
Received February 10, 2018, accepted March 21, 2018, date of publication March 29, 2018, date of current version April 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2821111

Controlling Meta-Model Extensibility
in Model-Driven Engineering
SANTIAGO JÁCOME AND JUAN DE LARA
1Universidad de las Fuerzas Armadas ESPE, Sangolquí 171-5-231B, Ecuador
2Universidad Autónoma de Madrid, Computer Science Department, 28049 Madrid, Spain

Corresponding author: Santiago Jácome (psjacome@espe.edu.ec)

This work was supported in part by the Spanish MINECO through the project Flexor under Grant TIN2014-52129-R and in part by the
R&D Program of the Madrid Region through the project SICOMORO-CM under Grant S2013/ICE-3006.

ABSTRACT Model-driven engineering (MDE) considers the systematic use of models in software devel-
opment. A model must be specified through a well-defined modeling language with precise syntax and
semantics. In MDE, this syntax is defined by a meta-model. While meta-models tend to be fixed, there are
several scenarios that require the customization of existingmeta-models. For example, standards of the object
management group (OMG) like the knowledge discoverymeta-model (KDM) or the diagram definition (DD)
are based on the extension of base meta-models according to certain rules. However, these rules are not
‘‘operational’’ but are described in natural language and therefore not supported by tools. Althoughmodeling
is an activity regulated by meta-models, currently there are no commonly accepted mechanisms to regulate
how meta-models can be extended. Hence, in order to solve this problem, we propose a mechanism that
allows specifying customization and extension rules for meta-models, as well as a tool that makes it possible
to customize the meta-models according to such rules. The tool is based on the Eclipse modeling framework,
has been implemented as an Eclipse plugin, and has been validated to guide the extension of OMG standard
meta-models, such as KDM and DD.

INDEX TERMS Model-driven engineering, meta-modeling, meta-model customization, meta-model
extension.

I. INTRODUCTION
Model-Driven Engineering (MDE) is a software development
paradigm that connects more closely the model to the appli-
cation. In this way, models not only encapsulate the design of
the application, but are also actively used to specify, simulate,
test, verify and generate code for the application to be built,
among many other activities [1].

Models can be built using general purpose modeling
languages, like the UML, but it is also common to use
domain-specific languages (DSLs) addressing the needs of
a particular field [2]. In MDE, modeling languages (both
general purpose and domain-specific) are described through
a meta-model. This is typically a class diagram containing
the relevant concepts, properties, relations and constraints
of a domain. A model is therefore built by instantiating the
elements of the meta-model, and respecting the defined con-
straints. Hence a meta-model determines a (possibly infinite)
set of valid models, and we say that each model in such set
conforms to the meta-model.

Although the modeling activity is regulated by the
corresponding meta-model, there are no commonly accepted

mechanisms regulating how meta-models should be
extended. This is because meta-models often define lan-
guages, views, and services that are usually integrated (and
sometimes hard-coded) in tools and are therefore less likely
to require user modifications [3]. However, in some sce-
narios, it is common to design meta-models that are meant
to be extended by other developers [4]. For example, some
specifications of the Object Management Group (OMG)
are intended to be used by extending a certain part of the
meta-model. This is for example the case of the Knowl-
edge Discovery Meta-model (KDM) [5], and the Diagram
Definition (DD) [6] standards. The ways in which these
extensions need to be performed are expressed using natural
language. However, this informal approach is error prone,
more when there is no automated mechanism to check the
extensions defined by the developer against what is specified
in the standard, or means to guide the developer in the
extension. This situation contrasts with the well-established
instantiation mechanisms of meta-models. In our view, there
should be a similar machinery to establish rules for the correct
extension of a meta-model (e.g., classes to be sub- classified,

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

19923

https://orcid.org/0000-0002-3136-4486


S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

references to be redefined, enumerations that admit further
literals), as well as the operationalization of such rules by
means of tools.

To improve this situation, we propose a mechanism for
the specification of rules for the extension of meta-models,
as well as a tool that allows their extension according to the
defined rules. The tool (called TACO, standing for ‘‘a Tool
formetAmodelCustOmization’’) has been built as an Eclipse
plugin, on top of the Eclipse Modeling Framework (EMF),
the de facto meta-modeling standard nowadays [7]. The tool
contains an assistant that guides the developer in extending
the meta-model, and has been validated in different scenar-
ios, including the definition of extensibility for the KDM
and DD standards, and other meta-models built by third
parties.

This paper is an extended version of our preliminary
work [8], [9], where we have improved the expressivity of
our approach (e.g., to support extensibility of enumerations,
and for a more fine-grained control of allowed updates), and
improved tool support with an assistant to guide the developer
in the meta-model extension. We present a classification of
meta-model customization types and their effects, a case
study using the DD standard, and an applicability study of
our technique, which analyses the extension needs of exist-
ing meta-models built by third parties, identifying recurring
extensibility needs.

The rest of this article is organized as follows. Section II
describes scenarios where meta-model customization control
mechanisms are useful. Section III presents a classification
of customization types. Section IV shows our mechanism for
defining allowed customizations of meta-models. Section V
describes tool support. Section VI presents an evaluation of
our approach. This evaluation has two parts. First, we report
on a field study showing the need for extensibility in meta-
models built by third parties. Second, we show a case study
using the DD standard. Section VII compares our approach
with related work, and Section VIII finishes the paper with
conclusions and open lines for future research.

II. MOTIVATION AND USAGE SCENARIOS
Taking into consideration that meta-models are the corner-
stone in the development of software with MDE [10] and
that software has to evolve over time [11], it is necessary to
have frameworks that provide methodological support in the
evolution of meta-models. This evolution permits developing
software that can adapt to new application domains or chang-
ing requirements within the domain [10].

There are several independent efforts that address the issue
of meta-model extension, but standards have not yet been
developed for this task [12]. Braun and collaborators [10]
point out that an extension improves the expressiveness of a
conceptual modeling language by introducing new constructs
and properties or by refining the existing elements in order to
represent concepts of specific purpose.

Next, we review three scenarios motivating the need for
specifying allowed meta-model customizations, as well as

mechanisms to guide the developer to perform the customiza-
tion according to those rules.

A. EXTENSION OF META-MODELS
There are situations in which meta-models are designed for
being extended. Hence, similar to object-oriented application
frameworks [13], these are base meta-models, from which
more complex systems are derived by sub-classification and
redefinition.

For example, the DD standard of the OMG allows the
formal specification of the concrete syntax of a model-
ing language making it possible for the tools to exchange
diagrams [6]. The idea of the standard is to obtain a
systematic way to exchange concrete syntax information
between tools, similar to the way the models are interchanged
between MOF-based tools in XMI, a specification that maps
MOF to XML [14]. The abstract syntax of a graphical mod-
eling language is typically defined with a meta-model while
its concrete syntax (a diagram) is informally defined with text
and figures [15], [16].

The DD standard considers an architecture that allows
the specification of a Diagram Interchange (DI) and a Dia-
gram Graphics(DG) model. DI is a framework intended for
extension rather than a ready-to-use component. Extensibility
allows defining graphical aspects that the user controls, such
as the position of the nodes and the routing points of the
lines. Hence, we can see that DI needs to be refined for its
use with a particular modeling language (e.g., the UML).
DG is used to define the graphical aspects that are specified
by the modeling language (uncontrollable by the user) [15].
Both models share common elements from a Diagram Com-
mon (DC) model. The DD architecture expects language
specifications to define mappings between interchanged and
non-interchanged graphical information, but does not restrict
how it is done (Fig. 1).

As noted, using the DD standard for a specific modeling
language requires the extension of certain classes of the
DI meta-model and the way of extending such meta-model
is described in natural language in the standard. However,
this can lead to errors, more when there is no automated
mechanism to check the correctness extensions, or guide the
developer in their construction.

B. MULTI-LEVEL MODELING AND THE TYPE-OBJECT
PATTERN
In traditional meta-modeling the engineer works with two
meta-levels: meta-models and models. This is the approach
followed by current meta-modeling standards such as the
EMF. Multi-level modeling [4] is a conservative extension
of the two-level approach, supporting the use of an arbitrary
number of meta-levels to describe the systems. Multi-level
modeling makes it possible to obtain simpler models (with
fewer elements) in some scenarios, especially when the type-
object pattern arises [4].

As an example, assume we want to describe an
e-commerce system, supporting the dynamic definition of

19924 VOLUME 6, 2018



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

FIGURE 1. Diagram Definition Architecture, taken from [6]. For its use,
the DI meta-model needs to be extended (see AS DI meta-model).

FIGURE 2. An E-commerce system modelled using the type-object pattern
(a), and multi-level modeling (b).

both product types (like Books) and instances of these.
In this domain, product types may have different value added
tax (VAT), while instances have a price. Such system is rep-
resented in Fig. 2 (a) using the type-object pattern. The meta-
model contains classes modeling product types, instances and
the typing relationship between both. Alternatively, we can
use multi-level modeling to represent the same system,
as Fig. 2(b) shows. This solution uses three meta-levels. The
top-most model does not require explicitly modeling Prod-
ucts, as these will be instances of the instances of Product-
Type. Mechanisms for deep characterization, like potency [4],
are used in multi-level modeling to describe instances beyond
the immediate meta-level below. The potency is a natural
number or zero, which states the number ofmeta-levels below
at which the attribute (or class) can be instantiated. In the
figure, it is shown after the ‘‘@’’ symbol. When instantiating
an element, the instance receives a decreased potency, and an
element with potency 0 cannot be further instantiated. In the
Figure, ProductType has potency 2, so it can be instantiated in
the following two meta-levels. Attribute price has potency 2

FIGURE 3. The E-commerce system modelled using subclassing.

as well – so it applies to instances two levels below – while
vat has potency 1 and applies to instances at the next level
only. As it can be noted, the resulting multi-level model has
less elements than the two-level solution.

Multi-level modeling has advantages in the design of the
extensibility of meta-models, since the needs for extensi-
bility can be expressed as instantiation, for which there
are standard mechanisms that describe its operation. There
are several tools that support multi-level modeling, such as
metaDepth [17] or Melanee [18]. However, they are not
directly interoperable with plain EMF and its rich modeling
ecosystem.

Multi-level modeling could be emulated within standard
two-level modeling by replacing instantiation with subclass-
ing. This would have the advantage of maintaining the
compatibility with standards, like MOF, but would require
enhancing the control of how extensions of a meta-model
can be performed. By adding such control rules, we would
like to avoid the creation of incorrect extensions, or forbidden
modifications of the base meta-model.

Fig. 3 shows the E-commerce system using an extension-
based mechanism. This way, Book is defined as a subclass of
ProductType, instead of as an instance of it. A realization of
this approach would require means to emulate the ‘‘instan-
tiation’’ of features (like vat) at the meta-model level (like
in Book.vat). Please note that, by supporting this scenario,
it would be possible to migrate from the type-object pattern
(Fig. 2(a)) to a solution based on subclassing (Fig. 3). One of
themain rationales for usingmulti-levelmodeling or the type-
object pattern (Fig. 2) is to obtain a modularity mechanism,
by which users, different from the meta-model designer,
can dynamically create new types (Book in Fig. 2). This
would be achieved in the solution of Fig. 3 if the base meta-
model designer would be able to define extensibility rules,
which then could be used by others to define extensions like
EBookshop in Fig. 3.

C. ADAPTATION OF DSLs
Many DSLs are not completely designed from scratch, but
are created by extending or adapting a base language to a cer-
tain domain [19]. For example, designing DSLs to describe
behaviour is often based on well-known languages, such as

VOLUME 6, 2018 19925



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

FIGURE 4. A meta-model for State machines.

state machines (see a simplified meta-model in Fig. 4), and
adding domain-specific extensions.

In this scenario, in addition to extending existing elements,
adaptations and simplifications (deletions) may also occur.
In case of Fig. 4, for a specific domain, a designer may not
need state machines with final or initial states. In addition,
to adapt the State machine to a specific domain, s/he may
need to update class SimpleState with new features, and
define several subclasses of Event. If we need to ensure a
correct reuse of associated artefacts like model transforma-
tions, a specification of elements that cannot be changed
(e.g., StateMachine, StateVertex, Transition, SimpleState),
optional elements that can be removed (InitialState, Final-
State, Event) and extensible elements that can be sub-
classed or updated (Event, SimpleState) is required. While
existing techniques e.g., based on product lines [20] can
be used to annotate meta-model elements with presence
conditions, those approaches do not support a specifica-
tion of how and if certain elements can be extended (sub-
classed) or refined (in case of references). Hence, they are
a closed approach to reuse (where a certain product of the
product line is chose), while our proposal would lead to an
open approach to reuse, where a base meta-model is adapted
and then extended in a controlled way.

In our view, a repository of language components, with
indications of how these can be reused (extended, restricted,
adapted) would facilitate the task of constructing new DSLs,
or, more generally, flexible reuse of artefacts associated to
meta-models. In this scenario, a co-adaptation of the associ-
ated artefact is required.

Altogether, in these three scenarios, we see a need to
express how certain elements in a base meta-model can be
refined (for the scenarios in Sections A andB), expandedwith
new features or simplified (for the scenario in Section C).

In the rest of this paper, we present an approach to
the description of extensibility mechanisms, focusing on the
meta-model extension scenario. However, first we analyse the
types of meta-model customizations and their consequences.

III. CLASSIFYING META-MODEL CUSTOMIZATION TYPES
In this section we classify the kinds of customizations that
can be performed on a meta-model, and discuss the com-
patibility of possible existing source models with respect
to the customized meta-model, and vice-versa. The types
of customization are summarized schematically in Fig. 5.

FIGURE 5. Meta-model customization types. (a) Meta-model refinement.
(b) Meta-model expansion. (c) Meta-model restriction. (d) Meta-model
contraction. (e) Conservative additive customization. (f) Breaking additive
customization. (g) Restrictive customization. (h) Restrictive safe
customization.

The first four cases refer to classes, while the last four cases
involve features.

When talking about modifying the meta-model, several
terms are used in the literature, including extension, cus-
tomization, adaptation, variation or mutation. In the present
work we use the term ‘‘customization’’ to refer to any kind
of modification, while ‘‘extension’’ is a specific type of cus-
tomization that adds new subclasses, or new classes to the
meta-model, while leaving the existing elements intact. This
distinction is useful, as extensions preserve compatibility of
existing models with respect to the resulting extended meta-
model, while arbitrary customizations may not preserve such
conformance.

We distinguish two kinds of extensions: meta-model
refinement and meta-model expansion, shown in
Figures 5(a) and 5(b) respectively. A refinement adds new
subclasses to existing classes1 in the original meta-model.
The new subclasses can add new features and redefine ref-
erences of the original class. An expansion adds new classes
that are not related by inheritance to the existing classes of
the original meta-model.

As Table 1 shows, a model conforming to a meta-
model, also conforms to a refined meta-model and to
an expanded one (column forward model compatibility).
However, a model conforming to a refined or expanded meta-
model does not necessarily conform to the original meta-
model (column backward model compatibility).

Following [21] we distinguish incompatibilities which can
be automatically resolved (R in the table) and that are unre-
solvable automatically and require human intervention (U in

1We consider single inheritance only.

19926 VOLUME 6, 2018



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

TABLE 1. Forward and backward compatibility of meta-model
modification types. (Types: {E=Extension, C=Customization,
PC=Property Customization}, Compatibility: {=Compatible,
R=Resolvable, U=Unresolvable}).

the table). Both refined and expanded models can be made
conformant to the original meta-model automatically. In the
first case, we retype objects of the subclass to the super
class (objects of type B to objects of type A in Fig. 5 (a)),
and remove the additional slots and links introduced by the
subclass. Similarly, for an expandedmodel we simply remove
the objects of the added classes.

Conversely to refinement and expansion, we may have
restrictions (i.e., deleting a subclass) and contractions (delet-
ing a class with no superclass). These customizations are
inverses of refinement and expansion respectively, and hence
the forward and backward compatibility are reversed.

Next, we focus on class features, where we distinguish
two other types of customizations: additive and restrictive.
The former adds new features to existing classes in the orig-
inal meta-model, while the latter deletes features of existing
classes.

Figures 5(e) and (f) show two subtypes of additive changes.
The first are called conservative, since they add optional
features (attributes or references) to existing classes. Conser-
vative additive customizations preserve conformity of mod-
els with respect to the updated meta-model. Models of the
updated meta-model can be made conformant to the original
one by removing the slots corresponding to the newly added
features.

Breaking additive customizations add mandatory features
to existing classes (see Fig. 5(f)). They break conformance of
existingmodels, since these lack suchmandatory features and
hence cannot be correctly typed with respect to the updated
meta-model. Such non-conformity is unresolvable automat-
ically, and would require user intervention (as there may be
several ways to fix an existing model). Conversely, models
of the updated meta-model are not conformant to the original
meta-model, but can be fixed automatically by removing the
slots corresponding to the newly added features.

Restrictive customizations delete features of the original
meta-model. We distinguish between removing mandatory
(Fig. 5(g)) and optional features (Fig. 5(h)). Removing
mandatory features makes existing models incompatible with
the updated meta-model, but incompatibilities can be auto-
matically fixed by removing the slots of the removed manda-
tory features. Conversely, models of the updated meta-model
cannot be made conformant to the original meta-model in an
automatic way, as there would be many different values that
can be chosen for the slots that need to be added.

Restrictive safe customizations are those that delete
optional features of existing classes (see Fig. 5(h)). These
updates may cause incompatibility of existing models with
respect to the updated meta-model, which can be automati-
cally resolved, by removing the slots and links corresponding
to the deleted features. Conversely, models of the updated
meta-model remain conformant to the original meta-model,
because only optional features are removed by this cus-
tomization type.

Altogether, it can be noted that conservative additive cus-
tomizations and restrictive safe customizations are inverses
of each other; while breaking additive customizations and
restrictive customizations are also inverses.

The presented changes are enough for our envisioned sce-
narios of meta-model extension and customization. However,
for completeness, next we discuss additional possible meta-
model changes. These involve changing properties of existing
meta-model elements, like the abstractness of a class or the
cardinality of a reference. For this reason, we call them prop-
erty customizations and they are also summarized in Table 1.

Regarding classes, we may make abstract a concrete class.
This change breaks forward compatibility, and cannot gener-
ally be corrected automatically (as e.g., objects of the abstract
class may need to be retyped to some subclass). Conversely,
this change preserves backward compatibility. Making an
abstract class concrete has the converse effect: preserves
forward compatibility, while it is an unresolvable backwards.

Regarding inheritance, we may add an inheritance rela-
tion between two existing classes. This may break existing
models, as instances of the subclass may receive mandatory
features owned by the superclass. In general, such changes
cannot be automatically corrected. Moreover, this also breaks
conformance backwards, as objects of the subclass cease to
receive slots typed by features of the superclass. This cannot
be corrected automatically, as objects of the subclass may
have to be removed from collections (which were compatible
with the superclass), and this may break the cardinality of the
collection. Removing an inheritance relation has the converse
effect.

We can make changes in existing features, regarding its
cardinality, type and composition (for references).

With respect to cardinality, we distinguish relax-
ing or restricting the cardinality interval. In the former
case models of the original meta-model still conform to the
updated meta-model (forward compatibility) but introduces
unresolvable changes for backward compatibility. This is so

VOLUME 6, 2018 19927



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

because to make the relaxed feature conform back to the
original, we may have several choices to remove elements
from it. The case of restriction is the converse of relaxation
(breaking unresolvable for forward compatibility, and back-
ward compatible). We may have also arbitrary changes to
the lower and upper cardinality intervals. This more general
change breaks forward and backwards compatibility, and
cannot be resolved automatically.

Features (especially references) can also be relaxed or
restricted regarding the target type. In the first case, the target
of a reference is changed to point to a superclass of the orig-
inal target. This leads to forward compatibility, but required
unresolvable breaking changes for backward compatibility.
This is so as it might be impossible to remove a given object
from the reference without breaking its cardinality. Reference
type restriction changes the target of a reference to point to
a subclass, and has the converse effect than reference relax-
ation. Finally, we may change the target type of a reference
by another unrelated type, which is an unresolvable change
breaking conformity both forward and backwards.

Finally, a (non-composition) reference may be changed to
become a composition reference. This breaks forward com-
patibility, as the reference in the original model may not have
a tree structure. Conversely, it preserves backward compati-
bility. Making a composition reference non-composition has
the converse effect.

Once we have seen the types of possible customizations
for a base meta-model, in the next section we propose an
approach to specify the space of possible meta-model cus-
tomizations.

IV. META-MODEL CUSTOMIZATION CONTROL
MECHANISM
This section describes the approach we have devised to con-
trolling how a meta-model can be customized. The approach
considers all customization types described in Section III
(excluding property configurations, left for future work).

As shown in Fig. 6, our method considers two phases.
In the first one, the customization rules of the base meta-
model are defined. These rules are specified as a model,
conforming to a customization meta-model (shown in Fig. 4),
which annotates the elements of the base meta-model.
In the second phase, the base meta-model can be customized
according to the established rules. Fig. 6 explicitly depicts
the case of meta-model extension. While we support other
types of customization, this paper focusses on meta-model
extension.

It is common that defining the extension rules and the
proper meta-model extension will be performed by different
developers. Typically, the definition of the extension rules
will be performed by the base meta-model designer (in gen-
eral by an extensibility designer), while reusing such base
meta-model implies its extension according to the specified
rules. Both activities should be supported by tools, which
need to provide guidance to the developer to extend the
meta-model, as well as confidence that the extension made

FIGURE 6. Definition and use of customization rules.

TABLE 2. Supported customization rules.

obeys the extension rules. Section V gives an overview of the
developed tool.

Our approach supports 5 types of customization rules,
summarized in Table 2, which cover meta-model extension
and customization. Supporting property customizations is left
for future work.
Extend rules identify the classes of the base meta-model

that can be extended with subclasses. They lead to meta-
model refinements (see Fig. 5(a)).
Delete rules tag optional classes or features (attributes and

references). For the case of classes, they lead to meta-model
restrictions (in the case of optional subclasses) or contractions
(for classes with no supertypes).
Update rules can be applied to classes or enumeration

types. In the first case, the class is considered open, and new
features can be added, leading to (breaking or conservative)
additive customizations. In the second, the enumeration type
can be added new literals leading to a refinement. Please note

19928 VOLUME 6, 2018



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

FIGURE 7. Customization meta-model.

that we consider adding new enumeration literals a refine-
ment, as it is a frequent idiom for subclassing a base class.

The New rule is applied to the meta-model itself, and
indicates that it can be expanded with new classes and/or
enumeration types, leading to a meta-model expansion.

Finally, Redefine rules are applicable to references of the
base meta-model, and govern how they can be redefined
in extensions. Redefine rules lead to refinements, as they
should be compatible with a suitable Extend rule of the owner
class or a superclass.

In the scenario of extension ofmeta-models that we handle,
only the Extend, Redefine, Enumeration Update, and New
rules are relevant.

The customization rules have been realized in a customiza-
tion meta-model, shown in Fig. 7. The root class of the meta-
model is CustomizationModel, which holds the name of the
extension rule set (name attribute), and the policy for storing
the customized meta-model (save attribute). For the latter,
we consider three options (TypeSave enum): 1) newMM: cre-
ates a new meta-model containing both the base meta-model
and the extension, 2) theSame: modifications are made on the
original meta-model, and 3) newPackage: the extensions are
stored in a separate package referencing the base one. It is
possible to indicate that the meta-model is open, so that new
independent classes and enumerations can be added (attribute
expand).
A CustomizationModel holds a collection of customiza-

tion rules. These are instances of some concrete subclass
of Customization, and are organized in a hierarchy, where
the bottom classes (DeleteFeature, DeleteClass, etc) have
a reference to the meta-model element they annotate. The
meta-model elements are placed in the package ‘‘Ecore’’,
because we use the EMF as modeling platform, but this idea
is applicable to other meta-modeling platforms as well.

Delete rules (subclasses ofDelete) tag optional classes and
features. Extension, Update and Redefinition rules can all be
attached a cardinality interval (min..max), and hence inherit
from the abstract class MultipleCustomization.

Extension rules allow extending (creating subclasses of)
the class of the base meta-model selected by the cus-
tom_extend reference. The extensionKind attribute declares
whether the possible subclasses must be abstract, con-
crete, or left to the judgement of the engineer extending
the meta-model. The newIsExtend attribute indicates whether
the created subclass can be subclassified in its turn. The
rule permits specifying the number of subclasses allowed,
using the min..max interval (where −1 for max indicates
unlimited). This way, it is possible to specify whether a class
must be extended exactly once (interval 1..1), optionally at
most once (interval 0..1), mandatorily one or more times
(interval 1..−1), or zero or more times (interval 0..−1).
It should be noted that if a class of the base meta-model
does not have an associated extension rule, then it cannot be
extended.

It is possible to define rules that govern the redefinition of
references by instantiating the Redefine class, and pointing
to the reference to be redefined using custom_redefine. Thus,
given a class C that defines a reference ref to a class D, we can
indicate how many times ref can be redefined each time C
is extended (through the min..max interval). In any case,
the destination of the ref redefinitions must be compatible
with class D. In addition, we can specify whether or not
the redefinitions should be composition, or any (composi-
tionKind attribute). Using the redefKind attribute, we control
the cardinality that can be assigned to each redefinition,
considering three possibilities: 1) Default: the cardinality of
the redefinitions must be that of the reference ref, 2) Restric-
tive: the cardinality of the redefinitions must be an interval

VOLUME 6, 2018 19929



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

contained in the ref interval. For example, if the cardinality
of ref is 0..2, then the redefinitions can declare the intervals:
0..1, 0..2, 1..2, 1..1 and 2..2, and 3) Anything: the cardinality
of the redefinitions can be any.

References may connect two inheritance hierarchies: those
of the source and the target classes of the reference.
By default, a Redefine rule describes how (and if) a ref-
erence is redefined when the owner class of the reference
is subclassed. Hence, the redefinition rule applies when the
owner class or a subclass is extended, and the target class
of the redefined reference should be compatible (a sub-
class) with the target class of the original reference. How-
ever, we might want to be more precise in stating both
allowed target classes, and when the redefinition should take
place.

This way, we can set the Redefine rule to apply only when
a certain subclass A of the reference owner is extended.
To describe this possibility, the reference Redefine.owner
would point to the class A. Similarly, we can define the
allowed targets of the redefined reference. This is done by
reference Redefine.targets, which should point to subclasses
of the target class of the original reference.

When a reference ref is redefined by a series of references
ref1,.., refn, reference ref is seen as a derived reference,
resul-ting from the union of ref1,.., refn. In terms of UML,
ref1. . . refn would have a subsets relation with ref.
Example: Fig. 8 shows an example of how redefinition

rules work. Part (a) of the figure shows a base meta-model
with some extension rules. In particular, they state that
class A can be extended optionally at most once, while B
and C should be extended mandatorily. In the three cases,
the subclasses can be abstract or concrete. Reference elems
has a redefinition rule, stating that it should be redefined
one or more times, whenever B (owner) is extended. Valid
targets of the redefinitions are subclasses of C . In addition,
redefinitions should be containment (cont) and should have ∗

cardinality (default).
Fig. 8 (b) shows a valid extension, because cs redefines

elems, and is owned by B′, which extends B. Moreover, the
target of cs is correct, as C ′ is a subclass of C . Instead
Figs. 8(c) and (d) show invalid extensions. In Fig. 8(c), bs
is an incorrect redefinition of elems, because the target of
bs is not a subclass of C . In Fig. 8(d), cs is an incorrect
redefinition of elems, because the owner of cs is not a subclass
of B (and also because B’ does no redefine elems). We will
see realistic, practical uses of controlling the owner and target
of redefinitions in Section VI.B.

Finally, regarding update rules, there are two kinds: for
classes (UpdateClass) and for enumeration types (Upda-
teEnum). For classes, they allow adding a number of features
in the range (min. . .max). If the conservative attribute is
set to true, then only optional features can be added. This
makes the rule to be configured for a conservative additive
customization, cf. Fig. 5(e). Please note that updating a class
means creating new features, and hence there is no need to
specify additional Redefine rules for owned features. In the

FIGURE 8. Redefinition examples. (a) Base meta-model with extension
and redefinition rules. (b) Valid extension. (c, d) Invalid extensions.

case of enumerations, tagging them withUpdateEnummeans
that new literals can be added in the range (min..max).

The meta-model contains some well-formedness con-
straints, ensuring a correct placement of extension rules.
These include checking that if a reference is tagged as Rede-
fine, then the owning class or a subclass has to be tagged
as Extend, and (if not empty) the Redefine.owner reference
points to a subclass of the owner of the reference (and
similarly for Redefine.targets). We also forbid mixing cus-
tomization intentions, as they may result in possible conflicts.
For example, a class tagged as Delete, cannot be tagged as
Update or Extend. This is so as, if the class is actually deleted,
then it cannot be updated or extended. Similarly, a reference
tagged as Redefine cannot be tagged as Delete. This is so as,
if it is redefined, then it would be a conflict to delete it; while
if its deleted first it could not be redefined.

Finally, please note that queries (e.g. in OCL) can be
defined to identify the kind of customization defined, accord-
ing to the classification in Table 1. This permits the extensibil-
ity designer to control the forward/backward compatibility of
models with respect to possible meta-model customizations.
Example: Fig. 9 shows an example illustrating some cus-

tomization rules in the area of process modeling.
The upper part of Fig. 9 (label a) presents an excerpt

of the base meta-model, containing the concepts for an
abstract, neutral process modeling language. The lower part
(label b) shows its domain-specific extension for software
process modeling. Classes ActivityKind and ResourceKind
have attached rules that force their mandatory extension
with an abstract class. Hence, these rules force the creation
of domain-specific hierarchies for Activities and Resources.
Reference ActivityKind.needs must be redefined one or more
times with any cardinality, and redefinitions cannot be con-
tainments. In the extension, it has been redefined three times
in the class SoftwareEngineeringActivity, modeling that soft-
ware engineering tasks: 1) have zero or more inputs which are
artefacts; 2) have one or more outputs that are also artefacts;

19930 VOLUME 6, 2018



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

FIGURE 9. Extending a base meta-model to obtain a domain-specific
process modeling language.

and 3) are performed by one or more people. The target of
each one of these references (Artefact, Personnel) is compat-
ible with the target of reference needs (ResourceKind). This is
the default semantics of redefinition, when no specific target
is specified in the Redefine rule. This redefinition makes
reference needs be seen as a derived reference, resulting from
the union of references inputs, outputs and performedBy.

Hence, the example has shown that it is possible to design
a base meta-model, and control: (a) that only types of activ-
ity and resources can be refined, (b) extensions should be
organized using an abstract class (like SoftwareEngineerni-
gActivity and ResourceKindActivity), (c) gateways cannot be
refined (e.g., because we assume a fixed semantics for them)
and (d) reference needs should be redefined in subclasses of
ActivityKind and ResourceKind (mandatorily, to ensure that
any domain-specific type of activity requires some domain-
specific type of resource). Without a mechanism to define
these extensibility rules, desirable extension patterns should
be described in natural language, and the extension designer
would have the burden to correctly interpret the natural lan-
guage description, and to check that the designed extension
is defined as expected.

An alternative to the definition of a meta-model to express
meta-model customizations would be the definition of
OCL expressions specifying how a particular meta-model can
be extended. However, this would lead to complex, cumber-
some expressions, which the extension designer would need
to concoct for every new extension specification.

For example, using the previous example, an OCL
expression indicating that class ActivityKind should be
mandatorily extended with an abstract class, could be
given as:

FIGURE 10. Customization architecture.

The idea is that, such expression should evaluate to true
on a valid concrete extension (like SoftwareEngineering
ProcessModelling in Fig. 9). While the expression could be
used to check whether an extension is correct, it cannot be
used as a guide to create a suitable extension.

V. TOOL SUPPORT
In order to realize our approach, we have designed an archi-
tecture made of a pair of complementary tools that work
together, as seen in Fig. 10. These tools are collectively called
TACO and have been implemented as Eclipse plugins, using
the EMF framework as meta-modeling infrastructure. They
are available at https://santiagojacome.wordpress.com/.

The customization architecture uses the customization
meta-model (label 1, which was detailed in in Fig. 7), which
specifies the operations that can be performed on the meta-
model to be customized. The customization rules are created
using an Extensibility Design Tool (label 2), which permits
using either a textual syntax (label a) or a tree-based editor
(label b) to create the rules. In both cases, the rules are created
as a model (instance of the customization meta-model) which
annotates the base meta-model. The base meta-model and the
customization rules are stored in a repository (label 3).

Once the extension rules are defined, the base meta-model
can be extended according to them. For this purpose, we have
created a tool (called Customization Tool in the figure, with
label 4), which allows executing the operations of the exten-
sion model. For this task, the developer is guided by a cus-
tomization assistant. The resulting customized meta-model
can then be stored in a repository (label 5).

Next, we give an overview of the Extensibility Design Tool
(Section V.A), and the Customization Tool (Section V.B).

A. EXTENSIBILITY DESIGN TOOL
The customization rules can be specified using a tree-based
editor (Fig. 11) or using a Domain-Specific textual language
we have created with Xtext (Fig. 12).

Fig. 11 shows an example configurationmodel with sample
values, where:

VOLUME 6, 2018 19931



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

FIGURE 11. Customization model created with the tree-based editor.

FIGURE 12. Customization model created with our textual DSL.

• Components=baseMM (∗.ecore), is the name of the
meta-model to be extended.

• Expand=true, controls if new arbitrary classes can be
added.

• Name=baseMM_extend, is the name of the extension
rule set.

• Save=theSame, is the storage option of the extended
meta-model.

• Extend, Redefine, UpdateClass, UpdateEnum, Delete-
Class and DeleteFeature, is the list of the created cus-
tomization rules.

If the model specification is made through the extensibility
DSL (Fig. 12), initial configuration values of the model must
be assigned as in the previous case, as well as the definition
of the rules using the language syntax.

B. CUSTOMIZATION TOOL
Once the extensibility rules are specified, they can be used
through the customization tool. Its main interface (Fig. 13)
is organized in two sections. The left section shows all the
elements of the base meta-model (classes, attributes, refer-
ences and enumerations), which can bemodified according to
the extension rules defined in the extension model and shown
in the columns to the right, next to each element of the base
meta-model. The right section of the interface (panel labelled
‘‘OPTIONS’’) offers the available extension operations in the
form of buttons that are activated or deactivated depending
on the extension rules specified for each element of the meta-
model and which are previously defined in the extension
model. Additional dialog windows (Fig. 14) are available for
the proper execution of each defined rule.

In order to guide the execution of the extension rules,
the tool includes a customization assistant as a View.

FIGURE 13. Main graphical user interface (GUI) of the customization tool.

FIGURE 14. Additional dialog windows of the customization tool.
(a) Extending a class, (b) Redefining a reference, (c) Adding new
literals to an extensible enumeration type.

c

b

a

FIGURE 15. Overview of the customization assistant.

The assistant provides help for the process of class extension
and for the process of redefining references (Fig. 15).

The assistant appears as a view divided into three sections
at the bottom of the main interface. In the process of class
extension, selecting a class from the Element column of the
main GUI shows all its subclasses, giving an overall idea
of the inheritance hierarchy (section a in Fig. 15). In the
process of redefining references, selecting a reference from
the Element column of the main GUI shows the source and
destination class of the reference, and the name of the refer-
ence being redefined. All subclasses of the source and target
classes of the reference to be redefined are also displayed
(section b of the Figure).

Finally, section c of the assistant guides in the creation of
the extension. This way, it contains three parts: mandatory
tasks, optional tasks and completed tasks.

19932 VOLUME 6, 2018



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

Mandatory tasks are customizations required by some of
the rules. For example, an Extend rule with a cardinality
of [1..2] is a mandatory task. Fig. 15 shows that Class1 needs
to be extended at least once.

Optional tasks are tasks that either have a cardinality with 0
as lower bound or are mandatory tasks that have already been
performed. For example, in the Figure, if we extend Class1
once, then extending it another time becomes an optional
task. Extending Class3 (which has cardinality [0..3]) is an
optional task from the beginning. Finally, completed tasks are
customization actions performed by the developer.

VI. EVALUATION
Next, we evaluate the approach under two perspectives. First,
we analyse the applicability of our approach, by evaluating
to what extent meta-model extensibility is a common need,
understand the rationale for extensibility, and check if our
approach can be used to express extensibility over meta-
models built by third parties. Second, we present a relevant
case study, taken from the DD OMG standard. In this case
study, we define different extensibility rules, which can be
used to define different types of allowed extensions.

A. APPLICABILITY OF THE APPROACH
This section analyses to what extent our approach is use-
ful to express extensibility rules found in practice, and to
understand practical scenarios that benefit from extensibility
control.

Table 3 shows some meta-models from different sources,
and how we described their extensibility rules using our
approach. We have investigated two different reposito-
ries: the ATL meta-model zoo,2 and publicly available
OMG standards. Additionally, we have also analyzed meta-
models found in conferences and journals in the modeling
area.

It can be observed that extensibility needs are found in
the ATL zoo, the OMG standard and papers found in the
literature [4], [28]–[32]. In these works, we observe three
kinds of needs. In the first one, one would like to have library-
like mechanisms at the meta-model level, e.g., to define
extensible catalogs of activity kinds (like in Intalio BPMN),
diverse policy types (like in MARTE), document properties
(like in SACM [33]) or types of services (like in PetStore).
In this scenario, several classes or enumeration types could
be tagged as ‘‘open’’ using our approach.

In the second scenario, a base language is provided, which
needs to be extended with domain-specific concepts. In some
cases, meta-models for external technologies are expected to
be plugged-in extending some designated class(es). Typical
examples are meta-models in the area of reverse engineer-
ing (like KDM or ASTM) or enterprise application inte-
gration (like EAI) where base meta-models are expected to
be extended with meta-models of programming languages.
In some cases, the extension developer needs to follow

2http://web.emn.fr/x-info/atlanmod/index.php?title=Main_Page

TABLE 3. Extensible meta-models (CL=Class Extension, EN=Enumeration
Extension, RE=Reference Redefinition).

complex patterns for the extension (a typical case is
KDM [9]), which are described in natural language only.

Finally, in the third scenario, there is a need to dynamically
instantiate types and their instances. These cases are either
modelled using the type-object pattern [25], [27] or promo-
tion transformations [26]. Using our approach permits using
subclassing, ensuring a controlled extension of a base meta-
model. An alternative to using subclassing would be the use
of multi-level modeling, as discussed in Section II.B and [4].

As an example of the benefits that our approach would
bring in the second scenario, Fig. 16 shows an excerpt of the
EMF-DEVS meta-model, and a small fragment of an exten-
sion [25]. This meta-model pertains to the area of component-
based modeling and simulation. A base model (EMF-DEVS)
is defined, and the designer is expected to define partic-
ular types of components (with input and output ports)
and domain-specific data types for the exchanged messages

VOLUME 6, 2018 19933



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

FIGURE 16. Excerpt of EMF-DEVS meta-model, and a typical extension
(adapted from [25]).

FIGURE 17. Excerpt of the CloudML meta-model (a), and an instance (b).

by subclassing from eAtomic, eOutputPort, eInputPort and
eIOData.

Hence, the designer is not expected to modify existing
classes in EMF-DEVs, while subclassing eAtomic at least
once, and redefining the association between eAtomic and
the port whenever such port is subclassified. Without our
approach, such rules would be expressed with natural lan-
guage, while our tool allows describing them, guiding the
developer in the extension and guaranteeing a correct exten-
sion according to the rules.

As an example of the third scenario, Fig. 17 shows a small
part of the CloudML meta-model (part a), and a small exam-
ple instance (part b). This meta-model has been designed
using the type-object pattern (the instances of such pattern
have been signalled in the Figure), as there is the need to
leave users the definition of new types (e.g., new kinds of

FIGURE 18. Excerpt of the CloudML meta-model rearchitected using our
extension-based approach (a), and an instance (b, c).

Artefact like TomCat) and instances of these (e.g., instances
of ArtefactInstance like MyTomCat). To obtain extensibility,
the decision is to model types (like TomCat) as objects. This
has the drawback that, should we need these types to define
new properties (as it is indeed the case in the meta-model),
these attributes should be emulated with an additional class
in the meta-model.

Instead, we can rearchitect CloudML using our extensibil-
ity approach, as shown in Fig. 18 (a). By using extensibility
rules, users of CloudML can safely extend the base meta-
model in a modular way, with no risk of performing incorrect
extensions. As a clear advantage of our approach, the base
CloudMLmeta-model is reduced in size (5 classes and 3 asso-
ciations vs. 10 classes and 8 associations), as each occur-
rence of the type-object pattern is represented with one class
only. Moreover, by modeling types at the meta-model level,
we can naturally add properties to such types (e.g., version for
TomCat), and specify cardinalities for redefined associations
(e.g. for httpPorts). Hence, our approach permits users to
perform a kind of domain-specific meta-modeling [34].

B. CASE STUDY: DEFINING EXTENSION RULES FOR DI
In order to further assess the feasibility of the proposed
approach, in realistic scenarios, we have defined extensibility
rules on several meta-models (as described in the previous
subsection), including standard meta-models such as DD and
KDM. The extension rules are available at the tool’s web site:
https://santiagojacome.wordpress.com/.

This section describes in some more detail the extension
process for DD v1.1. The objective of this study is to define
the rules of extension of the DI meta-model (Fig. 19) to create
an extension of it for UML (similar to the one proposed
in [15]) , adhering to the architecture of Fig. 1.

19934 VOLUME 6, 2018



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

FIGURE 19. Diagram Interchange meta-model.

TABLE 4. Extension rules for DI.

According to the standard, extensions to this package must
be made using a uniform pattern. The problem is that the
DD standard specifies these extension rules in natural lan-
guage, which are error prone. That is, they are conventions
that the developer can misinterpret, not understand or simply
ignore. In addition, de facto modeling standards, such as
EMF, do not support the redefinition of relationships (which
are necessary in this case).

Table 4 shows the extension rules, extracted from the nat-
ural language indications of the standard. The table has four
columns, indicating the type of rule and the base meta-model

FIGURE 20. Extension rules using the extensibility DSL.

element they apply to, the value of each field of the rule,
and an example of use to create an extension for the UML.
Fig. 20 shows the same rules in textual format.

Altogether, we consider 5 extension rules, 6 redefinition
rules, and 1 update enumeration rule.

The first rule specifies that the class Diagram should be
extended mandatorily by a concrete class. This is neces-
sary to define a specific type of diagram for the considered
modeling language. Classes Shape and Edge should also be
refined mandatorily (by concrete classes) to define domain-
specific shapes and edges. DiagramElement can optionally
be extended, the rationale being that it may be useful to
define a base class for the different domain-specific elements.
Hence, we define an optional extension by abstract classes.
Finally, Style should also be extended, to define domain-
specific styles.

The most interesting redefinition rules are for ownedEle-
ment (redefinition rules 3 and 4). Redefinition rule 3 specifies
that redefining ownedElement is mandatory for extensions
of Diagram. This is necessary to enable inclusion of shapes
and edges in the diagram. Redefinition rule 4 states that such
redefinition is optional for extensions of other subclasses
of Diagram (like Node and Shape), as that would only be
needed to model shape containment. Please note that while
both redefinition rules apply to ownedElement, rule 3 takes
precedence when extending the Diagram class (as it applies
specifically to subclasses of Diagram).
Finally the UpdateEnum rule specifies that enumeration

KnownColor can be updated with new custom colors.
Once the extensibility rules are specified, they can be used

through the main GUI (Fig. 21). As noted, it is organized into
two sections, the first column of the left section shows all
the elements of the base meta-model, which can be extended
according to the extension rules defined in the extension
model and shown in the columns on the right, next to each
element of the base meta-model. The newly added elements
are shown in colored rows at the bottom of the table.

Fig. 22 shows the resulting extension, built with the exten-
sion GUI (classes and references in red). This extension is
for the UML language, and is an excerpt of that defined
in the standard itself, and in [15]. As it can be observed,
we have defined an extensionUMLDiagram, which redefined
ownedElement to store UMLDiagramElements. UMLDia-
gramElement is the base class for UML shapes and edges.
Altogether the use of our approach ensures that any

extension the DI meta-model is defined as expected by the

VOLUME 6, 2018 19935



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

FIGURE 21. Extending the DI meta-model for UML through the customization tool.

FIGURE 22. Excerpt of the extended DI meta-model for UML.

DD designers. In addition, our approach permits defining
different types of extensibility. We call them extensibility
profiles. For example, in the case of DI, we can define extensi-
bility rules that result in flat graph-like diagrams [35]. For this
profile, we would like to forbid nesting of edges and shapes
(which are allowed by the redefinition rule 4 in Table 4), and
forbid edges connecting edges (allowed by the redefinition
rules 5 and 6 in Table 4). This way, the extension designer
can chose the more appropriate extension profile, while those
profiles still leave room for variability in the extensions.

Table 5 shows themodified redefinition rules for this exten-
sibility profile, which in addition contains all rules defined
in Table 4, except the redefinition rule 4. Table 5 contains
two rules, applying to references source and target.Both rules
are shown together for brevity, and demand that redefinition
of both such references should point to extensions of Shape
(hence avoiding pointing to extensions of Edge).
As an example, Fig. 23 shows an example extension made

using the extensibility profile.

TABLE 5. ‘‘Simple Graph Diagram’’ extensibility profile for DI.

FIGURE 23. Using the DI extensibility profile for graph-like diagrams.

Nested shapes and edges are forbidden by allowing refine-
ments of reference ownedElements for subclasses ofDiagram
only (redefinition rule 4 was removed). This way, no subclass
of Node or SimpleEdge can redefine reference ownedEle-
ment. Moreover, domain-specific types of edges cannot con-
nect other edges due to the new redefinition rules 5 and 6 in
the profile. Please note also that these rules require a multi-
plicity of 1..1 for the redefined references (default option),
hence disabling the possibility of creating hyperedges (con-
necting multiple sources to multiple targets).

19936 VOLUME 6, 2018



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

Altogether we can see that our mechanism to define exten-
sibility rules can guide the extension designer in constructing
correct extensions, as expected by the DD standard. More-
over, our approach would enable the creation of different
extensibility profiles, so that different extension styles can be
chosen.

VII. RELATED WORK
The objective of the present work has been to propose an
approach that allows controlling the extension and adaptation
of meta-models. Next we compare with some related efforts
in this direction.

In [12] it is proposed the adaptation of meta-models
through a textual DSL that allows the definition of extensions
of the meta-model. Extensions are created as meta-model
annotations by modeling experts and can be created at meta-
model development time. The work defines a set of extension
operators that support the creation andmodification of classes
(modify operators, add, modify, and filter properties), as well
as to establish specialization and generalization relations
between classes. Unlike our approach, these mechanisms are
concrete extensions to a meta-model. Our approach defines
rules that must be fulfilled by any extension, and can therefore
be seen as complementary to this work.

In [36] it is pointed out that UML profiles provide a means
for adapting existing meta-models to specific platforms. The
UML profiles constitute a light extension mechanism where
it is possible to extend the meta-model without overwriting
the original elements [37]. The profiles allow to extend the
meta-models through stereotypes, constraints, and tagged
values. These three extension mechanisms are not top-level,
namely they do not allow modifying existing meta-models,
only adding elements and constraints, but respecting the orig-
inal syntax and semantics [38]. In [39] the philosophy of
extending profiles to the EMF/Ecore environment is adopted.
Again, profiles can be viewed as concrete extensions to a
meta-model, but not as rules that regulate their extension.

Braun [40] provides a classification for extension mecha-
nisms and considers the concept of hook to leave open parts of
a program in order to define and specify them later in classes,
interfaces or methods that must be concretized for injection
of code [41], while other parts of the software remain fixed,
called frozen points in [42]. Braun and Esswein [10] explore
severalMOFmeta-model extensionmechanisms, based on an
analogy with the principles of extension in the field of soft-
ware engineering, such as: hook, aspects, plug-ins, and add-
ons. An approach like ours would allow to specify allowed
extensions.

In [43] two types of meta-model extension mechanisms are
proposed and defined as a controlled mechanism and uncon-
trolled mechanism. In the uncontrolled extension mechanism,
elements can be added to the original meta-model arbitrarily
and associations can be defined between two constructs of
the meta-model. Whereas in the controlled mechanism any
new construction of the meta-model must be derived from
the original meta-model and only when a new association is

a specialization of an existing one in the original meta-model
could be added to the meta-model. Our approach could be
complementary, allowing the definition of precise rules for
both mechanisms.

In [44] four levels of the extension mechanism of the UML
model are defined and discusses the ability to read, expres-
siveness, reach of use and support of tools based on pre-
cise definitions of levels of extension. Different levels mean
different expression abilities and application limits. When
modellers extend the UML meta-model according to their
actual modeling requirements, they can select an appropriate
extension level to make the extension more reasonable and
operable.

Techniques borrowed from software product lines have
been proposed to express variants of DSLs [45]. However,
such techniques express a closed, predefined set of DSL
variants, while our extension rules permit describing a pos-
sibly infinite set of extensions, all of which should obey
the extensibility rules. Hence, we argue that our approach
constitutes an open,but controlled mechanism for extension.

In some cases, extensibility is required due to an intrinsic
need to use multiple meta-levels. In [4], several patterns
were identified, indicating that using multiple meta-levels
would be advantageous. In particular, the type-object pat-
tern [4] described using the ‘‘static types’’ and ‘‘ enumer-
ation’’ approaches would indicate a need for extensibility.
In the first case, one or several classes are expected to be sub-
classified, and some references stemming from it redefined.
In the second case, an enumeration type is ‘‘open’’, in the
sense that it would admit further literals. Both cases can be
covered with our approach.

Guerra and one of the authors of this paper proposed a
flattening of multi-level models which replaces instantiation
by inheritance, for the purpose of analyzing their instantiabil-
ity [46]. Our extensibility approach replaces instantiation by
inheritance, but, because we leave the user to perform such
extensions, we propose extensibility rules to facilitate this
task and ensure its correctness.

Atkinson et al. [3] points to three extension mechanisms
(built-in, meta-model customization and model annotation),
identifying strengths andweaknesses. The authors propose an
alternative mechanism through multi-level modeling, which
would eliminate the weaknesses of the mechanisms outlined
above.

Overall, in summary, we can see a large number of works
analysing language extension mechanisms or DSLs, but there
is a lack of mechanisms to define extension rules for them in
an open way (i.e., leaving freedom for customization to the
user, but following certain rules), an aspect in which our work
is novel and complements these existing works.

VIII. CONCLUSIONS
In this article we have proposed amechanism, an architecture,
and a set of tools supporting the definition of extension rules
for meta-models, and making specific extensions according
to the defined rules. The rules are defined by an extension

VOLUME 6, 2018 19937



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

model, typically constructed by the designer of the meta-
model to be extended. Subsequently other engineers can use
the extension rules to extend the base meta-model. Our tools
guide in this extension ensuring that they obey the defined
rules.

The proposed approach has the advantage that it is non-
intrusive, and generic, that is, extension rules can be linked
to any meta-model. On the other hand, an explicit definition
of extension rules avoids the introduction of accidental errors
due to the use of natural language.

We are currently improving the tool, and the expres-
siveness of the extension rules. Although the current rules
allow expressing the extensions described in standards like
KDM or DD, we will analyze other systems, to check if
improvements are necessary. To complement meta-model
extension and customization, we will tackle the problem of
backward/forward model migration. We are also planning
to perform a usability study of the tool. Finally, we will
extend the tool to handle other scenarios, including multi-
level modeling and adaptation of DSLs.

ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers for their valuable
comments.

REFERENCES
[1] S. J. Mellor, T. Clark, and T. Futagami, ‘‘Model-driven development:

Guest editors’ introduction,’’ IEEE Softw., vol. 20, no. 5, pp. 14–18,
Sep./Oct. 2003.

[2] M. Mernik, J. Heering, and A. M. Sloane, ‘‘When and how to
develop domain-specific languages,’’ ACM Comput. Surv., vol. 37, no. 4,
pp. 316–344, 2005.

[3] C. Atkinson, R. Gerbig, and M. Fritzsche, ‘‘A multi-level approach to
modeling language extension in the enterprise systems domain,’’ Inf. Syst.,
vol. 54, pp. 289–307, Dec. 2015.

[4] J. de Lara, E. Guerra, and J. S. Cuadrado, ‘‘When and how to use multilevel
modelling,’’ ACM Trans. Softw. Eng. Methodol., vol. 24, no. 2, p. 12, 2014.

[5] (2011). Knowledge Discovery Meta-Model (KDM), Version 1.3. [Online].
Available: http://www.omg.org/spec/KDM/1.3/PDF/

[6] (2015). Diagram Definition (DD). [Online]. Available: http://www.omg.
org/spec/DD/

[7] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. Reading, MA, USA: Addison-Wesley, 2009.

[8] S. Jácome-Guerrero and J. De Lara, ‘‘Un enfoque para controlar la exten-
sión de meta-modelos en el ámbito de la Ingeniería dirigida por modelos,’’
CIbSE, Buenos Aires, Argentina, Tech. Rep., 2017, pp. 29–42.

[9] S. P. Jácome-Guerrero and J. De Lara, ‘‘Towards a mechanism for
controlling meta-model extensibility,’’ ICSOFT, Madrid, Spain, 2017,
pp. 382–387.

[10] R. Braun and W. Esswein, ‘‘Extending the MOF for the adaptation of
hooks, aspects, plug-ins and add-ons,’’ in Model and Data Engineering.
Springer, 2015, pp. 28–38.

[11] C. F. Kemerer and S. Slaughter, ‘‘An empirical approach to studying
software evolution,’’ IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 493–509,
Jul. 1999.

[12] H. Bruneliere et al., ‘‘On lightweight metamodel extension to support
modeling tools agility,’’ in Proc. Eur. Conf. Modeling Found. Appl., 2015,
pp. 62–74.

[13] M. Fayad and D. C. Schmidt, ‘‘Object-oriented application frameworks,’’
Commun. ACM, vol. 40, no. 10, pp. 32–38, 1997.

[14] Documents Associated With XML Metadata Interchange (XMI),
Version 2.4.1. Accessed: Jun. 2013. [Online]. Available:
http://www.omg.org/spec/XMI/2.4.1/

[15] M. Elaasar and Y. Labiche, ‘‘Diagram definition: A case study with the
UML class diagram,’’ in Model Driven Engineering Languages and Sys-
tems. Berlin, Germany: Springer, 2011, pp. 364–378.

[16] C. Bock and M. Elaasar, ‘‘Reusing metamodels and notation with diagram
definition,’’ in Proc. Softw. Syst. Modeling, 2016, pp. 1–25.

[17] J. De Lara and E.Guerra, ‘‘Deepmeta-modellingwithmetadepth,’’ inProc.
Int. Conf. Model. Techn. Tools Comput. Perform. Eval., 2010, pp. 1–20.

[18] C. Atkinson and R. Gerbig, ‘‘Flexible deep modeling with melanee,’’ in
Proc. Modellierung (Workshops), 2016, pp. 117–122.

[19] A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, and J. de Lara,
‘‘Pattern-based development of domain-specific modelling languages,’’
in Proc. ACM/IEEE 18th Int. Conf. Model Driven Eng. Lang.
Syst. (MODELS), Sep. 2015, pp. 166–175.

[20] K. Czarnecki and K. Pietroszek, ‘‘Verifying feature-based model templates
against well-formedness OCL constraints,’’ inProc. 5th Int. Conf. Generat.
Programm. Compon. Eng., 2006, pp. 211–220.

[21] A. Cicchetti, D. Di Ruscio, R. Eramo, andA. Pierantonio, ‘‘Automating co-
evolution in model-driven engineering,’’ in Proc. 12th Int. IEEE Enterprise
Distrib. Object Comput. Conf. (EDOC), Sep. 2008, pp. 222–231.

[22] H. S. Sarjoughsian, A. Alshareef, and Y. Lei, ‘‘Behavioral DEVS meta-
modeling,’’ in Proc. Winter Simulation Conf., 2015, pp. 2788–2799.

[23] H. S. Sarjoughian and A. M. Markid, ‘‘EMF-devs modeling,’’ in Proc.
Symp. Theory Model. Simulation-DEVS Integr. M&S Symp., 2012, p. 19.

[24] H. Heitkötter, ‘‘A framework for creating domain-specific process model-
ing languages,’’ in Proc. ICSOFT, 2012, pp. 127–136.

[25] T. Mouelhiv, F. Fleurey, and B. Baudry, ‘‘A generic metamodel for secu-
rity policies mutation,’’ in Proc. IEEE Int. Conf. Softw. Test. Verification
Validat. Workshop (ICSTW), Apr. 2008, pp. 278–286.

[26] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes, ‘‘Engineering
a DSL for software traceability,’’ in Proc. Int. Conf. Softw. Lang. Eng.,
2008, pp. 151–167.

[27] (2018). CloudML. [Online]. Available: http://cloudml.org/
[28] G. Deltombe, O. Le Goaer, and F. Barbier, ‘‘Bridging KDM and

ASTM for model-driven software modernization,’’ in Proc. SEKE, 2012,
pp. 517–524.

[29] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly, ‘‘Weaving an
assurance case from design: Amodel-based approach,’’ in Proc. IEEE 16th
Int. Symp. High Assurance Syst. Eng. (HASE), Jan. 2015, pp. 110–117.

[30] Negotiation Facility—NEG, Version 1.0, Object Manage. Group,
Needham, MA, USA, 2002.

[31] UML Profile for Enterprise Application Integration (EAI), Version 1.0,
Object Manage. Group, Needham, MA, USA, 2004.

[32] Structured Assurance Case Metamodel (SACM), Version 2.0 Beta, Object
Manage. Group, Needham, MA, USA, 2017.

[33] J. L. de la Vara, G. Génova, J. M. Álvarez-Rodríguez, and J. Llorens,
‘‘An analysis of safety evidence management with the structured assurance
case metamodel,’’ Comput. Standards, Interfaces, vol. 50, pp. 179–198,
Feb. 2017.

[34] J. de Lara, E. Guerra, and J. S. Cuadrado, ‘‘Model-driven engineering with
domain-specific meta-modelling languages,’’ Softw., Syst. Model., vol. 14,
no. 1, pp. 429–459, 2015.

[35] P. Bottoni and A. Grau, ‘‘A suite of metamodels as a basis for a classifi-
cation of visual languages,’’ in Proc. IEEE Symp. Vis. Lang. Hum. Centric
Comput., Sep. 2004, pp. 83–90.

[36] R. Braun andW. Esswein, ‘‘Towards an integratedmethod for the extension
of MOF-based modeling languages,’’ in Model and Data Engineering.
Springer, 2015, pp. 103–115.

[37] J. E. Pérez-Martínez, ‘‘Heavyweight extensions to the UML metamodel
to describe the C3 architectural style,’’ ACM SIGSOFT Softw. Eng. Notes,
vol. 28, no. 3, p. 5, 2003.

[38] A. Abouzahra, J. Bézivin, M. D. Del Fabro, and F. Jouault, ‘‘A practical
approach to bridging domain specific languages with UML profiles,’’
in Proc. Best Practices for Model Driven Softw. Develop. (OOPSLA),
San Diego, CA, USA, 2005, p. 2005.

[39] P. Langer, K. Wieland, M. Wimmer, and J. Cabot, ‘‘EMF profiles:
A lightweight extension approach for EMF models,’’ J. Object Technol.,
vol. 11, no. 1, pp. 1–29, 2012.

[40] R. Braun, ‘‘Behind the scenes of the BPMN extension mechanism prin-
ciples, problems and options for improvement,’’ in Proc. 3rd Int. Conf.
Model-Driven Eng. Softw. Develop. (MODELSWARD), 2015, pp. 1–8.

[41] D. Birsan, ‘‘On plug-ins and extensible architectures,’’Queue, vol. 3, no. 2,
pp. 40–46, 2005.

[42] U. Kulesza, V. Alves, A. Garcia, C. J. De Lucena, and P. Borba, ‘‘Improving
extensibility of object-oriented frameworks with aspect-oriented program-
ming,’’ in Proc. Int. Conf. Softw. Reuse, 2006, pp. 231–245.

19938 VOLUME 6, 2018



S. Jácome, J. de Lara: Controlling Meta-Model Extensibility in MDE

[43] A. Schleicher and B. Westfechtel, ‘‘Beyond stereotyping: Metamodeling
approaches for the UML,’’ in Proc. 34th Annu. Hawaii Int. Conf. Syst. Sci.,
2001, p. 10.

[44] Y. Jiang, W. Shao, L. Zhang, Z. Ma, X. Meng, and H. Ma, ‘‘On the
classification of UML’s meta model extension mechanism,’’ in Proc. Int.
Conf. Unified Modeling Lang., 2004, pp. 54–68.

[45] G. Perrouin, M. Amrani, M. Acher, B. Combemale, A. Legay, and
P.-Y. Schobbens, ‘‘Featured model types: Towards systematic reuse in
modelling language engineering,’’ in Proc. IEEE/ACM 8th Int. Workshop
Proc. Modeling Softw. Eng. (MiSE), May 2016, pp. 1–7.

[46] E. Guerra and J. de Lara, ‘‘Automated analysis of integrity constraints in
multi-level models,’’ Data, Knowl. Eng., vol. 107, pp. 1–23, Jan. 2017.

SANTIAGO JÁCOME received the Engineering
degree in computer systems from the Escuela
Politécnica Nacional, Ecuador, and the M.S.
degree in research and innovation in formation and
communication technologies from theUniversidad
Autónoma deMadrid, where he is currently pursu-
ing the Ph.D. degree in computer and telecommu-
nication engineering.

He is currently a Professor-Researcher in soft-
ware engineering with the Universidad de las

Fuerzas Armadas ESPE, Ecuador. His research interests are in model-driven
engineering specifically in meta-modeling, domain-specific languages, and
multi-level modelling. He currently collaborates with the Modeling and
Software Engineering Research Group.

JUAN DE LARA received the Ph.D. degree in
computer science from the Universidad Autónoma
de Madrid. He is currently a Professor with
the Computer Science Department, Universidad
Autónoma de Madrid, where he leads the Mod-
eling and Software Engineering Research Group.
He has been a Post-Doctoral Researcher/Visiting
Professor with the MSDL lab, McGill University,
the Institute of Theoretical Computer Science, TU
Berlin, the Department of Computer Science of

the University of Rome ‘‘Sapienza,’’ the University of York, U.K., and the
University of Toronto, Canada. His research interests are in meta-modeling,
multi-level modeling, domain-specific languages, andmodel transformation.
He has published over 170 papers in international journals and conferences
in these areas.

Dr. de Lara has been the PCCo-Chair of conferences, such as ICMT, ICGT
and FASE. He is currently on the Editorial Board of Software and Systems
Modeling.

VOLUME 6, 2018 19939


	INTRODUCTION
	MOTIVATION AND USAGE SCENARIOS
	EXTENSION OF META-MODELS
	MULTI-LEVEL MODELING AND THE TYPE-OBJECT PATTERN
	ADAPTATION OF DSLs

	CLASSIFYING META-MODEL CUSTOMIZATION TYPES
	META-MODEL CUSTOMIZATION CONTROL MECHANISM
	TOOL SUPPORT
	EXTENSIBILITY DESIGN TOOL
	CUSTOMIZATION TOOL

	EVALUATION
	APPLICABILITY OF THE APPROACH
	CASE STUDY: DEFINING EXTENSION RULES FOR DI

	RELATED WORK
	CONCLUSIONS
	REFERENCES
	Biographies
	SANTIAGO JÁCOME
	JUAN DE LARA


