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ABSTRACT In this paper, we propose a hybrid coordinated control method based on port-controlled
Hamiltonian and backstepping to improve the position tracking performance for two degree of freedom
SCARA robot. The port-controlled Hamiltonian (PCH) control is designated to ensure the stability of the
system, and the backstepping control targets to improve the response speed of the system. Exponential
function is used as a coordination function to achieve the coordinated control strategy to adapt to the
position tracking control of 2-DOF SCARA robot. This hybrid coordination control system not only realizes
a quick tracking control, but also improves the steady-state performance of the output signal. The simulation
results show that when the external interference exists in the mechanical system of a 2-DOF SCARA robot,
the hybrid tracking control system takes on the advantages of both methods, which shows good dynamic
performance, good steady-state performance, and strong resistance to external interference.

INDEX TERMS 2-DOF SCARA robot, port-controlledHamiltonian, backstepping control, position tracking
control.

I. INTRODUCTION
Scara robots, known as selective compliance assembly robot
arm, have been widely used in the assembly, welding, han-
dling and other industries. Meanwhile, there is an increasing
demand for a higher speed and repeatability precision of the
SCARA robot [1]. Since themanipulator is a highly nonlinear
system, using only one method is difficult to achieve good
dynamic and stability performance. The sliding mode surface
of sliding mode control is undisturbed by changes of object
parameters and the external disturbance, and therefore, the
sliding mode control has strong robustness. However, the
chattering phenomenon comes with it [3], [4]. Fuzzy control
does not need to establish an accurate mathematical model,
but its steady-state performance is unsatisfactory [5]. Adap-
tive control can modify its own characteristics to adapt to the
changes in dynamic characteristics and parameters, but the
adaptive control theory is not yet integrated, the parameter
setting is difficult and the application field is limited [6].
Neural network has powerful capability in nonlinear fit-
ting and precision, but the control algorithm is complicated,
and the setting of the network structure and parameters are

difficult [7]. The backstepping method can ensures the stabil-
ity of the whole system by designing the Lyapunov function
and inter virtual control variable for each subsystem, until
‘‘back’’ to the whole system. The integral links are connected
in series to form the whole system control [8]. In recent years,
with the development of non-linear control, Port-Controlled
Hamiltonian (PCH) has attracted much attention. The Hamil-
tonian function, the sum of potential energy and kinetic
energy in physical systems, is a good candidate of Lyapunov
functions formany physical systems. Due to this, the practical
control designs and stability analysis of the nonlinear system
can be simple [9]–[17]. In our previous study, we found that
system using PCH control method could not respond quickly
to transient large load changes. To address this drawback,
we propose a hybrid control method of PCH and backstep-
ping for the 2-DOF SCARA robot.

The paper is organized as follows. In Section II the kinetic
model of the state error PCH systems is briefly given.
The PCH controller and backstepping controller design for
2-DOFSCARA robot are detailed in Section III. In Section IV
the hybrid control strategy is introduced. Section V reports
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FIGURE 1. The 3D model of 2-DOF SCARA robot.

and discusses two descriptive instances, which is followed
by the conclusion in Section VI.

II. THE KINETIC MODEL OF 2-DOF SCARA ROBOT
The 3D model of the robot established in ADAMS is shown
in Fig. 1.

Then the kinetic model of 2-DOF SCARA robot is deduced
based on the D-H coordinate method. The kinetic model can
be described by

τ = M (q) q̈+ C (q, q̇) q̇ (1)

where τ is the control torque; q ∈ R2 is angular displacement
vector; q̇ ∈ R2 is angular velocity vector; q̈ ∈ R2 is angular

acceleration vector; M (q) =
[
M11 M12
M21 M22

]
is the inertial

matrix; in whichM11 = 0.006012 cos q2 − 0.00507 sin q2 +
0.065; M12 = M21 = 0.003006 cos q2 − 0.002535 sin q2 +

0.02934; M22 = 0.02934; C (q, q̇) =
[
C11 C12
C21 C22

]
is

the Coriolis force and centripetal force; in which C11 =

(−0.01788 sin q2)q̇2; C12 = (−0.0008934 sin q2)q̇2; C21 =

(0.0008934 sin q2)q̇1; C22 = 0.

III. THE HYBRID CONTROL PRINCIPLE OF 2-DOF
SCAR ROBOT
The system chart of hybrid control method based on PCH and
backstepping is shown in Fig. 2.

A. DESIGN OF PCH CONTROLLER
1) PCH SYSTEM
The concept of energy dissipation is introduced into the
PCH system, and themodel of Port-Control Hamiltonianwith
dissipation (PCHD) can be expressed by

ẋ = f (x)+ g (x) τPCH = [J (x)− R (x)] ∂H(x)
∂x

+g (x) τPCH
y = h (x) = gT (x) ∂H(x)

∂x

(2)

where x ∈ R4 is the state variable, τPCH ∈ R2 is input
variable, y ∈ R2 is output variable, R (x) = RT (x) ≥ 0,
J (x) = −JT (x). R (x) is the semi-positive definite sym-
metric matrix and it reflects additional resistive structure on
the port; J (x) is anti-symmetric matrix and it reflects the

FIGURE 2. The system chart of hybrid control based on PCH and
backstepping.

interconnection structure in the system; g (x) reflects the port
characteristics of the system.

2) ESTABLISHMENT OF PCH MODEL FOR
2-DOF SCARA ROBOT
Define the state variable and input variable of system as
follow

x =
[
q
p

]
=


q1
q2
p1
p2

 =

1 0 0 0
0 1 0 0
0 0 M11 M12
0 0 M12 M22



q1
q2
q̇1
q̇2


τPCH =

[
τ1−PCH τ2−PCH

]T (3)

where q = [q1q2]T is angular position vector; q̇ =

[q̇1q̇2]T is angular velocity vector; p =
[
p1 p2

]T
=[

M11 M12
M12 M22

] [
q̇1
q̇2

]
; τPCH =

[
τ1−PCH τ2−PCH

]T is angular

control torque.
The PCH system of SCARA robot is the sum of the kinetic

and potential energy of the system. Thus the PCH system can
be described by

H (q, p) =
1
2
pTM−1 (q) p+ U (q) (4)

From (3) and (4), we can derive the PCH model of 2-DOF
SCARA robot, which is shown as

ẋ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




0
C12q̇1
q̇1
q̇2



+


0
0
1
0

0
0
0
1

[ τ1−PCHτ2−PCH

]

= [J (x)− R (x)]
∂H (x)
∂x

+ g (x) τPCH

y = gT (x)
∂H (x)
∂x

=

[
q̇1
q̇2

]
(5)

where J(x) =
[

0 I2×2
−I2×2 0

]
, R (x) = 0, g (x) =

[
02×2
G

]
,

G = I2×2,
∂H(x)
∂x =

[
0 C12q̇1 q̇1 q̇2

]T .
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The desired balance point of the system is xd =[
q1d q2d p1d p2d

]T
=
[
q1d q2d 0 0

]T . In order to stabilize
the system asymptotically at the desired balance point of xd ,
a closed-loop constructed with a feedback control is shown
as

ẋ = [Jd (x)− Rd (x)]
∂Hd (x)
∂x

(6)

where, Hd (x) is the desired energy function; Jd (x) =
−JTd (x) is the desired interconnection matrix; Rd (x) =
RTd (x) is the desired resistive matrix.
The expected Hamiltonian function Hd (x) is selected as

Hd (x) =
1
2
pTM−1d p+

1
2
qTKP_PCHq (7)

where Hd (xd) = 0; Md = MT
d =

[
a1 a2
a2 a3

]
> 0 is the

desired inertial matrix;KP_PCH = diag
{
KPPCH1 KPPCH2

}
>

0 is proportional gain.
Jd (x) and Rd (x) are selected as

Jd (x) =
[

0 M−1 (q)Md
−MdM−1 (q) 0

]
Rd (x) =

[
0 0
0 GKD_PCHGT

]
≥ 0 (8)

where KD_PCH = diag
{
KD_PCH1 KD_PCH2

}
≥ 0 is differen-

tial coefficient.
Comparing Eq. (2) with Eq. (6), one can get

g (x) τPCH = [Jd (x)− Rd (x)]
∂Hd (x)
∂x

− [J (x)− R (x)]
∂H (x)
∂x

(9)

Further with the consolidation of Eq. (9), we can get
τ1−PCH = kp11 (q1 − q1d )+ kp12 (q2 − q2d )

+ kv11 (q̇1 − q̇1d )+ kv12 (q̇2 − q̇2d )
τ2−PCH = kp21 (q1 − q1d )+ kp22 (q2 − q2d )

+ kv21 (q̇1 − q̇1d )+ kv22 (q̇2 − q̇2d )
+C12

(
q̇21 + q̇1q̇2

) (10)

where

kp11 =
KPPCH1

|M (q)|
(a2M12 − a1M22) ,

kp12 =
KPPCH2

|M (q)|
(a1M12 − a2M11) ,

kv11 =
KD_PCH1

|Md |
(a2M12 − a3M11) ,

kv12 =
KD_PCH1

|Md |
(a2M22 − a3M12) ,

kp21 =
KP_PCH1

|M (q)|
(a3M12 − a2M22) ,

kp22 =
KP_PCH2

|M (q)|
(a2M12 − a3M11) ,

kv21 =
KD_PCH2

|Md |
(a2M11 − a1M12) ,

kv22 =
KD_PCH2

|Md |
(a2M12 − a1M22) .

B. THE STABILITY ANALYSIS OF PCH CONTROL SYSTEM
Define the desired function of Hamiltonian of PCH system is

VPCH = Hd (x) =
1
2
pTM−1d p+

1
2
qTKP_PCHq (11)

It is obvious that VPCH = Hd (x) > 0. From Eq. (8),
we can obtain Jd (x) is anti-symmetric matrix and Rd (x) is
positive semi-definite matrix. Then V̇PCH is computed by

V̇PCH =
∂Hd (x)
∂t

=

[
∂Hd (x)
∂x

]T
ẋ

=

[
∂Hd (x)
∂x

]T [
[Jd (x)− Rd (x)]

∂Hd (x)
∂x

]
= −

[
∂Hd (x)
∂x

]T
Rd (x)

[
∂Hd (x)
∂x

]
≤ 0 (12)

According to LaSalle’s invariant set theory, if the closed
loop control system is part of the set of{

x ∈ Rn
∣∣∣∣∣
[
∂Hd (x)
∂x

]T
Rd (x)

∂Hd (x)
∂x

= 0

}
and the maximum set in it is 0, then the PCH subsystem is
asymptotically stable at the point of xd .

C. DESIGN OF BACKSTEPPING CONTROLLER
Define x1 = q and x2 = q̇. To facilitate the procedure of
backstepping controller, the kinetic model (1) can be written
as the following form

ẋ1 = x2
ẋ2 = M−1(q)τBS −M−1(q)C (q, q̇) x2
y = x1

(13)

where τBS =
[
τ1−BS τ2−BS

]T is angular control torque of
beckstepping controller.

Define the desired output of the control system
as yd = [q1dq2d ]T .
Step1: Define the tracking error variable and its first

derivative,

e1 = y− yd = [ q1 − q1d q2 − q2d ]T

ė1 = ẋ1 − ẏd = x2 − ẏd (14)

Choose the first Lyapunov function

V1 =
1
2
eT1e1 (15)

The time derivative of V1 is computed by

V̇1 = eT1 ė1 = eT1(x2 − ẏd ) (16)

To guarantee negativity of the first Lyapunov function
derivative, a desired virtual controller is selected

x2d = −K1e1 + ẏd (17)

whereK1 = diag
{
k11 k21

}
, k11 and k

2
1 are the positive constant.

To stabilize the first subsystem, let x2 = x2d , and substi-
tute Eq. (17) into Eq. (16). We can get V̇1 = −eT1K1e1 ≤ 0.
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Step 2: Choose the virtual control error vector of the second
subsystem as e2 = x2−x2d , and then ė2 can be calculated by

ė2 = M−1(q)τBS −M−1(q)C (q, q̇) x2 − ẋ2d (18)

The second Lyapunov function V2 is defined as

V2 = V1 +
1
2
eT2e2 =

1
2
eT1e1 +

1
2
eT2e2 (19)

Obviously, V̇2 can be computed as

V̇2 = eT1 ė1 + e
T
2 ė2

= −eT1K1e1

+ eT2
(
M−1 (q) τBS−M−1 (q)C (q, q̇) x2−ẋ2d

)
(20)

To guarantee V̇2 < 0, construct the control law τBS as

τBS = M (q)
(
−K2e2 +M−1 (q)C (q, q̇) x2 + ẋ2d

)
(21)

whereK2 = diag
{
k12 k22

}
, k12 and k

2
2 are the positive constant.

Then, employing Eq. (21), Eq. (20) becomes

V̇2 = −eT1K1e1 − eT2K2e2 < 0 (22)

Further with the consolidation of Eq. (21), the control law τBS
can be rewritten as{

τ1BS = kb11q1 + kb12q2 + ks11q̇1 + ks12q̇2 + b1
τ2BS = kb21q1 + kb22q2 + ks21q̇1 + ks22q̇2 + b2

(23)

where kb11 = −M11k12k
1
1 , kb12 = −M12k22k

2
1 ,

ks11 =
(
C11 −M11k12 −M11k11

)
,

ks12 =
(
C12 −M12k22 −M12k21

)
,

b1 = M11k12k
1
1q1d +M12k22k

2
1q2d ,

kb21 = −M21k12k
1
1 , kb22 = −M22k22k

2
1k

2
1 ,

ks21 =
(
C21 −M21k12 −M21k11

)
,

ks22 =
(
−M22k22 −M22k21

)
,

b2 = M21k12k
1
1q1d +M22k22k

2
1q2d .

D. THE STABILITY ANALYSIS of BACKSTEPPING
CONTROL SYSTEM
Define Lyapunov function of backstepping control system as

VBS = V2 =
1
2
eT1e1 +

1
2
eT2e2 (24)

On the condition Obviously, VBS is positive definite.
In addition, from Eq. (22), we can know that V̇BS is negative
semi-definite. According the Lyapunov stability theory, the
backstepping control system is asymptotically stable.

IV. DESIGN OF HYBRID COMTROL STRATEGY BASED
ON PCH AND BACKSTEPPING
Since PCH control and backstepping control are complemen-
tary with each other, the hybrid control strategy designed in
this paper can make full use of advantages of two control
methods in the corresponding time. The hybrid control sys-
tem has good performance of dynamic and steady-state, and
the ability to resist interference is improved.

A. DESIGN OF HYBRID CONTROL STRATEGY
Definec1−PCH , c2−PCH as the coordinated functions of PCH
controller; Define c1−BS , c2−BS as the coordinated func-
tions of backstepping controller. Assume the start time is t1,
|q− qd | > β rad/s (β is constant, β > 0 ). Then the
coordinated functions can be designed as{
c1−PCH (t) = 1− e−(t−t1)/TC , c1−BS (t) = e−(t−t1)/TC

c2−PCH (t) = 1− e−(t−t1)/TC , c2−BS (t) = e−(t−t1)/TC

(25)

where TC is coordinated time, c1−PCH ∈ [0, 1], c2−PCH ∈
[0, 1], c1−BS ∈ [0, 1], c1−BS ∈ [0, 1].
Then we can get the hybrid control strategy{

τ1 = c1−PCH (t)τ1−PCH + c1−BS (t)τ1−BS
τ2 = c2−PCH (t)τ2−PCH + c2−BS (t)τ2−BS

(26)

B. THE STABILITY ANALYSIS OF ROBOT TRAJECTORY
TRACKING CONTROL SYSTEM BASED on
PCH AND BACKSTEPPING
Define the Lyapunov function of the whole system to be

V = VBS + VPCH (27)

On the condition that t = t1, c1−PCH (t) = c2−PCH (t) = 0,
c1−BS (t) = c2−BS (t) = 1. This means that only the back-
stepping controller plays a role on the system. We have
V = VBS > 0, V̇ = V̇BS ≤ 0, and so the system is stable.
On the condition that t1 < t < ∞, the coordinated

functions are all constants between 0 and 1. As the time
increases, the intensity of backstepping controller is gradually
reduced, and the intensity of PCH controller is gradually
increased. Since there is no change on the type of the two
controllers, so the Lyapunov function of the whole system
is V = VBS + VPCH , then V̇ = V̇BS + V̇PCH . According
to the stability analysis of the backstepping control system
and PCH control system, we can get the result that VBS and
VPCH are positive definite, V̇BS and V̇PCH are negative semi-
definite, so V is positive definite and V̇ is negative semi-
definite. Therefore the whole system is asymptotically stable.

On the condition that t→∞, c1−PCH (t)=c2−PCH (t) = 1,
c1−BS (t) = c2−BS (t) = 0. This means that only the
PCH controller plays a role on the system. We have
V = VPCH > 0, V̇ = V̇PCH ≤ 0, and so the system is stable.
We can conclude that the control system is asymptotically

stable based on the analysis above.
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FIGURE 3. Curves with different coordinated time of joint 1.

FIGURE 4. Curves with different coordinated time of joint 2.

V. THE SIMULATION AND ANALYSIS
In order to verify the control performance of the hybrid
control method, a tracking control system of 2-DOF SCARA
robot based on PCH and backstepping is established in
MATLAB/Simulink. Parameters of the simulation used as
shown in the following.

Parameters of PCH controller: KPPCH1 = 200000,
KPPCH2 = 20000, KD_PCH1 = 10000, KDPCH2 = 1,
a1 = 0.05, a2 = 0.0001, a3 = 0.0001. Parameters of
backstepping controller: k11 = k21 = 1000, k12 = k22 =
200000. The start time of the hybrid controller: t1 = 0.0001s.
In order to compare and observe, the initial displacement and
the velocity are zero.

A. SIMULATION OF UNIT STEP SIGNALS
The expected position signals of joint 1and joint 2 are unit
step signals. Fig. 3 and Fig. 4 are the trajectory curves of
joint 1 and joint 2 at different coordinated times. According
to Fig. 3 and Fig. 4, the coordinated time are TC1 = 0.05,
TC2 = 0.3, TC3 = 0.6. In order to make joint 1 and joint 2
both have faster response speed and better control effect,
TC1 = 0.3 is chosen as the coordinated time at the simulation
experiment of the hybrid control.

Fig. 5 and Fig. 6 are the trajectory curves of differ-
ent control methods for joint 1 and joint 2. According
to Fig. 5 and Fig. 6, the backstepping control has faster

FIGURE 5. Curves with different control methods of joint 1.

FIGURE 6. Curves with different control methods of joint 2.

FIGURE 7. Curves with effect of interference of joint 1.

response speed, but has a small amount of steady-state errors;
the PCH control has good performance of steady-state, but
the response speed is lower than backstepping control; and
the hybrid control has good performance in terms of both
response speed and steady-state.

Fig. 7 and Fig. 8 are the trajectory curves when there is
a disturbance imposed at the time of t = 0.6s. According
to Fig. 7 and Fig. 8, the waveform of backstepping control
has small changes which reflects the backstepping has strong
ability to resist interference; the waveform of PCH con-
trol system changes greatly which reflects PCH control has
poor performance to resist interference; and the waveform of
hybrid control changes smaller compared with PCH control
which reflects the ability to resist interference improved.
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FIGURE 8. Curves with effect of interference of joint 2.

FIGURE 9. Curves with different control methods of joint 1.

FIGURE 10. Error curves with different control methods of joint 1.

Remark 1: From the simulations, it can be clearly seen
that the hybrid control method based on PCH and backstep-
ping has good dynamic performance and steady-state perfor-
mance, and the ability to resist the interference is improved.
It is easily observed that the backstepping control is used to
improve the response speed in the initial moment, and PCH
control is used to improve the steady-state in steady state.

B. SIMULATION OF CONTINUOUS TRAJECTORY
TRACKING CONTROL
In order to compare and observe, a simple motion plan-
ning is designed: the expected large arm trajectory is

FIGURE 11. Curves with different control methods of joint 2.

FIGURE 12. Error curves with different control methods of joint 2.

q1d = 1− cos (π t), and the expected small arm trajectory is
q2d = 0.5−0.5 cos (π t). The planning trajectory is consistent
with the displacement, velocity and acceleration constraints
of the robot. There is no external interference.

Fig. 9 and Fig. 10 are the trajectory curves and error
curves of different control methods for joint 1. As shown
in Fig. 9 and Fig. 10, for the joint 1, the trajectory tracking
curves with different control methods are very good, except
that there is a small amount of steady-state errors in the
backstepping control method.

Fig. 11 and Fig. 12 are the trajectory curves and error
curves of different control methods for joint 2. According to
Fig. 11 and Fig. 12, for the joint 2, the trajectory tracking
curves produced by hybrid control and PCH control are very
close, but there is a certain error between the curve of back-
stepping control and the other curves.
Remark 2: By comparison, the hybrid control can effec-

tively combine the advantages of backstepping control and
PCH control at the corresponding time. The hybrid control
system has good performance on dynamic and steady-state,
which mean that the proposed method in this paper is more
suitable for practical engineering.

VI. CONCLUSION
In this paper, a hybrid control method based on PCH and
backstepping is designed for 2-DOF SCARA robot position

VOLUME 6, 2018 17359
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tracking control. Backstepping control is used to improve the
response speed in the initial moment, and PCH control is used
to improve the steady-state in steady state. The hybrid control
strategy proposed in this paper can make the advantages of
each method be fully utilized at the corresponding time, and
the change in the control form greatly increases its practical
value. The simulation results show that the hybrid control
of PCH and backstepping has good dynamic performance
and steady-state performance, and the ability to resist the
interference is improved.

In practical applications, the load torque of joint is usually
unknown. In order to track the changes of the load torque
better and eliminate steady error, the control torque observer
would be designed in the future. In addition, in order to make
the research more valuable, we will increase the freedom of
the robot and use the servo motor as the driving mechanism
in the future work.

REFERENCES
[1] S. M. Ahmadi and M. M. Fateh, ‘‘Robust control of electrically driven

robots using adaptive uncertainty estimation,’’ Comput. Elect. Eng.,
vol. 56, pp. 674–687, Nov. 2016.

[2] F. G. Rossomando and C. M. Soria, ‘‘Adaptive neural sliding mode control
in discrete time for a SCARA robot arm,’’ IEEE Latin Amer. Trans., vol. 14,
no. 6, pp. 2556–2564, Jun. 2016.

[3] C. Urrea and J. Kern, ‘‘Trajectory tracking control of a real redundant
manipulator of the SCARA type,’’ J. Elect. Eng. Technol., vol. 11, no. 1,
pp. 215–226, Jan. 2016.

[4] M. Pourrahim, K. Shojaei, A. Chatraei, and O. S. Nazari, ‘‘Experimental
evaluation of a saturated output feedback controller using RBF neural
networks for SCARA robot IBM 7547,’’ in Proc. Iran. Conf. Elect.
Eng. (ICEE), May 2016, pp. 1347–1352.

[5] M. M. Fateh and S. Fateh, ‘‘A precise robust fuzzy control of robots using
voltage control strategy,’’ Int. J. Autom. Comput., vol. 10, no. 1, pp. 64–72,
Feb. 2013.

[6] T. Benjanarasuth, N. Sowannee, and N. Naksuk, ‘‘Two-degree-of-freedom
simple servo adaptive control for SCARA robot,’’ in Proc. Int. Conf.
Control, Autom. Syst. (ICCAS), Oct. 2010, pp. 480–484.

[7] M. A. Al-Khedher and M. S. Alshamasin, ‘‘SCARA robot control using
neural networks,’’ in Proc. Int. Conf. Intell. Adv. Syst. (ICIAS), vol. 1.
Jun. 2012, pp. 126–130.

[8] N. Nikdel, M. A. Badamchizadeh, V. Azimirad, and M. A. Nazari, ‘‘Adap-
tive backstepping control for an n-degree of freedom robotic manipulator
based on combined state augmentation,’’ Robot. Comput.-Integr. Manuf.,
vol. 44, pp. 129–143, Apr. 2017.

[9] Q. Zhang and G. Liu, ‘‘Precise control of elastic joint robot using
an interconnection and damping assignment passivity-based approach,’’
IEEE/ASME Trans. Mechatron., vol. 21, no. 6, pp. 2728–2736, Dec. 2016.

[10] Q. Zhang, Z. Xie, S. Kui, H. Yang, J. Minghe, and H. Cai, ‘‘Intercon-
nection and damping assignment passivity-based control for flexible joint
robot,’’ in Proc. World Congr. Intell. Control Autom. (WCICA), Mar. 2015,
pp. 4242–4249.

[11] S. El-Ferik, A. Qureshi, and F. L. Lewis, ‘‘Robust neuro-adaptive cooper-
ative control of multi-agent port-controlled Hamiltonian systems,’’ Int. J.
Adapt. Control Signal Process., vol. 30, no. 3, pp. 488–510, Mar. 2015.

[12] A. Qureshi, S. El Ferik, and F. L. Lewis, ‘‘L2 neuro-adaptive tracking
control of uncertain port-controlled Hamiltonian systems,’’ IET Control
Theory Appl., vol. 9, no. 12, pp. 1781–1790, Aug. 2015.

[13] K. Nunna, M. Sassano, and A. Astolfi, ‘‘Constructive interconnection
and damping assignment for port-controlled hamiltonian systems,’’ IEEE
Trans. Autom. Control, vol. 60, no. 9, pp. 2350–2361, Sep. 2015.

[14] A. Sanz and V. Etxebarria, ‘‘Interconnection and damping assignment
passivity-based experimental control of a single-link flexible robot arm,’’
in Proc. IEEE Int. Conf. Control Appl., Oct. 2007, pp. 2504–2509.

[15] P. Staufer and H. Gattringer, ‘‘Passivity-based tracking control of a flexible
link robot,’’ in Multibody Syst. Dynam., Robot., Control, pp. 95–112,
Jan. 2013.

[16] D. Jeltsema, R. Ortega, and J. M. A. Scherpen, ‘‘An energy-balancing per-
spective of interconnection and damping assignment control of nonlinear
systems,’’ Automatica, vol. 40, no. 9, pp. 1643–1646, Sep. 2004.

[17] R. Ortega, A. J. van der Schaft, B. M.Maschke, and G. Escobar, ‘‘Intercon-
nection and damping assignment passivity-based control of port-controlled
Hamiltonian systems,’’ Automatica, vol. 38, no. 4, pp. 585–596, Apr. 2002.

JIERU CHI received the B.Sc. degree in automa-
tion and M.Sc. degree in control science and
engineering from Shandong University, Jinan,
China, in 1992 and 1995, respectively. She is
currently pursuing the Ph.D. degree at the Insti-
tute of Complexity Science, Qingdao University,
Qingdao, China. She is currently an Associate Pro-
fessor with the School of Automation and Electri-
cal Engineering, Qingdao University. Her current
research interests include motor control and robot

control, applied nonlinear control, and intelligent systems.

HAISHENG YU received the B.S. degree in
electrical automation from the Harbin University
of Civil Engineering and Architecture, Harbin,
China, in 1985, the M.S. degree in computer appli-
cations from Tsinghua University, Beijing, China,
in 1988, and the Ph.D. degree in control science
and engineering from Shandong University, Jinan,
China, in 2006. He is currently a Professor with the
School of Automation and Electrical Engineering,
Qingdao University, Qingdao, China. His research

interests include electrical energy conversion and motor control, applied
nonlinear control, computer control, and intelligent systems.

JINPENG YU received the B.Sc. degree in
automation from Qingdao University, Qingdao,
China, in 2002, the M.Sc. degree in system engi-
neering from Shandong University, Jinan, China,
in 2006, and the Ph.D. degree from the Institute of
Complexity Science, Qingdao University, in 2011.
He is currently a Distinguished Professor with the
School of Automation and Electrical Engineering,
Qingdao University. His current research interests
include electrical energy conversion and motor

control, applied nonlinear control, and intelligent systems. Hewas a recipient
of the Shandong Province Taishan Scholar Special Project Fund and the
Shandong Province Fund for Outstanding Young Scholars.

17360 VOLUME 6, 2018


	INTRODUCTION
	THE KINETIC MODEL OF 2-DOF SCARA ROBOT
	THE HYBRID CONTROL PRINCIPLE OF 2-DOF SCAR ROBOT
	DESIGN OF PCH CONTROLLER
	PCH SYSTEM
	ESTABLISHMENT OF PCH MODEL FOR 2-DOF SCARA ROBOT

	THE STABILITY ANALYSIS OF PCH CONTROL SYSTEM
	DESIGN OF BACKSTEPPING CONTROLLER
	THE STABILITY ANALYSIS of BACKSTEPPING CONTROL SYSTEM

	DESIGN OF HYBRID COMTROL STRATEGY BASED ON PCH AND BACKSTEPPING 
	DESIGN OF HYBRID CONTROL STRATEGY
	THE STABILITY ANALYSIS OF ROBOT TRAJECTORY TRACKING CONTROL SYSTEM BASED on PCH AND BACKSTEPPING

	THE SIMULATION AND ANALYSIS 
	SIMULATION OF UNIT STEP SIGNALS
	SIMULATION OF CONTINUOUS TRAJECTORY TRACKING CONTROL

	CONCLUSION
	REFERENCES
	Biographies
	JIERU CHI
	HAISHENG YU
	JINPENG YU


