2, 10, 8, respectively.

• Scenario 4: 2-out-of-3 design in which X1, X2 and X3
were generated frommodifiedWeibull distributions [21]
with means 1.6, 2.4, 2.9 and variances 6, 4, 13, respec-
tively.

• Scenario 5: The same generation as example 3.
• Scenario 6: Bridge design in which X1 was generated
from a Weibull distribution with mean 4 and variance
15, X2 was generated from a modified Weibull distribu-
tion [21] with mean 5.6 and variance 15, X3 was gen-
erated from a log-normal distribution with mean 6 and
variance 7, X4 was generated from a gamma distribution
with mean 5 and variance 8, and X5 was generated from
a three-parameter Weibull distribution with mean 4 and
variance 8.

Since a component that causes system failure causes the
other components to become right- or left-censored data,
the high percentages of censored data for all scenarios are
shown in Table 1. It can be noted that all components in all
scenarios have high percentages of censored data, with all
cases being higher than 50%, reaching up to 90% (see com-
ponent 3 in scenario 5).

The mean and standard deviation of 1, 000 MAE val-
ues obtained for W3PM and BSNP are presented in
figures 9a to 11b for scenarios 1 to 6. For component 3 from
scenarios 2 and 4, the two estimation methods showed similar
behavior. For the other situations, W3PM always presents
a lower mean of MAE values, and the performance of the
proposed estimator improves as n increases.
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FIGURE 9. Mean (symbol) and standard deviation (bars) of the MAE of
W3PM and BSNP for scenarios 1 and 2. W3PM indicates the posterior
mean obtained by the proposed model, and BSNP indicates the
nonparametric estimation proposed by [16]. (a) Scenario 1. (b) Scenario 2.

IV. APPLICATION
A. DEVICE FROM A FIELD-TRACKING DATA SET
To show the applicability of the proposed method, the relia-
bility estimation of a device in typical service environments
is presented [1]. The device presents two failure modes: an
electrical surge failure (denoted by S) and a wear-out failure
(denoted by W). By taking into account that the system fails
when the first failure mode occurs, one can consider the
device as a series system with two components: mode S and
modeW. In this study, n = 30 devices are observed up to their

FIGURE 10. Mean (symbol) and standard deviation (bars) of the MAE of
W3PM and BSNP for scenarios 3 and 4. W3PM indicates the posterior
mean obtained by the proposed model, and BSNP indicates the
nonparametric estimation proposed by [16]. (a) Scenario 3. (b) Scenario 4.

failure or the end of the test. A total of n = 8 devices (26.67%)
did not fail during the observation period. Half of the devices
(n = 15) failed due to component S and 23.33% of the
devices failed due to component W. Thus, component S has
50% of uncensored observations and 50% of right-censored
observations, and component W has 23.33% of uncensored
observations and 76.67% of right-censored observations.

To obtain posterior quantities related to the posterior dis-
tribution of θ j = (βj, ηj, µj), for j = 1, 2, from (3) through
MCMC simulations, we discarded the first 10, 000 as burn-
in samples and used a jump size of 30 to avoid correlation
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FIGURE 11. Mean (symbol) and standard deviation (bars) of the MAE of
W3PM and BSNP for scenarios 5 and 6. W3PM indicates the posterior
mean obtained by proposed model, and BSNP indicates the
nonparametric estimation proposed by [16]. (a) Scenario 5. (b) Scenario 6.

problems, obtaining a sample of size 1, 000. The chains’
convergence was monitored, and good convergence results
were obtained.

Table 2 lists the posterior means and posterior standard
deviation for the parameters of shape (βj), scale (ηj), location
(µj) and expected time of components’ lifetimes, E(Xj|θ j) =
µj + ηj0(1+ (1/βj)), for j = 1, 2, in which it is the expected
value of a three-parameter Weibull distributed random vari-
able. The posterior means of the expected time of the com-
ponent lifetimes are 554.22 thousand cycles for component S
and 311.13 thousand cycles for component W. The posterior

TABLE 1. Percentage of censored data for each component in each
scenario.

TABLE 2. Posterior mean and posterior standard deviation of proposed
model parameters and mean time of component lifetimes for the device
from a field-tracking data set.

mean and the 95% highest posterior density (HPD) point-
wise band of the reliability function are illustrated in fig-
ures 12a and 12b.

B. BOYS’ FIRST USE OF MARIJUANA DATA SET
A social study is considered in which the proposed method-
ology can be suitably applied. The data are analyzed by [22].
In this study, n = 191 California high school boys were
asked about their first use of marijuana. The answers were
age in years if the responder did use and remember his age
or ‘‘I never used it’’ (which are right-censored observations
of the boys’ current ages) or ‘‘I have used it but I cannot
remember the exactly time for my first use of the drug’’
(which is a left-censored observation case) [22].

Reference [22] analyzed the data through Turnbull’s esti-
mator [23]. In their approach, boys who remember their
ages when they first used the drug produced uncensored
observations. Consider, for instance, a boy saying that he
used the drug for the first time at 13 years old and, more
specifically, that it happened when he was 13 years and
11 months old. He would be considered a subject with an
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FIGURE 12. Posterior mean and 95% HPD point-wise band (CI 95%) of
reliability function for the lifetimes of components S and W.
(a) Component S. (b) Component W.

uncensored observation at the age of 13 by the Klein and
Moeschberger analysis, even if his age of use was closer to
14 years. We believe that this kind of information should be
considered an interval-censored observation at [13, 14), and
his information would be properly taken as interval-censored
in our likelihood, the second factor of the right-hand side of
equation (1). In this way, all data are censored: either right-,
left-, or interval-censored data.

To obtain posterior quantities related to the posterior distri-
bution of θ = (β, η, µ) from (3) throughMCMC simulations,
we discarded the first 10, 000 as burn-in samples and used a
jump of size 20 to avoid correlation problems, obtaining a

TABLE 3. Posterior mean and posterior standard deviation of proposed
model parameters and mean time of first use of marijuana.

FIGURE 13. Posterior mean and 95% HPD point-wise band of reliability
function for time to first use of marijuana.

sample size of 1, 000. The chains’ convergence was moni-
tored for good convergence results to be obtained.

Table 3 lists the posterior means and posterior standard
deviation for the parameters of shape (β), scale (η), location
(µ) and expected time of first use of marijuana, E(X |θ ) =
µ+ η0(1+ (1/β)). The posterior mean of the expected time
of first marijuana use is 15.05 years. The posterior mean and
the 95% highest posterior density (HPD) point-wise band of
the reliability function are illustrated in Figure 13.

V. FINAL REMARKS
A Bayesian Weibull model for component reliability was
proposed. Identical distributions of component lifetimes were
not imposed. The proposed methodology is said to be general
because it can be used for any coherent system, from the sim-
plest to the most complex designs. It is also appropriate for all
kinds of censored data, including interval-censored, allowing
it to be used in survival problems. In estimation processes,
satisfactory results about the convergence of the MCMC
method were obtained, and it was proved that the posterior
is proper even when using prior distributions chosen from
a family of non-informative prior distributions. We worked
with the Bayesian Weibull model. However, it is quite simple
to extend the work to other distributions or even to the pure
likelihood approach [24].

Reference [16] also considered coherent systems, as we
have here. However, the assumption of independent and
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identically distributed component lifetimes excludes the use
of their method for most practical applications. On the other
hand, their methodology does not require the choice of a
parametric family of distributions. For positive random vari-
ables, we believe that the three-parameter Weibull family
is a very rich family, since most real situations will have
random aspects that can be represented by an component of
the family.

Both methods were evaluated in scenarios with differ-
ent distributions for the generation of component lifetimes,
different percentages of censored data and different sample
sizes. The observed information consists of the failure time
of systems and the status of each component at the moment
of each system failure. The simulation study showed excellent
performance of the proposed estimator and that its advan-
tage increases with the sample size. For the cases where the
W3PM did not perform better, it was still very close to the
performance of BSNP.

The practical relevance was assessed in two real data
sets. The first is device from a field-tracking with two
components in series, and the second is a social study in
which interval-censored data appears. The proposed method-
ology can be suitably applied data sets. We also believe
that for future work, our methodology can be used to per-
form reverse engineering. Using model selection Bayesian
techniques, as in [25], that use a mixture of reliability esti-
mates, one can choose one out of several alternative reliability
systems.

APPENDIX
PROOF OF THEOREM 1
The proof for a series system was given by [17]. To prove
the Theorem 1, we show that the condition is necessary for a
parallel system. Then, we extend it to a series-parallel system
and a parallel-series system. Finally, using the arguments for
these results, we conclude with the condition for coherent
systems.

The j-th sub-reliability function evaluated at time t is the
probability that the system survives at least t and that the
failure of the j-th component produced the system failure, that
is, Gj(t) = Pr

{
(T > t) ∩ (δ = j)

}
. Let Qj(t) = Pr

{
(T ≤

t)∩ (δ = j)
}
be the j-th sub-distribution function evaluated at

time t .
Let R1,...,m(t1, . . . , tm) = Pr

{⋂m
j=1(Xj > tj)

}
and

F1,...,m(t1, . . . , tm) = Pr
{⋂m

j=1(Xj ≤ tj)
}

be the joint
reliability and the joint distribution functions, respectively,
in which continuous partial derivatives with respect to all of
its arguments are assumed.

The failure time of a parallel system with m components is
T = max{X1, . . . ,Xm}. Reference [8] proved the following
lemma.
Lemma 1: The derivative of Qj(t), dQj(t)/ dt , is equal

to the partial derivative of F1,...,m(t1, . . . , tm) at the
jth component, evaluated at t1 = t2 = . . . = tm = t .

If the components’ lifetimes are assumed to be mutually
independent,

F1,...,m(t1, . . . , tm) =
m∏
j=1

Fj(tj). (5)

Using the fact in (5) and the Lemma 1,

dQj(t)
dt
= uj(t)

m∏
j=1

Fj(t), (6)

where uj is the reversed hazard rate (RHR) of the jth compo-
nent:

uj(t) =
fj(t)
Fj(t)

=
d
dt

ln(Fj(t)).

Note that

Fj(t) = exp{−(− ln(Fj(t)))}

= exp
{
− [ln(Fj(∞))− ln(Fj(t))]

}
= exp

{
−

∫
∞

t

fj(y)
Fj(y)

dy
}

= exp
{
−

∫
∞

t
uj(y) dy

}
. (7)

Letting u(y) =
∑m

j=1 uj(y), (6) becomes

dQj(t)
dt
= uj(t) exp

{
−

∫
∞

t
u(y) dy

}
.

Lemma 1 indicates that any given joint distribution func-
tion uniquely determines the sub-distribution functions

Qj(t) =
∫ t

0

[
dF1,...,m(y1, . . . , ym)

dyj

∣∣∣∣
y1=y2=...=ym=y

]
dy.

Lemma 2 (For Parallel System): Let X1, . . . ,Xm be the
failure time of the m components involved in a parallel sys-
tem. Whatever the set of sub-distribution functions Qj(t), for
j = 1, . . . ,m, there exists a system of marginal distribution
functions, say, F∗j (t) for j = 1, 2, . . . ,m. This, combined
with the assumption that the components’ failure times are
mutually independent, implies the sub-distribution functions
Q∗j (t) that coincide with the given Qj(t).

Proof of Lemma 2: The proof consists in solving the
equations

dQj(t)
dt
= u∗j (t) exp

{
−

∫
∞

t
u∗(y) dy

}
, j = 1, . . . ,m,

(8)

with respect to the u∗j (t), where u
∗(t) =

∑m
j=1 u

∗
j (t). Taking

now the sum for j = 1, . . . ,m, we obtain
m∑
j=1

dQj(t)
dt
= u∗(t) exp

{
−

∫
∞

t
u∗(y) dy

}

=
d
dt

exp
{
−

∫
∞

t
u∗(y) dy

}
.
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Consequently,
m∑
j=1

Qj(t) = exp
{
−

∫
∞

t
u∗(y) dy

}
,

which combined with (8), leads to

u∗j (t) =
dQj(t)/ dt∑m
j=1 Qj(t)

.

Finally, (7) implies

F∗j (t) = exp
{
−

∫
∞

t

dQj(y)∑m
j=1 Qj(y)

}
. (9)

The substitution of F∗j and u∗j into (6) will produce

dQ∗j (t)

dt
= u∗j (t)

m∏
j=1

F∗j (t)

=
dQj(t)/ dt∑m
j=1 Qj(t)

exp
{
−

∫
∞

t

∑m
j=1 dQj(y)∑m
j=1 Qj(y)

}

=
dQj(t)/ dt∑m
j=1 Qj(t)

exp
{
−

[
log

( m∑
j=1

Qj(∞)
)

− log
( m∑
j=1

Qj(t)
)]}

=
dQj(t)/ dt∑m
j=1 Qj(t)

exp
{
log

( m∑
j=1

Qj(t)
)}

=
dQj(t)
dt

,

that is, the derivative of Q∗j coincides with that of Qj.
Now, let X1,X2, and X3 be the lifetimes of three compo-

nents of a series-parallel system (SPS) represented in Fig-
ure 2b. For component 1 in the SPS representation, we have
that

G1(t) = Pr
{
(T > t) ∩ (δ = 1)

}
= Pr

{
(X1 > t) ∩ (Y > X1)

}
,

where Y = max{X2,X3} and T = min{X1,max{X2,X3}}.
Let R1,Y (t1, y) = Pr((X1 > t1) ∩ (Y > y)), and we have

that

dG1(t)
dt
=

dR1,Y (t1, y)
dt1

∣∣∣∣
t1=y=t

. (10)

If X1 and Y are assumed to be independent,

R1,Y (t1, y) = R1(t1)RY (y). (11)

Using the facts in (11) and (10)

dG1(t)
dt
= −r1(t)R1(t)RY (t),

where

rj(t) = −
d
dt

lnRj(t)

and

Rj(t) = exp
{
−

∫ t

0
rj(x) dx

}
. (12)

By the results of [17], we have that

r1(t) = −
G1(t)

G1(t)+ GY (t)
,

in which GY (t) = Pr{(Y > t) ∩ (X1 > Y )} and

R1(t) = exp
{∫ t

0

dG1(x)
G1(x)+ GY (x)

}
. (13)

Since the system is in a series of component 1 with a
maximum of components 2 and 3, we can use the result
of [17] that whatever the set of sub-reliability functionsG1(t)
is, there exists marginal reliability functions, say, R∗1(t), that,
combined with the assumption that component 1 failure time
is independent of Y , implies the sub-reliability functions
G∗1(t) that coincide with the given G1(t).
For component 2 in the SPS representation, we have

that

Q2(t) = Pr
{
(T ≤ t) ∩ (δ = 2)

}
= Pr

{
(X1 > X2) ∩ (X2 ≤ t) ∩ (X3 < X2)

}
.

Lemma 3: For the system SPS in Figure 2b, the derivative
of Q2(t), dQ2(t)/ dt is given by

dQ2(t)
dt

=
dF2,3(t2, t3)

dt2

∣∣∣∣
t2=t3=t

−
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣
t1=t2=t3=t

.

Proof of Lemma 3: The difference

Q2(t + h)− Q2(t)

= Pr
{
(X1 > X2) ∩ (t < X2 ≤ t + h) ∩ (X3 < X2)

}
(14)

has lower bound

Pr
{
(X1 > t + h∗) ∩ (t < X2 ≤ t + h∗) ∩ (X3 < t)

}
= F1,2,3(∞, t + h, t)− F1,2,3(∞, t, t)

− [F1,2,3(t + h∗, t + h, t)− F1,2,3(t + h∗, t, t)], (15)

and upper bound

Pr
{
(X1 > t) ∩ (t < X2 ≤ t + h∗) ∩ (X3 < t + h∗)

}
= F1,2,3(∞, t + h, t + h∗)− F1,2,3(∞, t, t + h∗)

− [F1,2,3(t, t + h, t + h∗)− F1,2,3(t, t, t + h∗)]. (16)
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By dividing (14), (15) and (16) by h and applying the limit
as h→ 0, we obtain for all h∗ > 0,

dF1,2,3(t1, t2, t3)
dt2

∣∣∣∣ t1=∞,
t2=t3=t

−
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣ t1=t+h∗,
t2=t3=t

≤
dQ2(t)
dt

≤
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣ t1=∞,
t2=t,

t3=t+h∗

−
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣ t1=t2=t,
t3=t+h∗

.

Now, taking the limit h∗→ 0 produces the desired result

dQ2(t)
dt

=
dF2,3(t2, t3)

dt2

∣∣∣∣
t2=t3=t

−
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣
t1=t2=t3=t

. (17)

Thus,

Q2(t) =
∫ t

0

[
dF2,3(y2, y3)

dy2

∣∣∣∣
y2=y3=y

−
dF1,2,3(y1, y2, y3)

dy2

∣∣∣∣
y1=y2=y3=y

]
dy.

If the components’ lifetimes are assumed to be mutually
independent, using the fact in (5) and (17), we have that

dQ2(t)
dt
= u2(t)

{
F2(t)F3(t)[1− F1(t)]

}
. (18)

Lemma 4 (For Component 2 of the SPS in Figure 2b): Let
X1,X2,X3 be the failure times of the 3 components involved
in a series-parallel system given in Figure 2b. Whatever the
set of sub-distribution functions Q2(t), there exists a system
of marginal distribution functions, say, F∗2 (t), that, combined
with the assumption that the components’ failure times are
mutually independent, implies the sub-distribution functions
Q∗2(t) coincide with the given Q2(t).

Proof of Lemma 4: The proof consists in solving the
equations

dQ2(t)
dt
= u∗2(t)

{
F∗2 (t)F3(t)[1− F1(t)]

}
,

with respect to the u∗2(t).
By (7), we have that

F2(t) = exp
{
−

∫
∞

t
u2(y) dy

}
.

We can write the integration as∫
∞

t
u2(y) dy =

∫
∞

t

dF2(x)
F2(x)

=

∫
∞

t

[1− F1(x)]F3(x) dF2(x)
[1− F1(x)]F3(x)F2(x)

. (19)

From (18), we have that dQ2(x) = [1− F1(x)]F3(x) dF2(x).
The system distribution function of the SPS system

(T = min{X1,max{X2,X3}}) is F(t) = 1 − [1 − F1(t)][1 −
F2(t)F3(t)]. Thus, F(t) − F1(t) = [1 − F1(t)]F2(t)F3(t).
In this way, we can write (19) as∫

∞

t
u2(y) dy =

∫
∞

t

dQ2(x)
F(x)− F1(x)

=

∫
∞

t

dQ2(x)∑3
j=1 Qj(x)−8s(Q1,Q2,Q3, x)

,

in which

8s(Q1,Q2,Q3, t) = 1− exp
{∫ t

0

− dQ1(t)

1−
∑3

j=1 Qj(t)

}
,

once F(t) =
∑3

j=1 Qj(t) and R1(t) = 1−F1(t) can be written
as

R1(t) = exp
{∫ t

0

− dQ1(t)

1−
∑3

j=1 Qj(t)

}
,

what is obtained by (13) considering QY (t) = Q2(t)+Q3(t),
under independence assumption.

Thus,

u∗2(t) =
dQ2(t)/ dt∑3

j=1 Qj(t)−8s(Q1,Q2,Q3, t)

and

F∗2 (t) = exp
{
−

∫
∞

t

dQ2(x)∑3
j=1 Qj(x)−8s(Q1,Q2,Q3, x)

}
.

The substitution of u∗2 into (18) will yield

dQ∗2(t)

dt
= u∗2(t)

{ 3∑
j=1

Qj(t)−8s(Q1,Q2,Q3, t)
}

=
dQ2(t)/ dt∑3

j=1 Qj(t)−8s(Q1,Q2,Q3, t)

×

{ 3∑
j=1

Qj(t)−8s(Q1,Q2,Q3, t)
}

=
dQ2(t)
dt

,

that is, the derivative of Q∗2 coincides with that of Q2.
For component 3, we have that

Q3(t) = Pr
{
(T ≤ t) ∩ (δ = 3)

}
= Pr

{
(X1 > X3) ∩ (X2 < X3) ∩ (X3 ≤ t)

}
.

Thus, the proof for component 3 is analogous to that pre-
sented for component 2.

Now, let X1,X2 and X3 be the lifetimes of three compo-
nents of a parallel-series system (PSS) with representation in
Figure 2a.
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For component 1 in the PSS representation, we have that

Q1(t) = Pr
{
(T ≤ t) ∩ (δ = 1)

}
= Pr

{
(X1 ≤ t) ∩ (W < X1)

}
,

where W = min{X2,X3} and T = max{X1,min{X2,X3}}.
Since the system is in parallel of component 1 with the min-
imum of components 2 and 3, we can consider the Lemma 2
for component 1.

For component 2 in the PSS representation, we have that

Q2(t) = Pr
{
(T ≤ t) ∩ (δ = 2)

}
= Pr

{
(X1 < X2) ∩ (X2 ≤ t) ∩ (X3 > X2)

}
.

Lemma 5: For the system PSS in Figure 2a, the derivative
of Q2(t), dQ2(t)/ dt is given by

dQ2(t)
dt

=
dF1,2(t1, t2)

dt2

∣∣∣∣
t1=t2=t

−
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣
t1=t2=t3=t

.

Proof of Lemma 5: The difference

Q2(t + h)− Q2(t)

= Pr
{
(X1 < X2) ∩ (t < X2 ≤ t + h) ∩ (X3 > X2)

}
(20)

has lower bound

Pr
{
(X1 < t) ∩ (t < X2 ≤ t + h∗) ∩ (X3 > t + h∗)

}
= F1,2,3(t, t + h,∞)− F1,2,3(t, t,∞)

− [F1,2,3(t, t + h, t + h∗)− F1,2,3(t, t, t + h∗)], (21)

and upper bound

Pr
{
(X1 < t + h∗) ∩ (t < X2 ≤ t + h∗) ∩ (X3 > t)

}
= F1,2,3(t + h∗, t + h,∞)− F1,2,3(t + h∗, t,∞)

− [F1,2,3(t + h∗, t + h, t)− F1,2,3(t + h∗, t, t)]. (22)

By dividing (20), (21) and (22) by h and applying the limit
as h→ 0, we obtain for all h∗ > 0,

dF1,2,3(t1, t2, t3)
dt2

∣∣∣∣ t1=t2=t,
t3=∞

−
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣ t1=t2=t,
t3=t+h∗

≤
dQ2(t)
dt

≤
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣ t1=t+h∗,
t2=t,

t3=∞

−
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣ t1=t+h∗,
t2=t3=t

.

Now, taking the limit h∗→ 0 produces the desired result

dQ2(t)
dt

=
dF1,2(t1, t2)

dt2

∣∣∣∣
t1=t2=t

−
dF1,2,3(t1, t2, t3)

dt2

∣∣∣∣
t1=t2=t3=t

. (23)

If the components’ lifetimes are assumed to be mutually
independent, using the fact in (5) and (23),

dQ2(t)
dt
= −r2(t)

{
[1− F2(t)]F1(t)[1− F3(t)]

}
, (24)

Lemma 6 (For Component 2 of the PSS in Figure 2a): Let
X1,X2,X3 be the failure times of the 3 components involved
in a parallel-series system given in Figure 2b. Whatever the
set of sub-distribution functions Q2(t), there exists a system
of marginal distribution functions, say, F∗2 (t), that, combined
with the assumption that the components’ failure times are
mutually independent, implies the sub-distribution functions
Q∗2(t) coincide with the given Q2(t).

Proof of Lemma 6: The proof consists in solving the
equations

dQ2(t)
dt
= −r∗2 (t)

{
[1− F∗2 (t)]F1(t)[1− F3(t)]

}
,

with respect to the r∗2 (t).
By (12), we have that

R2(t) = 1− F2(t) = exp
{
−

∫ t

0
r2(y) dy

}
.

We can write the integration as∫ t

0
r2(y) dy =

∫ t

0
−

d[1− F2(x)]
[1− F2(x)]

=

∫ t

0
−
F1(x)[1− F3(x)] d[1− F2(x)]
F1(x)[1− F3(x)][1− F2(x)]

(25)

From (24), we have that dQ2(x) = F1(x)[1 − F3(x)] d[1 −
F2(x)]. The system distribution function of the PSS system is
F(t) = F1(t){1−[1−F2(t)][1−F3(t)]}. Thus, F1(t)−F(t) =
F1(t)[1− F2(t)][1− F3(t)]. In this way, we can write (25) as∫ t

0
r2(y) dy =

∫
∞

t
−

dQ2(x)
F1(x)− F(x)

=

∫ t

0
−

dQ2(x)

8p(Q1,Q2,Q3, x)−
∑3

j=1 Qj(x)
,

in which

8p(Q1,Q2,Q3, t) = exp
{∫

∞

t
−

dQ1(t)∑3
j=1 Qj(t)

}
,

once F1(t) can be written as (9) and F(t) =
∑3

j=1 Qj(t).
We have that

r∗2 (t) = −
dQ2(x)

8p(Q1,Q2,Q3, x)−
∑3

j=1 Qj(x)
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and

F∗2 (t) = 1− exp
{
−

∫ t

0

dQ2(x)

8p(Q1,Q2,Q3, x)−
∑3

j=1 Qj(x)

}
.

The substitution of r∗2 into (24) will produce the derivative of
Q∗2, which coincides with that of Q2.

For component 3, we have that

Q3(t) = Pr
{
(T ≤ t) ∩ (δ = 3)

}
= Pr

{
(X1 < X3) ∩ (X2 > X3) ∩ (X3 ≤ t)

}
.

Thus, the proof for component 3 is analogous to that pre-
sented for component 2.

Proof of Theorem 1: Considering the interest in directly
accessing the marginal distribution of each component in
a coherent system, we have that: 1) the series and parallel
systems are particular cases of the class of coherent systems;
2) any coherent system can be written as a combination of
PSS and SPS. Therefore, the lemmas 1 to 6, together with
the results from [17], show that without the hypothesis that
the components’ survival times are mutually independent,
the model of marginal survival times is unidentifiable: the
set of sub-reliability functions (sub-distribution functions) is
consistent with an infinity of joint reliability functions (joint
distribution functions) for coherent systems.

PROOF OF THEOREM 2
Proof: We have to show that∫ min{t}

0

∫
∞

0

∫
∞

0
π (βj, ηj, µj | lj, uj) dβj dηj dµj <∞,

where

π (βj, ηj, µj | lj, uj) ∝ π (βj, ηj, µj)

×

n∏
i=1

{(
lji − µj
ηj

)βj−1 βj
ηj

exp

[
−

(
lji − µj
ηj

)βj]}I{lji=uji}

×

{
exp

[
−

(
lji − µj
ηj

)βj]
− exp

[
−

(
uji − µj
ηj

)βj]}1−I{lji=uji}
.

Because this proof works for all j, we will omit the j index.
For n = 1 and l1 = u1,∫ l1

0

∫
∞

0

∫
∞

0

1
ηβb

(
l1 − µ
η

)β−1
β

η

× exp

[
−

(
l1 − µ
η

)β]
dβ dη dµ

=

∫ l1

0

∫
∞

0

1
βb

∫
∞

0

β(l1 − µ)β−1

ηβ+1

× exp

{
−

(
l1 − µ
η

)β}
dη dβ dµ. (26)

Let X be a random variable that, given α and γ , follows an
inverse gamma distribution. Its density function is expressed
as

f (x | α, γ ) =
γ α

0(α)
x−α−1 exp

{
−
γ

x

}
, α > 0 and γ > 0.

Consider the variable change: [(l1 − µ)/η]β = γ /x, from
which it follows that (l1 − µ)β dx = γβηβ−1 dη, so the
integral expression in (26) can be written as∫ l1

0

∫
∞

0

1
βb

∫
∞

0

(γ
x

)2 1
(l1 − µ)γ

exp
{
−
γ

x

}
dx dβ dµ

=

∫ l1

0

∫
∞

0

1
βb(l1 − µ)

∫
∞

0
γ x−2 exp

{
−
γ

x

}
dx dβ dµ

=

∫ l1

0

∫
∞

0

1
βb(l1 − µ)

dβ dµ

= ∞.

In summary, for n = 1 and l1 = u1,∫ l1

0

∫
∞

0

∫
∞

0
π (β, η, µ | l1, u1) dβ dη dµ = ∞.

Consider that for a sample of size n, n > 1, data are
observed such that li = ui, for i = 1, . . . , nf and li 6= ui
for i = nf+1, . . . , n.

π (β, η, µ | l, u) ∝ π (β, η, µ)

×

nf∏
i=1

[(
li − µ
η

)β−1
β

η
exp

{
−

(
(li − µ)
η

)β}]

×

n∏
i=nf+1

[
exp

{
−

(
li − µ
η

)β}
−exp

{
−

(
ui − µ
η

)β}]
,

where tl = (tl1, . . . , tln), for l = 1, 2.
Because li < ui, for all i = 1, . . . , n, we have that

exp

{
−

(
li − µ
η

)β}
> exp

{
−

(
ui − µ
η

)β}
.

In this way,

π (β, η, µ | l, u)

∝ π (β, η, µ)
nf∏
i=1

[(
li − µ
η

)β−1
β

η
exp

{
−

(
li − µ
η

)β}]

×

n∏
i=nf+1

[
exp

{
−

(
li − µ
η

)β}
−exp

{
−

(
ui − µ
η

)β}]

< π (β, η, µ)
nf∏
i=1

[(
li − µ
η

)β−1
β

η
exp

{
−

(
li − µ
η

)β}]

×

n∏
i=nf+1

[
exp

{
−

(
li − µ
η

)β}]
.
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Thus, it is necessary only to evaluate the upper bound, that is,∫ min{t}

0

∫
∞

0

∫
∞

0
π (β, η, µ)

×

nf∏
i=1

[(
li − µ
η

)β−1
β

η
exp

{
−

(
li − µ
η

)β}]

×

n∏
i=nf+1

[
exp

{
−

(
li − µ
η

)β}]
dβ dη dµ <∞. (27)

Let tmi = li−µ and consider first the integrals in β and η,
that is,

I =
∫
∞

0

∫
∞

0
π (β, η, µ)

nf∏
i=1

[(
tmi
η

)β−1
β

η

× exp
{
−

(
tmi
η

)β}] n∏
i=nf+1

[
exp

{
−

(
tmi
η

)β}]
dβ dη

=

∫
∞

0

∫
∞

0

1
βbη

nf∏
i=1

[(
tmi
η

)β−1
β

η

]

×

n∏
i=1

[
exp

{
−

(
tmi
η

)β}]
dβ dη

=

∫
∞

0

∫
∞

0

1
βbη

βnf

ηβnf

nf∏
i=1

[
tβ−1mi

]

× exp
{
−

n∑
i=1

(
tmi
η

)β}
dβ dη. (28)

Consider again the variable change:
(∑n

i=1 t
β
mi/η

β
)
=

γ /x, from which it follows that
∑n

i=1 t
β
mi dx = γβη

β−1 dη.
Thus, we can write the expression in (28) as∫

∞

0

β−b[∑n
i=1 t

β
mi

]nf nf∏
i=1

[
tβ−1mi

]
×

∫
∞

0
βnf−1γ nf x−nf−1 exp

{
−
γ

x

}
dx dβ

=

∫
∞

0

βnf−b−1[∑n
i=1 t

β
mi

]nf nf∏
i=1

[
tβ−1mi

]
0(nf )

×

∫
∞

0

γ nf

0(nf )
x−nf−1 exp

{
−
γ

x

}
dx dβ

=

∫
∞

0

βnf−b−1[∑n
i=1 t

β
mi

]nf nf∏
i=1

[
tβ−1mi

]
0(nf ) dβ.

Let c be a real positive number such that c >
∏nf

i=1 t
−1
mi , and

consider also t1v such that t1v < max (tm1, . . . , tmnf ). In this
way, for all b > 0, we have that∫
∞

0
βnf−b−10(nf )

∏nf
i=1 t

β−1
mi[∑n

i=1 t
β
mi

]nf dβ

<

∫
∞

0
cβnf−b−10(nf )

∏nf
i=1 t

β
mi[∑n

i=1 t
β
mi

]nf dβ

<

∫
∞

0
cβnf−b−10(nf )

∏nf
i=1 t

β
mi[∑nf

i=1 t
β
mi

]nf dβ

< c0(nf )
∫
∞

0
βnf−b−1

[
t1v

max(tm1, . . . , tmnf )

]β
dβ. (29)

Let h = t1v/max(tm1, . . . , tmnf ). We can write the last
expression in (29) as

c0(nf )
∫
∞

0
βnf−b−1hβ dβ

= c0(nf )
∫
∞

0
βnf−b−1 exp {β ln(h)} dβ. (30)

Considering the variable change v = −β ln(h), we have
that dv = − ln(h) dβ, and (30) can be expressed as

c0(nf )
∫
∞

0

(
1
| ln(h)|

)nf−b
vnf−b−1 exp{−v} dv,

since h < 1. Let c2 = c0(nf )
(

1
| ln(h)|

)nf−b
. In this way,

c2

∫
∞

0
vnf−b−1 exp{−v} dt < c2

∫
∞

0
vz−1 exp{−v} dv <∞,

(31)

where z is the smallest positive integer larger than nf − b.
The result in (31) is valid, since for all positive integer a,

0(a) =
∫
∞

0
va−1 exp{−v} dv <∞.

In this way, we have that

I =
∫
∞

0

∫
∞

0
π (β, η, µ)

×

nf∏
i=1

[(
tmi
η

)β−1
β

η
exp

{
−

(
tmi
η

)β}]

×

n∏
i=nf+1

[
exp

{
−

(
tmi
η

)β}]
dβ dη <∞ (32)

Returning to equation (27) and considering (32), we finally
have that∫ min{t}

0

∫
∞

0

∫
∞

0
π (β, η, µ)

×

nf∏
i=1

[(
tmi
η

)β−1
β

η
exp

{
−

(
tmi
η

)β}]

×

n∏
i=nf+1

[
exp

{
−

(
tmi
η

)β}]
dβ dη dµ <∞.
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