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ABSTRACT With increasing security and privacy requirements, electrocardiogram (ECG)-based biometric
human identification and authentication is gaining extensive attention. This paper aims to solve three
major problems: stable identity feature is hard extracted from the inferior quality ECG, the performance of
authentication system falls down when the size of registered sample set increases, and the authentication
system needs to retrain when a new registered identity is added. To improve the robustness of identity
feature, this paper proposed a multiscale feature extraction method using a multiscale autoregressive model
(MSARM). First, the performance of multiscale feature was tested by simple matching method based on
Chi-square distance in identification system. The test was performed on self-built SIAT-ECG and public
PTB databases, which contain 146 and 100 (50 healthy volunteers and 50 patients withmyocardial infarction)
individuals, respectively. The recognition rate exceeded 93.15% for both databases in identification scenario.
The results revealed that theMSARMhas more excellent performance than other feature extraction methods.
Then, this paper proposed a combination classifier method with one-to-one structure in authentication
mode. It yielded a true rejection rate (TRR) of 98.99% and true acceptance rate (TAR) of 95.04% when
registered sample set contains 140 individuals from SIAT-ECG database. Therefore, the proposed MSARM
and combination classifier not only significantly improve the accuracy but also enhance the practicability of
ECG-based biometric systems.

INDEX TERMS Combination classifiers, electrocardiogram identification, multiscale autoregressivemodel,
random forest, template matching.

I. INTRODUCTION
With the development of information technology, informa-
tion security concerns have become increasingly critical.
Conventional identity verification tools such as credentials,
secret keys and passwords can be easily copied and stolen.
Thus they cannot meet the requirements of contemporary
information security. Therefore, some secure biometrics tech-
nologies have been developed rapidly and applied gradually
in recent years.

Various biometrics have been used in identity recognition,
such as fingerprint, iris, face and speech. Although these
biometrics systems have advantages such as a higher recog-
nition rate, faster recognition speed and easier measurability,
they have some disadvantages such as ease of replication and

forgery [1]–[4]. In recent years, ECG signals have been used
to resolve the human identification problem; these signals are
a record of cardiac electrophysiological activity and reflect
cardiac physiological functions [5]. Compared with com-
mon biometrics systems, ECG-based systems have unique
advantages (TABLE 1). For example, ECG is pretty suitable
for the healthcare scenario, since it is frequently monitored
on patients. ECG signals can be measured only in a living
body; therefore, they cannot be easily counterfeited. With the
development of the ECG data-gathering technology, portable
ECG signal-gathering devices, such as smart watches, have
been designed in a highly convenient and intelligent man-
ner. Therefore, ECG-based biometrics systems have broader
applications.
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TABLE 1. Performances comparison of biometrics character.

FIGURE 1. Characteristic points on ECG signals.

In recent years, studies have extensively explored ECG sig-
nals for use in identity recognition. These studies havemainly
focused on different feature extraction methods, which can
be divided into two main types: fiducial and nonfiducial
detection. The fiducial detection method first detects the
characteristic points of P, Q, R, S and T waves and then
extracts the temporal features, amplitude, area, angle and
dynamic features based on the fiducial points on ECG signals
(Fig. 1). However, there is a weakness that the detection
points need to be precise since a slightest variation of the fidu-
cial point location may result in misclassifications[6]–[9].
By contrast, the nonfiducial detection method extracts dis-
criminative information based on some nonlinear transforma-
tions from ECG signals without using characteristic points.
Features such as autocorrelation, Fourier and wavelet coeffi-
cients are applied [10], [11]. Some studies have also proposed
a composite method for extracting fiducial and nonfiducial
features [12], [13].

Previous studies have described feature extraction meth-
ods based on one-channel, two-channel or multi-lead ECG
signals, which were readily obtained from databases such
as MIT-BIH and PTB. Some studies have demonstrated that
only a single-lead ECG signal was adequate for identification.
Shen et al. used template matching and a decision-based neu-
ral network (DBNN) as a classifier [7]. First, template match-
ing was performed to compute correlation coefficients for
comparing between two QRS complex waves. Next, a DBNN
method was used to complete the verification from the pos-
sible identities IDs with the template matching. An accuracy
rate ofmore than 95%may be achieved. Arteaga-Falconi et al.
proposed time interval features based on fiducial points. The
enrollment template was constructed by extracting eight fea-
tures [15]. The following two aspects were considered subse-
quently in the process: the use of a feature-specific percentage

of tolerance (i.e., each ECG feature has its own threshold)
and the adoption of a hierarchical validation scheme, which
yielded a false acceptance rate of 1.41% and a true accep-
tance rate (TAR) of 81.82% with 4 s of signal acquisition.
Chan et al. [10] studied the classification performance of
single-lead ECG data ; they used features which were based
on the wavelet coefficients of lead I ECG signals from
the MIT-BIH database and reported an accuracy of 90.4%.
Zokaee and Faez [14] proposed a multimodal biometric
identification system based on ECG signals and palm print
analysis. They used the Mel-frequency cepstral coefficient
approach to extract features from ECG signals; in addition,
they performed principal component analysis to extract palm
print features and achieved a recognition rate of 94.7%.
Israel et al. [9] proposed an identification approach involving
the use of 15 temporal features; they used Wilks’ Lambda
values for feature selection and linear discriminate analy-
sis (LDA) for dimensionality reduction and classification,
and they reported an identification accuracy of 90%. Some
studies had also proposed new nonfiducial methods. For
example, Lin et al. [15] selected the root mean square
values, nonlinear Lyapunov exponent, and correlation dimen-
sions to analyze ECG data after exercise and used a sup-
port vector machine (SVM) classifier to identify identity
information; they achieved a recognition rate of more than
80%. Coutinho et al. [16] proposed a new nonfiducial ECG
biometric identification method based on data compression
techniques, namely the Ziv–Merhav cross parsing algorithm
for symbol sequences (strings). This method depends on a
string similarity measure derived from an algorithmic cross-
complexity concept and its compression-based approxima-
tion; a recognition rate of 100% was achieved in 19 healthy
individuals. Fatemain and Hatzinakos [17] developed a
new wavelet-based framework for the automatic analysis
of single-lead ECG signals for using in human recognition
applications; they achieved an accuracy rate of 99.61% on
PTB and MIT databases.

Although the methods proposed in the aforementioned
studies have achieved high accuracy, these methods cannot
be easily adopted to practical personal identification [1].
In summary, the aforementioned studies have the following
limitations:

a) The proposed methods were developed on the basis
of ECG signals of a diagnostic class. These ECG data
have advantages such as low noise and working stabil-
ity. Nevertheless, achieving high-quality ECG signals
in daily applications is difficult.

b) Some studies on biometrics are based on 12-lead ECG
data acquired from the MIT-BIH/PTB database. How-
ever, the acquisition of 12-lead ECG data is unrealistic
in many situations or applications.

c) In most of the studies, the temporal interval of ECG
records between the training and testing sets was very
short or the records belonged to the same period,
which was the primary contributor to higher recog-
nition ratios. Notably, the accuracy rate remarkably
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decreased for training and testing data obtained from
different sessions.

In this study, an autoregressive model (ARM) was used to
obtain power spectrum from ECG. The power spectrum of an
ECG signal as an identity feature has better discriminative.
To enhance the robustness of recognition features, a multi-
scale feature extraction method based on multiscale autore-
gressive model (MSARM) was proposed; in this method,
the multiscale feature is a combination of power spectrum
features on three scales with suitable weights, which is used
to determine identity information. The results indicated that
the proposedmethod exhibits satisfactory robustness for ECG
signals of low quality or from myocardial infarction patients.
In particular, the performance of the authentication system
did not decrease significantly in a self-built ECG database
from different sessions. In addition, this algorithm was deter-
mined to have a superior recognition ability compared with
other algorithms on larger datasets. A typical human identifi-
cation system is divided into identification and authentication
modes. In the identification mode, the output of system can
be used to identify an individual by using the input data. This
mode requires only matching the most similar sample from
the registered database. In the authentication mode, the sys-
tem accepts or rejects an authentication request with the input
data [1]. When the requested identity is wrongly rejected,
the system incurs a false rejection error. Furthermore, when
the requested identity is wrongly accepted, the system incurs
a false acceptance error. In the present study, the realization
schemes of the two aforementioned modes were designed:
1) for the identification mode, the system selects the most
similar identity ID in the template library, serving as the
recognition result of the input data. This selection can be
achieved by template matching based on the distance (such
as Euclidean, city block, chi-square and cosine distances).
2) The authentication mode involves a combination classifier
composed of N parallel random forest sub-classifiers. The
proposed authentication system does not require retraining
of the entire system when registered individuals update, thus
increasing the system’s practicability. Moreover, the num-
ber of registered individuals does not affect the system’s
performance.

The rest of the paper was organized as follows. Section II
describes the flow of the proposed identification system.
Section III expounds the methods involved in preprocess-
ing, feature extraction and classification steps. Section IV
presents the analysis on the performance of the power spec-
trum feature and explains the experiment for the development
of an optimal ARM. In Section V, we provide a comparison
of the performance level of our method with those of other
competitive algorithms on the SIAT-ECG and PTB databases.
Finally, Section VI presents our study conclusions.

II. SYSTEM FLOW
Fig. 2 shows the flowchart of the identification/ authentica-
tion system. The first step involves the acquisition of raw
ECG signals, which could be collected from three ECG

FIGURE 2. Flowchart of the identification system.

electrodes placed on the wrist. The raw signals contain sub-
stantial noise and baseline drift part, which must be removed
by using filters in the preprocessing step. Subsequently, fea-
tures are extracted from the preprocessed ECG signals. This
step is crucial for the performance of the system. In the
model training step, the system is divided into identifi-
cation and authentication modes, which conduct template
building and model training, respectively. The final step of
the system involves identity recognition, where the system
outputs a matching result in the identification system and
accepts or rejects in the authentication system. Each of these
steps is described in detail in subsequent paragraphs.

III. METHODS
A. PREPROCESSING
The electrical activity is transmitted through the chest, then
signals are recorded on the skin surface; these signals are
weak and have a low signal-to-noise ratio (SNR). The
actual power of ECG signals is primarily concentrated in
the 0.25–35 Hz range. The noise mainly includes power
line (fixed 50 Hz in China), myoelectricity (5 Hz–2 KHz),
electromagnetic interference and baseline wander (0.5–1Hz).
Noise interference is harmful for weak ECG signals because
it severely corrupts the information of actual signals and
directly affects the precision of feature extraction and clas-
sification processes. In particular, the interference becomes
more severe for ECG signals acquired fromwearable devices.

In this work, the ECG signal was acquired with a portable
device on the wrist, which has lower SNR compared with
standard 12-lead ECG. Therefore, noise removal is crucial
for the entire system. In this study, denoising was performed
in two stages: baseline wander removal and smoothing.
A wavelet transform is suitable for multiscale analysis and
can be used formultiresolution analysis in time and frequency
domains. A baseline wander represents a low-frequency com-
ponent of the signal, which can be separated from the original
ECG signal through a wavelet transform. Subsequently, ECG
signal smoothing was performed using the Butterworth low-
pass filter with a 40 Hz cutoff frequency. Fig 3 presents the
filtering results.

B. ARM-BASED FEATURE EXTRACTION METHOD
Feature extraction is one of the most crucial steps of an iden-
tity recognition system, and it directly affects the system’s
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FIGURE 3. ECG signal filtering results.

performance. Features can be extracted from ECG signals by
using two major methods: fiducial and nonfiducial detection.
In the present study, a novel feature extraction method based
on the nonfiducial detection was developed; the method uses
an ARM to extract features from one ECG cycle between R
peaks. The ARM is similar to the classical method (Fourier
transform) that can be used to estimate the power spectrum
of a signal. The unknown data outside the observation range
is assumed to be zero in the classical spectrum estimation,
which is equivalent to add window on the data. It results in
reduction of resolution and stability of power spectra [18].
But the ARM power spectrum estimation does not have such
imperfections, and it has obvious advantages both on the
stability and resolution [19]–[22].

Assume that x (1), x (2). . . x (n) represent the observation
data of a stationary statistical process; the ARM can be rep-
resented by the following difference equation:

x(n) = −
p∑

k=1

akx(n− k)+ w(n) (1)

Where p represents the orders of the ARM, ak (k = 1, 2 . . . p)
represents the parameters of the p-order ARM, and w(n)
represents white-noise sequences with an average of 0 and
variance of σ 2. The ARM is denoted as AR (p). The H (z)
transition function of the ARM can be expressed as follows:

H (z) =
X (z)
W (z)

=
1

1+
p∑

k=1
akz−k

(2)

For power spectrum estimation, assume that x(n) repre-
sents the observation data of a stationary statistical process;
the input w(n) of the system is thus considered to be stable.
Accordingly, the power spectrum of the observation data can

be expressed as

px(ω) = σ 2
w

∣∣∣H (ejω)
∣∣∣2 = σ 2

w∣∣∣∣1+ p∑
k=1

ake−jkω
∣∣∣∣2

(3)

Equation (3) shows that the ARM can be used for power
spectrum estimation, where the model parameters ak and
variance σ 2 of white-noise sequences must be determined.
The autocorrelation function (ACF) of time series x(n) can
be expressed as

Rx(m) = E {x(n)x(n+ m)}

=


−

p∑
k=1

akRx(m− k) m ≥ 1

−

p∑
k=1

akRx(m− k)+ σ 2 m = 0
(4)

Then, (4) can be represented by the following matrix:
Rx(0) Rx(1) · · · Rx(p)
Rx(1) Rx(0) · · · Rx(p− 1)
...

...
...

Rx(p) Rx(p− 1) · · · Rx(0)



1
a1
...

ap

=

σ 2

0
...

0


(5)

Equation (5) is also referred to as the Yule–Walker equa-
tion. Therefore, the ARM parameters ak and variance σ 2

can be obtained when the ACF of the observation data is
known. One possible method for solving the Yule–Walker
equation is the Burg algorithm, which does not require the
direct calculation of the ARM parameter ak . Instead, it cal-
culates the reflection coefficient δi. The Burg algorithm uses
the minimizing criterion of the total forward and backward
predictive power errors to estimate reflection coefficients
from the observational data. Moreover, the algorithm applies
the recursive method to calculate the reflection coefficients.
Specifically, the reflection coefficient δm in themth step of
the algorithm is calculated, and the coefficients δ1 . . . δm−1
remain constant. The reflection coefficient δ1 can be calcu-
lated using (6), with m = 1 and initializing ef0(n) = eb0(n) =
x(n)

δm =

−2
N−1∑
n=m

efm−1(n)e
b
m−1(n− 1)

N−1∑
n=m

[∣∣∣efm−1(n)∣∣∣2 + ∣∣ebm−1(n− 1)
∣∣2] (6)

Update equations (6), efm (n) and ebm (n) can be calculated as
follows:

efm(n) = efm−1(n)+ δme
b
m−1(n− 1)

ebm(n) = ebm−1(n− 1)+ δme
f
m−1(n)

The variables efm (n) and ebm (n) are referred to as forward and
backward prediction errors, respectively, which can be calcu-
lated using the next reflection coefficient δm+1. Equation (6)
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demonstrates that all reflection coefficients are guaranteed to
have an absolute value of less than one. Finally, through the
aforementioned iteration, the final reflection coefficient δp
can be calculated. In addition, the parameter ak of ARM(p)
can be solved by using the Levinson–Durbin equation.

Selecting an optimal ARM order is important for power
spectrum estimation. A lower order results in decreasing
precision of the power spectrum, whereas a higher order
yields a false spectrum peak. The optimal model order can
be estimated using the minimized order selection criterion.
The Akaike information criterion (AIC) method is com-
monly used to select the optimal order. This method evaluates
a given ARM by compromising both the linear predictive
error and model complexity, which are based on informa-
tion entropy. The optimal order is achieved at a lower AIC
value. The AIC value is calculated as, AIC = nln (RSS/n)
where k is the ARM order, n is the length of the ECG

cycle sequence, and RSS =
n∑
j

(
xj − x̂

)
where x̂ and x̂ are

real-time and predictive time sequences, respectively. Fur-
thermore, nln (RSS/n) represents the performance of the pre-
dictive model, and 2k represents the complexity of the model
for order k . A highly complex model usually results in an
improved performance but also has an overfitting problem.
The study computed the mean AIC values of different model
orders in all training data and achieved an optimal order k at
a lower AIC value.

C. MULTISCALE FEATURE EXTRACTION OF ECG SIGNALS
The multiscale analysis was widely applied in biomedical
signal processing field [23]–[25]. The ECG signal contains
P, QRS, T waves and resting period; the frequency feature is
different in each ECG waves or period. It is typical biomed-
ical signal that has obvious time-frequency and time-scale
characteristics, thus the multiscale feature analysis for ECG
signal is particularly suitable. A signal can be decomposed
into different scales by multiscale analysis method. There are
different time and frequency resolutions on different scales.
Generally, a signal with high temporal resolution contains
more detailed information, and a signal with low temporal
resolution contains more global information. Therefore the
signal can extract corresponding detailed and global features
at different scales. These features are extremely suitable for
using in identity recognition. For example, the global feature
can reflect the discrepancy of overall ECG shape between
different individuals; the detailed features can reflect detailed
discrepancy. Thus these features fusion between different
scales can improve the recognition rate of model.

As described in Section III-B, features can be extracted
from a single ECG cycle by using the ARM. To exploit
highly useful identity information from ECG signals for
identification and authentication, a multiscale feature extrac-
tion method was developed. In this method, the features are
extracted from the different scales of an ECG cycle by using
the ARM; therefore, it is referred to as the multiscale ARM
(MSARM). The wavelet transform is the most favorable tool

FIGURE 4. Three-level decomposition using the Gaussian wavelet
function. cA1, cA2, and cA3 express the original approximation on each
level, and cD1, cD2, and cD3 express the details on each level.

for the multiscale analysis of ECG signals. Gaussian wavelet
function has been used in decomposition of successive scales.
The main reason for the selection of Gaussian wavelet func-
tion is its close similarity with the ECG signal. The ECG sig-
nal is segmented into different cardiac cycles by the R wave.
Subsequently, the wavelet transform is applied to split the
ECG signal into different scales (Fig. 4). With the layers
calculated from top to bottom, the time resolution decreases,
whereas the frequency resolution increases. The signal is split
into approximation (cA) and detail (cD). The approximations
in each level of cA1, cA2, and cA3 appear similar to original
ECG signal approximations. The ECG signal contains var-
ious helpful identity features on different scales, which can
improve the recognition accuracy. The present study used a
three-level wavelet decomposition to obtain the features of
the ECG signal based on the ARM. The three scales can be
expressed as Sc1, Sc2, and Sc3. To extract features from the
three scales, the features of each scale can be represented as
ARM1, ARM2, and ARM3, respectively. As shown in Fig.5,
the power spectra distribution has significant differences on
different scales, which are caused by different detailed and
global information. The multiscale features are a weighted
feature composition according to certain weights on different
scales. The multiscale feature ARM can be expressed as
ARM = [ω1 ∗ ARM1, ω2 ∗ ARM2, ω3 ∗ ARM3], where ω1,
ω2, and ω3 are the weights of contribution, and ω1 + ω2 +

ω3 = 1. The distinct contributions of the different scales
are determined by computing the recognition rate rtj for each
scale. The weight can be set at ωj =

rtj∑3
j=1 rtj

. Fig. 6 illustrates

the flowchart of the multiscale feature extraction method.

D. CLASSIFIER DESIGN
The final stage of the identity recognition system involves
identification or authentication. Several common pattern
recognition algorithms have been used in ECG signal-
based identity recognition systems, including the k-nearest
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FIGURE 5. Power spectra of three-level ECG decomposition.

FIGURE 6. Flowchart of the multiscale feature extraction method.

neighbor [1], [11], [12], [26]–[29], SVM [30], [31],
LDA [7], [9], [12], [31]–[34], nearest center [1], [10],
[35]–[38], neural network [14], [39]–[42], generative model
[11], [30], [43], [44] and multi-innovation identification
method [45]–[48]. The identity recognition system proposed
in the study is divided into one-to-many and many-to-one
modes, which are used in the identification and authentication
systems, respectively. In the one-to-many mode, the system
selects the most similar identity ID in the training set as the
recognition result of the input data. Furthermore, the template
matching method is perfect for resolving the identification
problem because it does not require a threshold. In addition,
the method is simple and practical for identification because
when registered individuals update, it only requires replacing
the corresponding templates in the template library. This
method identifies requested identity that are usually based
on a correlation coefficient or the distance between the test-
ing sample and target template. Several common algorithms
of computed correlation and distance between the samples
include the following: Pearson correlation coefficient, Spear-
man rank correlation, Euclidean distance, city block, Chi-
square distance, and cosine distance. In the many-to-one
mode, the system determines whether to accept or reject
an authentication request from the input data. Therefore,
an exact threshold is presented when the system uses the
template matching method in authentication mode. However,
obtaining an optimal threshold is very difficult, particularly
for a larger authentication system.

FIGURE 7. Random forest-based individualized verification framework.
In the system, each identity has a random forest model in the training set.
The output information is identified and either accepted or rejected.

To solve the aforementioned problem, we developed a ran-
dom forest-based authentication system (Fig. 7). The system
comprises input, multiple combination classifier, and output
layers. The input layer involves the feature vector which is
extracted from the ECG cycle by the proposed method. The
combination classifier layer comprisesN parallel random for-
est sub-classifiers. Random forest is a technique of supervised
learning algorithm, which creates the forest with a number
of trees. When the training set for the current tree is drawn
by sampling with replacement, about one-third of the cases
are left out of the sample. This out-of-bag data is used to
get a running unbiased estimate of the classification error as
trees are added to the forest. After each tree is built, all of
the data are run down the tree, and proximities are computed
for each pair of cases. If two cases occupy the same terminal
node, their proximity is increased by one. At the end of
the run, the proximities are normalized by dividing by the
number of trees [49]. In this structure, one registered identity
corresponds to one sub-classifier IDi from the combination
classifier layer. All sub-classifiers can accept corresponding
identity and reject other identities. Therefore, this combina-
tion classifier can be regarded as the one-to-one structure. For
each sub-classifiers training, training samples are divided into
two classes: positive samples and negative samples; the posi-
tive samples comprise 40 ECG cycles from the corresponding
registered identity, and the negative samples comprise ECG
cycles from other registered identities. Notably, once a sub-
classifier was trained based on large training set, which can
accept current registered identity and reject all unregistered
identities, even the unregistered identity is not from the
training set. The output is authentication information, which
contains acceptance and rejection. The one-to-one multiple
sub-classifier method can resolve two major concerns associ-
ated with the large authentication system: 1) the performance
should not be influenced significantly when the system has
many registered identities, and 2) training of the entire system
is not required, only the corresponding sub-classifier model
needs to be trained when a new registered identity is added
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FIGURE 8. Histogram of age distribution. In total, 146 subjects aged
20–80 years are included, and the male-to-female ratio is
approximately 4:5.

FIGURE 9. Self-developed single-lead ECG signal acquisition device.

into the system. This design has improved practicability and
can be used in many application scenarios.

IV. EXPERIMENTS
A. SIAT-ECG DATABASE
The SIAT-ECG database was obtained from students and staff
volunteers in Shenzhen Institutes of Advanced Technology
(SIAT), Chinese Academy of Sciences, as well as from older
volunteers in Lotus mountain communities in Shenzhen. The
database includes information of 146 subjects, with the male-
to-female ratio being about 4:5. Fig. 8 presents the age
distribution. In this study, all ECG signals were single-lead
signals collected from a self-developed portable device under
a resting stage. The sampling frequency was 500 Hz (Fig. 9).

B. OBTAINING POWER SPECTRUM FEATURES
OF ECG SIGNALS
We used the ARM to extract the power spectrum feature of an
ECG cycle. In the experiment, the R peaks of the ECG cycles
were detected on the basis of wavelet algorithms. Subse-
quently, each ECG cycle between two R peaks was extracted.
Fig. 10 shows the power spectrum features extracted from
an ECG cycle. The blue and red curves represent the power
spectrum of training and testing sets from the same sam-
ple, respectively. In the present study, 40 continuous ECG

FIGURE 10. Power spectrum of different ECG cycles from the same
subject. ID1, ID2, ID3, and ID4 are four different subjects, where the red
and blue curves represent the power spectrum of training and testing
sets, respectively.

FIGURE 11. Power spectra of ECG signals from different subjects.

cycles were selected as candidate cycles of the registered
identity. In identification mode, to reduce the disturbance
from abnormal cycles, the K-means algorithm was used to
eliminate 10 abnormal ECG cycles from candidate cycles.
Finally, the average of all power spectrum feature vectors in
the 30 normal cycles was used to set the matching template.
Similarly, five continuous ECG cycles from other period of
the same subject were used for test. As illustrated in Fig. 10,
the estimated power spectra of different ECG cycles from the
same subject were relatively similar. As shown in Fig. 11,
the colored curves represent power spectra of ECG signals
from different subjects. We can see that the power spectra
have significant differences. Therefore, the power spectra
of ECG signals are discriminative identity features because
of their large inter-class distance and small intra-class
distance.
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FIGURE 12. Power spectra at different ARM orders. (a)–(f) represent the
power spectrum estimation of the orders 15, 20, 25... 40, respectively.

C. OPTIMIZING THE ARM ORDER
The ARM order directly affects the accuracy of power spec-
trum estimation. Therefore, the determination of an optimal
ARM order is crucial. Fig. 12 shows the power spectrum esti-
mation results derived at the orders 15, 20, 25... 40. Spurious
peaks occurred frequently at orders of p > 30. By contrast,
the power spectra were damped and smeared for lower orders
(p < 20), which exhibited a lower precision. TheAICmethod
to estimate the optimal ARM order was used. A lower AIC
value implies an improved balance between prediction errors
and model complexity. Although different individuals have
different optimal model orders for their ECG signals, this
study attempted to construct an ARM with the same order
m for all subjects. The order m values ranging was explored
from 5 to 40 to determine the optimal order associated with
the lowest average AIC value. As shown in Fig. 13, the

FIGURE 13. AIC values at different orders. The AIC value is minimum at
m = 26.

FIGURE 14. Recognition rate for the three scales based on the chi-square
distance.

average minimum value was located at p = 26 for the AIC
curve. The performance of the ARM markedly decreased at
p > 40.

D. CALCULATING THE WEIGHTS OF CONTRIBUTION ON
THREE SCALES
The weights of the contribution on different scales can
be determined by computing the recognition rate on each
scale. In general, discriminative features have a larger inter-
class distance and a smaller intra-class distance. Therefore,
we used a method based on distance discrimination to esti-
mate the feature performance. Fig. 14 shows the recognition
rates on three scales. The scales Sc1, Sc2, and Sc3 achieved
accuracy rates of 80.14%, 88.36%, and 89.73%, respectively,
for the SIAT-ECG database. Therefore, the weights of the
contribution of the three scales were calculated using the
formula ωj =

rtj∑3
j=1 rtj

. Sc1, Sc2, and Sc3 contributed weights

of 0.3103, 0.3422, and 0.3475, respectively. Notably, weights
would change for different databases so that they must be
calculated separately.

V. RESULTS AND DISCUSSION
A. RESULTS OF IDENTIFICATION ON THE
SIAT-ECG DATABASE
To evaluate the performance of the proposed method on
databases with large samples and high-noise
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FIGURE 15. Distance thermal mapping. (a) The thermal mapping of
normalized distance data between 0 and 1 and (b) the thermal mapping
of the identification results.

ECG signals, we used the SIAT-ECG database, which con-
tains data of 146 individuals. The intra-class and inter-class
can directly reflect the discrimination of features. For mea-
surement of distance between samples, the chi-square has
specific advantage compared with other methods, which can
reflects relative relationship between the features better [50].
Therefore, we measured the similarity between two ECG
signals based on chi-square distance, which is defined as
follows: χ2

=
∑ (X−Y )2

Y , where X = [x1, x2, . . . ,xn]
and Y = [y1, y2, . . . , yn] represent the feature vectors of
testing and registered samples, respectively. We examined
the most similar power spectrum features between the test-
ing samples and the template library. As shown in Fig.15,
blue and red colors represent the greatest and the least
similarities, respectively. Furthermore, to demonstrate the
results effectively, we normalized the chi-square distances
to the range [0, 1] [Fig. 15(a)]. Fig. 15(b) presents the
binary results for Fig. 15(a), which is called binary thermal
mapping. It clearly shows the matching results between the
testing set and template library. For the 146 subjects in
the testing set, nine were misidentified. The corresponding
recognition rate was 93.15%. To demonstrate the robustness
of our method on databases with large samples and high-
noise ECG signals, we compared the recognition rate of our
method with that of some competitive algorithms on the
SIAT-ECG database (Table II). The result showed that the
proposed method had great superiority to other methods. The
recognition rate of other algorithms was up to 84.24%, which
was substantially lower than those of the ARM (89.13%)
and MSARM (93.15%). Furthermore, the recognition rate of
the MSARM increased by 3.42% compared with that of the
ARM. As illustrated in Fig. 16, most method achieved the
recognition rates of more than 90%, except for the feature
subspace ensemble method (FSE), when the template library
had 20 subjects. However, the recognition accuracy decreased
gradually with the increasing size of the template library.
For example, the recognition rate of the proposed method
decreased by 6.85% to 93.15% at a template size of 146.
The recognition rates of competitive algorithms decreased by
8.41%–21.64%. This reductionmay be caused by the increas-
ing probability of similar samples with an expanding size of
the template library. Thus, these results demonstrate that the

TABLE 2. comparison between the recognition rates of some competitive
algorithms and our method on the SIAT-ECG database.

FIGURE 16. Recognition rates on subsets of different sizes from the
SIAT-ECG database.

proposed method exhibits superior robustness with respect
to changes in the size of the template library, compared with
other methods.

B. RESULTS OF IDENTIFICATION ON THE PTB DATABASE
To further evaluate the performance of the proposed method
on a dataset of patients with myocardial infarction, we used
the PTB database. This database contains 549 records
obtained from 290 subjects (aged 17–87 years, mean age:
57.2 years). Each subject has one to five records, and
each record contains 12 leads. The sampling frequency was
1000 Hz. The diagnostic classes of all subjects consisted
of 148 patients with myocardial infarction, 52 healthy volun-
teers, and other classes. In this experiment, the performance
was compared between patients with myocardial infarction
and healthy volunteers. Therefore, 50 patients with myocar-
dial infarction and 50 healthy volunteers were randomly
selected from the PTB database. In addition, we selected lead
I signals for ECG identification.

Fig. 17 shows the thermal mapping results obtained by
applying the proposedmethod to the PTB database. Fig. 17(a)
shows the thermal mapping results of 50 healthy volunteers.
The experimental results revealed that 49 of 50 healthy volun-
teers were accurately identified, and only one volunteer was
misidentified. The recognition rate was approximately 98%.
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FIGURE 17. Distance thermal mapping. (a) The thermal mapping results
of healthy volunteers and (b) the thermal mapping results of patients
with myocardial infarction.

TABLE 3. Comparison between the recognition rates of some competitive
algorithms and our method on the datasets of healthy volunteers and
patients with myocardial infarction from the PTB database.

The thermal mapping results of 50 patients with myocardial
infarction were shown in Fig. 17(b). We can see that all
patients with myocardial infarction were accurately identi-
fied. The recognition rate for patients with myocardial infarc-
tion does not decrease compared with that for healthy volun-
teers. We compared the proposed method with competitive
algorithms in terms of their performance on the datasets of
healthy volunteers and patients with myocardial infarction
(Table 3). The performance levels of the ARM and MSARM
were higher than those of other algorithms for the two
datasets. The recognition rates of other algorithms were more
than 92% for the healthy volunteer dataset; however, their
recognition rates decreased significantly for the dataset of
patients with myocardial infarction, and the minimum range
decreased up to 8% with an accuracy of 86%. These results
demonstrate that the proposed method has strong robustness
and generalization compared with other algorithms.

C. RESULTS OF AUTHENTICATION ON THE
SIAT-ECG DATABASE
We evaluated the authentication performance of the proposed
method on the SIAT-ECG database. The evaluation indicators
included the true rejection rate (TRR) and true acceptance rate
(TAR). The true rejection is that sub-classifier can reject other
identities which were defined as NS. The true acceptance is
that the system can recognize correctly all registered identi-
ties which were defined as RS. A registered person may be
accepted correctly or rejected erroneously, which is called
a true acceptance sample (TA) or a false rejection sample
(FR), respectively. The abbreviations denote the number of
samples. Therefore,RS= TA+FR. Similarly, a nonregistered
person may be rejected correctly or accepted erroneously,
which is called a true rejection sample (TR) or a false accep-
tance samples (FA), respectively. Therefore, NS = TR + FA.
The TAR is defined as TAR = (TA/RS) ∗ 100%, and the TRR
is defined as TRR = (TR/NS) ∗ 100%.

We trained the random forest models for corresponding
registered identities from the identified template library. This
study proved that the random forest model with 25 trees
can achieve the best performance. The red and blue curves
in Fig. 18 represent the TAR and TRR, respectively. The
horizontal axis indicates the number of individuals N in the
training set. For each random forest sub-classifier, the train-
ing set consists of two subsets: 1) 40 ECG cycles from
a registered identity corresponding to the sub-classifier as
positive samples, and 2) N − 1 ECG cycles from the other
N − 1 individuals as negative samples. In this study, the
experiment was performed 10 times. From Fig.10, we can
see that the TRR increased and the TAR decreased with the
increasing size of the training set. For example, when the
number of individuals in the training set was 140, the TAR
and TRR were 99.25% and 94.62%, respectively. However,
when the number of individuals increased to 130, the TAR
and TRR were 95.04% and 98.99%, respectively. We believe
that this phenomenon was caused by a higher number of
negative samples in the training set, because only the number
of negative samples increased with the increasing size of
the training set. This represents a typical balance concern
between positive samples and negative samples in the model
training process. In many scenarios, this phenomenon can
be useful. For example, when the system requires a higher
security grade, the TRRmust set to be higher (and vice versa).

For the sub-classifier, this study also compared the perfor-
mance of common pattern algorithms with random forest as
in TABLE 4. In the experiment, the size of the training set was
130. We can see random forest has the highest TRR. SVM
can achieve TAR of 95.09% which is slightly higher than
95.04% of random forest-based model, but it only obtained
TRR of 88.42%, which disadvantaged compared with other
algorithms. Therefore, the sub-classifier with random forest
has more excellent performance than other common pat-
tern algorithms. Moreover, we can see that the sub-classifier
used K- nearest neighboring also obtains a respectable
performance. This further indicates two claims: the proposed
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FIGURE 18. Result of verification on the training sets of different sizes.
The red and blue curves represent the TAR and TRR of the testing
samples, respectively.

TABLE 4. Comparison between the performance of some common
pattern algorithms and random forest.

multiscale feature has excellent identity discrimination abil-
ity; the combination classifier with one-to-one mode also has
certain universality.

VI. CONCLUSION
ECG-based biometric systems have distinctive advantages.
For example, the inability of illegal individuals to deceive
an ECG acquisition device in supervised scenarios is one of
the reasons why such systems are an attractive alternative
to other traditional biometric systems. This paper presents a
novel MSARM-based feature extraction method for identifi-
cation and authentication. In the identification experiments,
a simple template matching method was used to evaluate the
performance of the proposedmethod. The results indicate that
the proposed method achieved a recognition rate of 93.15%
and 100% on the SIAT-ECG and PTB (myocardial infarction
group) database, respectively. The following inferences can
be derived from the evaluation results of the two databases:
1) The proposed method exhibited satisfactory robustness for
ECG signals of low quality or from cardiac patients and 2) the
extracted features were discriminative because of their small
intra-class distance and large inter-class distance. Further-
more, we compared the performance of the MSARM and
ARM feature extraction methods, and the results indicate that
multiscale information extraction is necessary for effective
feature discrimination.

To enhance the practicability of ECG-based biometric
systems, we further used a combination classifier based on
random forest to verify the identity request. The designed
one-to-one structure in combination classifier mainly avoids
retraining the entire authentication system when the regis-
tered members update. This design is very useful for prac-
tical applications and can effectively avoid deteriorations of
system performance caused by considerable increase of regis-
tered members. The experimental results show that both TAR
and TRR achievedmore than 95% on the SIAT-ECG database.
Furthermore, the system performance only decreased slightly
with the increasing number of registeredmembers. Therefore,
this design is very effective for practical applications.

Although the proposed method yielded the most favor-
able results among all compared methods, some unavoidable
questions remain; for example, ECG signals were collected
under the resting state in all previous studies. However, ECG
signals may fluctuate under different states or moods. The
performance level of our method was evaluated in large
groups of 146 subjects and was compared with those of
other methods. Nevertheless, its reliability should be evalu-
ated in even larger groups. Currently, larger ECG databases
with diverse activity and emotional states are not available.
We desire to develop such ECG databases in our future stud-
ies to obtain a comprehensive understanding of ECG-based
biometric systems.
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