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ABSTRACT In recent years, distributed systems have mainly been used to train machine learning (ML)
models. However, as a result of the different performances among computational nodes in a distributed cluster
and delays in network transmission, the accuracies and convergence rates of ML models are relatively low.
Therefore, it is necessary to design a reasonable strategy that provides dynamic communication optimization
to improve the utilization of the cluster, accelerate the training times, and strengthen the accuracy of the
training model. In this paper, we propose the adaptive synchronous parallel strategy for distributed ML.
Through the performance monitoring model, the synchronization strategy of each computational node with
the parameter server is adjusted adaptively by considering the full performance of each node, thereby
ensuring higher accuracy. Furthermore, our strategy prevents theMLmodel from being affected by irrelevant
tasks in the same cluster. Experiments show that our strategy fully improves clustering performance, and it
ensures the accuracy and convergence speed of the model, increases the model training speed, and has good
expansibility.

INDEX TERMS Distributed machine learning, adaptive synchronous parallel, communication strategy,
parameter server.

I. INTRODUCTION
In the age of big data, distributed machine learning (ML) has
become a hot research field due to its ability to adapt to the
complexity of big data, obtain higher prediction accuracy and
support more intelligent tasks [1].

Distributed optimization of ML is becoming a prerequisite
for solving large-scale ML problems [2]–[4]. Due to the
increase in data volume and the complexity of the MLmodel,
especially the increase in the number of parameters, single
machines have been unable to fully and quickly train the
ML model. However, it is not easy to realize an efficient
distributed algorithm [5], [6]. The system design needs to

consider the large amounts of computation and data traffic.
The actual size of the training data will be between 1TB
and 1PB, which can be used to create a powerful and com-
plex model. These models are usually shared globally by all
computational nodes. A computational node computes local
updates on its data subset in each iteration and then submits
the local update to the parameter server, which updates the
global model parameters; the parameter server distributes
the new global model parameters to each computational
node. There are three challenges to this sharing approach:
(1) Access parameters require a great deal of network band-
width [7]. (2) When the synchronization costs and machine
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delays are high, the resulting hurdles can impair performance.
(3) In large-scale ML, fault tolerance [8] must be considered.
Model training tasks are usually performed in the cluster.
However, computational nodes may not be reliable, and the
job may be pre-empted.

In general, distributed ML uses the Bulk Synchronous
Parallel (BSP) strategy [9], [10] to parallelize data. Under
this strategy, the computational nodes do not start the next
iteration after committing their updates to the parameter
server until all computational nodes commit their updates and
receive the new global model parameters from the param-
eter server. Due to the different performances among the
computational nodes, BSP has a load imbalance problem in
computing.

To solve this problem, Dean et al. [11] proposed an asyn-
chronous iteration strategy [12] for distributed ML, which
allows computational nodes to use local model parameters
for the next iteration. This strategy improves fault tolerance
without a limit; however, it causes the model to become
trapped in a local optimum, so it cannot converge to the
globally optimal solution and has no accuracy guarantee.
Ho et al. [13] proposed the Stale Synchronous Parallel (SSP)
strategy [14], [15]. This strategy allows computational nodes
to use stale global model parameters to train the model,
thereby reducing the cost of synchronizing parameters with
the parameter server. However, it has the limitation of using
stale global model parameters, so it cannot provide conver-
gence guarantees. This strategy can improve training speed,
but due to its lack of local updates, it will accumulate par-
allel faults, which will reduce the convergence speed. To
solve the problems in the BSP and SSP schemes, this paper
improves SSP and proposes the Adaptive Synchronous Par-
allel (ASP) strategy. The strategy dynamically adjusts the
communication mechanism between computational nodes
and the parameter server according to the performance of
each computational node, which significantly reduces the
impact of different performances among the computational
nodes when training an ML model. The training speed is
greatly accelerated, thereby ensuring better accuracy and
higher convergence speed. This paper introduces the relevant
scenario of distributed ML parameter communication in the
next section. The design of the ASP strategy is described in
the third section. In the fourth section, we test the strategy
in distributed ML experiments, and analyse and verify the
corresponding theory and function. The last section presents
a summary and discussion of this paper.

II. RELATED WORK
This paper proposes ASP, which is related to parameter
servers, BSP and SSP. This section will introduce the research
in these areas.

A. PARAMETER SERVER FRAMEWORK
The use of the parameter server framework is expand-
ing in both academia and industry. Relevant systems have
been implemented on Tencent [16], [17], Baidu [18],

FIGURE 1. First generation of the parameter server.

FIGURE 2. Second generation of the parameter server.

Alibaba [19], [20], Google [11], [21], and Yahoo [5].
Open-source codes are available, such as YahooLDA [5],
MXNet [22], and Petuum [23].

Alex Smola put forward a parallel topic model [24], [25]
architecture in 2010, which we call the first generation of
the parameter server. Essentially, it is a distributed shared
storage framework, in which each sampler can share and
access global model parameters through a key-value inter-
face. The model uses memcached distributed storage for
parameter storage (as shown in Figure 1). Each sampler only
retains some of the parameters for necessary calculations and
the global model parameters can be synchronized by each
sampler. However, this parameter server framework is only a
simple concept. It neither optimizes the communication cost
nor is it designed specifically for distributed ML.

Many related frameworks have been implemented in indus-
try. Dean and Ghemawat [26] introduced the second gen-
eration of the parameter server, and it can be found in a
deep learning system, namely DistBelief [11]. DistBelief is
mainly used for the training of super-large-scale learning
models in Google Brain. Xing et al. [23] developed it as
a general ML platform, which uses the second generation
of the parameter server, and the ML model is stored dis-
tributive in the computational nodes, as shown in Figure 2.
In this framework, the parameter server is used to commu-
nicate with all computational nodes and transmit all model
parameters to them, and the computational nodes no longer
communicate with one another. The second generation of
the parameter server makes possible the use of distributed
algorithms in ML, such as the distributed stochastic gradient
descent (SGD) [27], [28]. However, it lacks adequate consid-
eration of the performances of different computational nodes,
so the utilization rate of individual computational nodes in the
distributed system is relatively low.
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FIGURE 3. Third generation of the parameter server.

Li et al. [29]–[31] described the third generation of the
application-specific parameter server framework. This frame-
work creates a more general and flexible design, and contains
a flexible group of parameter servers and multifunctional
groups of computational nodes (as shown in Figure 3). In this
framework, each parameter server maintains a partition of
global model parameters and the parameter servers communi-
cate with one another to maintain reliability and consistency.
A server manager maintains the entire group of parameter
servers. The multifunctional groups of computational nodes
can run many different ML applications. As with parameter
servers of the previous generation, all parameters are trans-
mitted by the parameter server. Each group of computational
nodes has a task scheduler, which is set up for assigning tasks
to computational nodes and monitoring their progress. If a
computational node gives no response or a new computational
node has been added, the task scheduler will redistribute the
remaining tasks without having to restart the model training.
This framework overcomes the limitations of previous gen-
erations and increases flexibility by designing a scheduler.
However, this single strategy can only handle problems by
increasing or reducing the number of computational nodes
and does not consider countermeasures if external distur-
bances are encountered during the training process.

B. BULK SYNCHRONOUS PARALLEL
In an actual cluster, it is very possible for the performances
of different computational nodes to be different. For the most
common iteration-convergence algorithm in ML, the main
procedure of distributed ML implementation is as follows:
each computational node will enter the synchronization bar-
rier after committing the parameters to the parameter server
and wait for other computational nodes to commit their
local model parameters. From then on, every computational
node will obtain the latest global model parameters from the
parameter server for the next iteration (as shown in Figure 4).
The method for setting a synchronization barrier to ensure
the consistency of the global parameters is called BSP. There
are two obvious disadvantages of BSP: First, it requires large
communication overhead for each iteration. Qirong Ho’s
research [13] shows that the parameter communication time
is more than six times the iterative calculation cost. Second,
the next iteration does not begin until all computational nodes
have completed the calculations in the first iteration, which

FIGURE 4. BSP sets a synchronization barrier to ensure the consistency of
the global parameters.

requires the load on the cluster to be very balanced. However,
Chilimbi’s research [32] shows that even in a load-balanced
cluster, a portion of the computational nodes can be randomly
and unpredictably slower than the others.

C. STALE SYNCHRONOUS PARALLEL
To overcome problems of BSP, Ho et al. proposed SSP [13].
Due to the iterative-convergence nature of most ML algo-
rithms, SSP does not use a synchronization barrier immedi-
ately after an iteration. Therefore, the computational nodes
can perform the next iteration directly instead of waiting
for other computational nodes to finish. It only synchro-
nizes all computational nodes when the fastest computational
node exceeds the slowest computational node by s iterations;
s is called the stale threshold. For distributed ML algo-
rithms, SSP yields faster training efficiency and convergence.
Wei et al. uses SSP to propose a parameter server framework
for distributed ML [33], [34]. Cui et al. [35] improves this
framework so that it can be used in distributed GPUs.

However, according to our previous research [36], there are
two obvious problems with SSP. We considered the typical
distributed ML model training scenario and examined the
problems with the strategy. The first problem is that SSP
cannot optimize a distributed ML algorithm that is running
on the cluster, which consists of similar-performance com-
putational nodes. We set five computational nodes to per-
form the training of the distributed ML model, as illustrated
in Figure 5. The axis shows the number of iterations for
which the computational nodes train after a synchronization
barrier; we found that each computational node has similar
performance. Since SSP only sets a global stale threshold,
if we set the value of stale threshold to greater than or equal
to 3, each computational nodewill train for multiple iterations
using stale global model parameters. Thus, the convergence
and accuracy of the distributed ML model training cannot be
guaranteed.

Without considering the extraneous factors that can dis-
turb the model training process, the second problem of SSP
arises. In Figure 6, the axis shows the number of iterations
for which the computational nodes train after each synchro-
nization barrier. If the difference in the number of iterations
between computational node 1 and 3 is more than s, compu-
tational node 1 will enter the synchronization barrier to wait
for the other computational nodes to finish their iterations.

19224 VOLUME 6, 2018



J. Zhang et al.: ASP Strategy for Distributed ML

FIGURE 5. Cluster of nodes with similar performance running a
distributed ML algorithm.

FIGURE 6. The training model may encounter external influences.

After that, all computational nodes perform global model
parameter updating so that each computational node can
use the new global model parameters for the next iteration.
However, in the next round of iteration, if the computing
performance of computational node 3 increases for some rea-
son (such as completing other unrelated computational tasks).
At the same time, the number of iterations that have been
finished by each computational node is similar, and because
the computational nodes cannot reach the stale threshold, they
cannot perform enough iterations to guarantee the conver-
gence and accuracy of the distributed ML model training.

III. DYNAMIC COMMUNICATION STRATEGY
In this section, we first introduce the theoretical analysis of
ASP and then propose the performance monitoring model
for implementing the dynamic parameter adjustment mode.
Finally, we introduce the improvements for SSP in detail and
present ASP.

A. THEORETICAL ANALYSIS OF ASP
Most of the ML programmes have an iterative-convergent
nature and can be expressed as Equation 1:

L = f (X ,M ) = f (INi=1{xi, yi},M ) (1)

In Equation 1, N is the total number of samples in the
data set, {xi, yi} is one of the samples in the data set, yi only
appears in the marked data set, and M is the ML model. The
programme uses the data samples to fit theMLmodel through
constant iteration.

Because of the massive sizes of the data set and the ML
model, parallelism and distributed training are required. Here,
we introduce the principle of SSP. Assuming that the stale

threshold is S, the model M̃p,t that it can access is made up of
the initial model M0 and the update up,t for a computational
node P with an iteration time of t. The model that adopts the
SSP is as follows:

M̃p,t = M0 +

t−s−1∑
i=1

P∑
j=1

uj,i

+
 ∑
(i,j)∈Up,t

uj,i

 (2)

In Equation 2, Up,t represents an update subset of all
computational nodes P in the 2s iterations from t-s to t+ s-1.[
t−s−1∑
i=1

P∑
j=1

uj,i

]
is the update that takes full advantage of the

performance during this iteration period.
The following analysis demonstrates the feasibility

of SGD in the ASP scenario. For a convex function
L = f (M ) =

∑C
c=1 fc(M ), to obtain the minimum value of

the model, we utilize SGD. The gradient of each computa-
tional node is denoted as ∇fc, s denotes the stale threshold,
the differences between the all computational nodesąŕ per-
formance factors are denoted as α and the total number of
computational nodes is denoted as P. Denote by c the update
of the iterative period uc := −ηc∇cfc(M̃c). The step size is
ηc =

σ
√
c , and F and L are constants in σ = F

L
√

2( sα+1)P
.

Adapting from [1], [13], and [33], we can obtain the ASP
formula as follows:

R[M ] : =

[
1
C

C∑
c=1

fc(M̃c)

]
− f (M∗)

≤

C∑
c=1

〈
∇fc(M̃c), M̃c −M∗

〉
= σL2

√
C + F2

√
C
σ
+ 2σL2

[( s
α
+ 1

)
P
]2

+ 4σL2
( s
α
+ 1

)
P
√
C

≤ 4FL

√
2
( s
α
+ 1

)
PC (3)

The formula describes the ML model that is obtained by
using ASP. We can establish that ASP converges to O(

√
C)

and provides correctness guarantees.
The formula that is obtained from [1], [13], and [33] takes

the number of error updates into account with the upper limit
2(s+1)P, so convergence rates may be poor and the training
efficiency may temporarily decrease. Our formula (Equa-
tion 3) solves problems in SSP and generalizes this formula.
We propose the weak threshold w in this paper to represent
the number of iterations that are completed by the worst-
performing node of all the computational nodes, and the dif-
ference factor α represents the difference in performance of
each computational node. α close to 1 means that each com-
putational node in the cluster has similar performance, which
causes the stale threshold s to fail; in this case, we change the
restriction condition of ASP to the synchronization barrier
from the stale threshold s to the weak threshold w. If the
performance difference among the computational nodes is

VOLUME 6, 2018 19225



J. Zhang et al.: ASP Strategy for Distributed ML

FIGURE 7. Performance monitoring model is used to realize the dynamic
adjustment of parameter communication.

larger than the average, α is larger. In this case, we can
increase the stale threshold s by referring to Equation 3 to
guarantee the convergence rate. We modify Equation 4 as
follows:

R[M ] ≤

4FL
√
2
( s
α
+ 1

)
PC, α � 1

4FL
√
2 (w+ 1)PC, α ≈ 1

(4)

B. PERFORMANCE MONITORING MODEL
To realize the dynamic adjustment of parameter communica-
tion, this paper implements a performance monitoring model.
The model takes advantage of the open-source distributed
monitoring system Ganglia [37] to obtain the performance
information of each computational node, including the CPU
utilization, memory utilization, hard disk utilization, I/O load,
and network traffic.

Each node is configured with a Ganglia monitoring dae-
mon (gmond), which can collect the monitoring data of the
node and send it to the other computational nodes via the
UDP protocol. In this way, each computational node can
obtain the entire cluster of monitoring data.

If the Ganglia Meta daemon (gmetad) is configured on the
parameter server, the gmetad will collect the monitoring data
by the gmond through the periodic polls of the TCP protocol
and then store it in the Round Robin Database. When the
gmetad fails to extract the monitoring data from a gmond,
since each gmond has the complete cluster monitoring data,
the gmetad can extract the monitoring data from others to
ensure the robustness of the monitoring system.

In this paper, the performance monitoring model (shown
in Figure 7) is used to directly obtain the parameters that
are the most relevant to the distributed ML model training
from the circular database. The CPU occupancy rate is used
to determine whether the stale threshold s should be changed
according to the CPU occupancy rate of each computational
node. When the CPU usages of the computational nodes are
very different, the current performance differences among the
computational nodes are large. Therefore, the stale threshold
s needs to be improved. On the other hand, if the CPU occu-
pancy rates of the computational nodes are not greatly differ-
ent, the current performance differences among the nodes are

FIGURE 8. Adaptive Synchronous Parallel strategy generalizes and
improves upon SSP.

small and it is necessary to adopt a smaller stale threshold to
avoid the performance of many iterations of computational
nodes without updating the global model parameters, which
will seriously affect the convergence rate and accuracy of the
ML model.

C. ADAPTIVE SYNCHRONOUS PARALLEL STRATEGY
We present a dynamic communication strategy called ASP,
which generalizes and improves upon SSP. The flow chart of
the strategy is shown in Figure 8.

The flow of each computational node is similar, so we take
a computational node and a parameter server as an example.
When the computational node starts iterating, the gmond will
monitor the performance of the computational node and the
parameter server will extract the performance data of each
computational node and compare their CPU occupancy rates.
Then, the parameter server will adjust the stale threshold s
dynamically according to the performance differences among
the nodes. At this point, the computational node will upload
the number of iterations to the parameter server. The param-
eter server will judge whether the number of iterations of the
computational nodes satisfies the stale threshold s and the
weak threshold w.

If the number of iterations reaches the condition of the
synchronization barrier, the flag will be set to 1 and sent to
all computational nodes. The computational node enters the
synchronization barrier and then sends its local parameter
to the parameter server so that the parameter server can
update the global model parameters and return them to the
computational nodes. The computational nodes use the new
global model parameters to update the model and train it.
However, if the condition of the synchronization barrier is not
reached, the computational node does not need to enter the
synchronization barrier. Therefore, in this case, the training
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FIGURE 9. We implement a performance monitoring model to
dynamically adjust the delay threshold s.

is carried out directly with the stale model to improve the
training efficiency of the model.

ASP solves the two main problems of SSP, which are
mentioned in section 2.3, and has a better effect on the actual
operation of the cluster than the approach that was used in
our previous research [36]. We add another synchronization
barrier condition: the minimum number of training itera-
tions of the computational nodes for completing the iteration
(we set w as the weak threshold), or we set s as the stale
threshold. If the computational nodes satisfy one of these
conditions, then they will enter the synchronization bar-
rier and update the global model parameters after finishing
their iterations. We implement a performance monitoring
model to dynamically adjust the delay threshold s. As shown
in Figure 9, the performance monitoring model monitors
the change in the threshold of computational node 3 after a
new round of iteration through the synchronization barrier,
and obtains that the performance differences between com-
putational node 3 and the other computational nodes have
been reduced through increasing the computational perfor-
mance of computational node 3. Thus, by decreasing the stale
threshold s to 2, we can avoid unnecessary iterations of each
computational node, thereby solving problem regarding the
failure of the stale threshold s.

IV. EXPERIMENTS
A. ENVIRONMENT
In this paper, the distributed deep learning framework that is
based on Caffe is implemented by ASP and the parameter
server. The structure is shown in Figure 10.

The parameter server is made up of the global param-
eter storage function, the communication strategy control,
the parameter update thread, the gmetad, the resource alloca-
tion scheduler, and the POSIX threads. The global parameter
storage function is a vector-valued function that ensures that
the global model parameters are up to date. The communi-
cation strategy control dynamically adjusts ASP. We set up
a thread to calculate and update the global model parameters
through the local model parameters, which are transmitted by
the computational nodes. The gmetad collects the monitoring
data and sends them to the resource allocation scheduler. The
resource allocation scheduler carefully analyses the moni-
toring data and then decides whether to modify s and w.

FIGURE 10. The structure of distributed ML framework based on Caffe.

Each computing process in the computational nodes has a
corresponding POSIX thread in the parameter server, which
is responsible for communicating information to the com-
putational nodes, such as the number of iterations for each
computing process and the local model parameters.

Each computational node is made up of the computing
process, the training data, the gmod, and the communica-
tion strategy execution. The computing process is designed
to train the ML model using data parallelism. The training
data on computational nodes are averaged from the data set
according to the number of computational nodes. The gmod
collects the monitoring data of each computational node and
sends it to the other computational nodes. The communica-
tion strategy execution judges whether computational nodes
need to enter the synchronization barrier according to s and w,
both of which are calculated by the parameter server. If nei-
ther threshold is reached, the communication strategy exe-
cution allows the computational node to use the stale global
model parameters to go on the next iteration. If one of the
thresholds is reached, all computing processes enter the wait-
state as soon as their current iterations are completed and
until they receive the latest global model parameters from the
parameter server; then, they exit the wait-state.

The communication between the parameter server and
computational nodes is executed by the MPICH. The asyn-
chronous uploading of the gradient in the processes of the
computational nodes can reduce the risk of communication
congestion. The global model parameters are sent to the
computational nodes in proper sequence on the basis of the
parameter update module queue.

The experiments in this paper use the distributed ML
framework that is described above.We implement this frame-
work by using 4 nodes and connect them with gigabit Ether-
net. Each node is configured with 16 cores of a 2.4 GHzAMD
Opteron processor (Processor 6136) and 32 GB of RAM,
running on top of CentOS7.0.
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FIGURE 11. Comparing the accuracy of the ML model.

Datasets: The MNIST handwritten numeric font data
set [38] consists of a 60000-image training set and a
10000-image test set.

MLmodels: LeNet-5 [38] designs one input layer, one out-
put layer, three convolution layers, two pooled layers and one
fully connected layer. The batch size is 64 and the maximum
number of iterations is 10000.

B. EFFECTIVENESS AND PERFORMANCE OF ASP
This section verifies the effectiveness of ASP and tests its
performance by experiments. In this experiment, we apply
three nodes of the distributed ML framework above to train
the distributed ML model. One node in the framework acts
as the parameter server; the others are set as computational
nodes. When the number of ML model training iterations
reaches 5000, this experiment adds an interference pro-
gramme to the computational nodes to simulate the dynamic
change in the performances of the computational nodes. The
experiment compares SSP using different values of s and
the influence of ASP on the accuracy and the training time
of the distributed ML model. Figures 11 and 12 depict the
results, in which we set the value of s in SSP to 1, 2, and 3.
ASP dynamically adjusts the value of s. The weak threshold
w is set to 1 in both strategies.

As shown in Figure 11, using either SSP or ASP to train
the ML model, the accuracy is reduced as the number of
processes increases. This is because the stochastic gradient
descent algorithm is adopted for model training, which has
some error, and when the number of processes increases, this
error is amplified, which results in a decrease of accuracy. The
stale synchronization strategy with a stale threshold s of 1
(in this situation, SSP is the same as BSP) has the highest
accuracy. In addition, the ML model with ASP guarantees
high accuracy due to the dynamic adjustment of stale thresh-
old s. With the increase of the stale threshold, the accuracy
of the model decreases greatly. As shown in Figure 12, due to
communication between computational nodes and the param-
eter server, the training time does not decrease linearly as the
number of computing processes increases; beyond a certain
number of computing processes, the training time increases.
The adaptive stale synchronous strategy requires the shortest
time for model training, and the SSP with a stale threshold s
of 1 requires the longest time.

FIGURE 12. Comparing the training time of the ML model.

FIGURE 13. Verification of the extensibility of ASP based on the accuracy
of the ML model.

It can be concluded from the above results that the dis-
tributed ML model with ASP reduces the training time while
ensuring a certain accuracy. This verifies the validity of ASP
and shows that the strategy achieves good performance.

C. EXTENSIBILITY OF THE ASP STRATEGY
To verify the extensibility of ASP, we apply four nodes of
the distributed ML framework above to train the distributed
ML model, where a node acts as a parameter server and the
others act as computational nodes. To balance the number of
iteration tasks among the computational nodes, the training
processes are evenly distributed among three computational
nodes. When the ML model training reaches 5000 iterations,
an interference programme is added to one of the compu-
tational nodes to simulate the dynamic performance of the
cluster. Other conditions are the same as in section 4.2. The
specific results can be seen in Figures 13 and 14. We set the
value of s in SSP to 1, 2, and 3, and ASP dynamically adjusts
the value of s. In both strategies, we set the value of w to 1.

As shown in Figures 13 and 14, in terms of the accuracy,
the effect of model training after adding nodes is roughly
the same as that reported in section 4.2, and the accuracy
decreases as the number of processes increases. Model train-
ing with ASP still achieves good accuracy, which is only
lower than that of the DSP strategy with a stale threshold s
of 1 (this SSP is the same as BSP). Moreover, model training
with ASP requires less training time. However, compared
to the experiment in section 4.2, the communication cost is
increased due to the addition of new computational nodes,
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FIGURE 14. Verification of the extensibility of ASP based on the training
time of the ML model.

and the gap between model training cost and communication
cost is reduced, so the training times for both strategies are
similar. In contrast, SSP with a delayed threshold s of 1 is
requires a lot of training time.

According to the results above, ASP has good expansibility
and can be used in larger clusters. However, the communi-
cation cost is worth considering. It is necessary to balance
communication costs and training expenses to achieve better
accuracy and training time.

V. CONCLUSION
Training the distributed ML model with SSP can reduce
the communication and synchronization costs and improve
the utilization rate of the computational nodes and the effi-
ciency of calculation. However, the accumulated error can
sometimes seriously damage the convergence rate of the dis-
tributedMLmodel. In this work, we propose a new communi-
cation strategy called ASP, which adds a weak threshold and
adjusts the stale threshold dynamically based on the monitor-
ing data that are obtained by Ganglia to balance the training
time and the model accuracy, and improve the performance of
the distributed ML algorithm. The experimental results show
that ASP can guarantee better accuracy and achieve higher
convergence speed than SSP, and it has good expansibility.

Currently, using ASP as a communication strategy to train
a large-scale distributed ML model will yield low model
accuracy. In the future, we will improve the applicability of
ASP in large-scale clusters.
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