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ABSTRACT As the two most commonly used imaging devices, infrared sensor, and visible sensor play
a vital and essential role in the field of heterogeneous image matching. Therefore, visible-infrared image
matching which aims to search images across them has important application and theoretical significance.
However, due to the vastly different imaging principles, how to accuratelymatch between visible and infrared
image remains a challenge. In fact, the two images describe one scene from different aspects. There is a
symbiotic relationship between their features, which we named as cross-domain co-occurring feature. In this
paper, based on cross-domain co-occurring feature, we present a novel visible-infrared image matching
algorithm. Concretely, co-occurring feature is first constructed by cross-domain image database and feature
extraction approach. Then three visual vocabulary trees can be built by visible feature, infrared feature,
and co-occurring feature. Thus, the symbiotic relationship between the two domains is established by co-
occurring feature and vocabulary trees. With this relationship, each image is represented by a list of leaf node
of co-occurring vocabulary tree. Finally, we measure the image similarity and the highest scoring image is
the matching result. As a bi-directional method, we evaluate the proposed algorithm on two tasks: visible-to-
infrared matching and infrared-to-visible matching. Experiments on the Korea Advanced Institute of Science
and Technology all-day place recognition database captured from 42-km sequences demonstrate that co-
occurring feature is effectiveness and efficiency to link different domains. And the matching approach also
achieves superior performance.

INDEX TERMS Image matching, cross-domain co-occurring feature, visible-infrared image matching.

I. INTRODUCTION
Multi-sensor image matching [1]–[3] has become a hot
research topic in the field of computer vision with the rapid
development of imaging sensor performance and abundance
of sensor types. It aims to solve the matching problem across
different imaging sensors and enables several sensors coop-
erate for a matching task. Especially, multi-sensor matching
avoids the single sensor limitation, and provides more com-
prehensive, more accurate information for users. As the two
most common imaging sensors, visible and infrared imaging
devices play a fundamental role in many important applica-
tions, including visual data fusion [4]–[6], scene match loca-
tion [7], [8], visual navigation [9], face recognition [10], [11]
and so on. Fig. 1 provides an illustration of visible-infrared
image matching.

However, due to the different imaging principles, visible
image and infrared image differ greatly in many character-
istics shown in Fig. 1). That is the basic reason why cross-
domain image matching is so difficult. To be more specific,
the main challenges cover the following points: (1) Differ-
ent imaging mechanism. Infrared images and visible images
reflect the properties of objects in different light wave bands.
Infrared images are based on the emissivity of the object,
whereas visible imaging sensor is based on its reflectivity.
(2) Different imaging conditions. Image gray scale distortion
and geometric deformation are easily affected by shooting
time, season, light intensity, etc. That causes infrared image
and visible image distinctly different in many characterises.
The factors above bring certain difficulties to visible-infrared
image matching.

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

17681

https://orcid.org/0000-0002-9043-8633


J. Li et al.: Cross-Domain Co-Occurring Feature for Visible-Infrared Image Matching

FIGURE 1. An illustration of visible-infrared image matching. Queries can
search for corresponding images in another domain.(Above)
visible-to-infrared matching. (Below) infrared-to-visible matching.

To address this problem, some researchers have made their
contributions to match optical image and infrared image.
Back in 1990s, Dana and Anandan [12] are the first to put for-
ward a visible-infrared matching method, which uses multi-
scale edge detection algorithm to obtain surface boundaries
and implements a matching system with the hierarchical
estimation process. Then in 2000, Coiras et al. [13] purpose
a segmentation-based method for cross-domain image image
matching. Their method is based on the relation between
segmented triangles and it requires no pre-knowledge.
Subsequently, the use of mutual information provides an
effective approach for image matching and many experts
develop mutual information to connect thermal and visual-
light visual domain [14], [15]. Jing and Zhang [16] employ
wavelet transform and maximization of mutual information
to achieve high matching performance between infrared and
optical airborne images. Zhuang et al. [17] propose a novel
hybrid algorithm which combines mutual information and
two optimization methods (particle swarm optimization and
Powell search method) to obtain better matching perfor-
mance. Moreover, in the recent years, there have appeared
several new methods to solve this problem. [18], [19].
Argulewar and Jain [20] review the approaches based on LBP
(local binary pattern). With LBP and relevance machine clas-
sification, they design a visible-infrared matching system
and it shows great results on face image. Through a key
point selection approach, Ghosh et al. [11] introduce a cross-
domain matching algorithm which enables us to compute a
fast approximation based filter [21]. Cunjian and Ross [22]
present a Heterogeneous Face Recognition (HFR) frame-
work, which uses multiple sets of subspaces generated by
sampling patches from visible and thermal face images and
subjects them to a sequence of transformations. With the
wide application of deep learning, Liong et al. [23] propose
a new deep coupled metric learning (DCML) method for
cross-modal matching. They design two feed-forward neu-
ral networks which learn two sets of hierarchical nonlinear
transformations to nonlinearly map samples from visible and

infrared modality into a shared latent feature subspace. In a
word, with the unceasingly thorough study, the researches in
optical-infrared matching have made considerable progress
and achieved great matching performance.

But despite all that, these methods have their own draw-
backs and limitations: (1) Most existing methods are inde-
pendent researches which focus on the cross-domain images
in certain fields, such as face images, remote sensing images,
airbornes images, etc. Although the visible-infrared work
have emerged many, they are not universal for different
matching tasks. (2) Previous researches can only accomplish
unidirectional matching. That means that users can only use
visible image to search for relevant infrared image or use
infrared query image to find correctly visible image. These
work cannot solve both ways at the same time. (3) Infrared
image describes the radiation information of the image,
whereas visible image reflects its reflection information. This
has created the weak correlation between the two visual
fields. And in the existing work, there is a lack of consistent
features between infrared and visible image. To sum up, in the
current stage, how to build a general bridge that connects
infrared domain and visible domain is the primary consid-
eration and foremost problem.

Therefore, in order to achieve visible-infrared matching,
we firstly explore the inherent relationship between optical
and thermal visual fields. In a certain view, different imaging
sensors observe an object from different perspectives and
display different kinds of image features. This principle is
the same as the truth in the story of the blind men and
elephant which is originated in ancient India. The imaging
sensor which can only describe one aspect of a scene just
like the blind which can only obtain a part of object features
by touch. Therefore, we start with this story to find its inner
relationship and then extend it to visible-light and infrared
visual domain. As Fig. 2 shown, supposing that two blindmen
touch an elephant at the same time, the first blind begins to
touch from the front and the other one from the back. At the
first time, blind 1 feels a big ear and the other touches the
thin tail. Then blind 1 touches the long nose and blind 2 gets
the thick leg. After many times such a process, many pairs
of characteristics of elephant are obtained. Although these
features are quite different, they are all belong to elephant.
Next time, if an animal has both big ear and thin tail, or long
nose and thick leg, we guess it maybe an elephant. In other
words, they coexist for the animal: elephant. And there is a
symbiotic relationship between these pairs of features. So we
name such a pair of features as co-occurring feature.

As for visible-light and infrared visual domain, the two
imaging sensors can be seen as the blind men and there
is also a symbiotic relationship between the two kinds of
image features. To put it more specifically, infrared sensor
describes the approximate contour feature of one important
object and optical sensor reflects the detailed information
such as color. Visible feature and infrared feature which
are from one scene vary widely and they are the cross-
domain features. However, there is still a certain internal
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FIGURE 2. The story of the blinds and the elephant and visible-infrared image matching. We extend the principle in
this story to visible-infrared image matching. The blue balls and the orange balls represent the features from
different blinds/imaging sensors. The features connected with a dotted line are cross-domain co-occurring features.

relationship between the two kinds of features because they
describe the same scene. If visible visual domain exists
an image feature, its corresponding infrared feature which
describes the same scene must can be obtained by infrared
imaging sensor. That is the cross-domain co-occurring fea-
ture in visible-infrared image matching. With this, a bridge
across different visual domain is built up. In practical image
matching, if we train some cross-domain co-occurring fea-
tures in advance, the inherent relation of the two visual
domains is established and visible-infrared matching can be
implemented.

In this paper, we systematically investigate the key idea
above and purpose a novel visible-infrared image match-
ing approach based on cross-domain co-occurring feature.
Specifically, our algorithm includes two main parts: one
is cross-domain co-occurring feature construction, whereas
the other is visible-infrared image matching process. The
first part employs a visible-infrared image database which
is composed of a number of one-to-one cross-domain image
pairs. With this database, we extract feature from optical
image and infrared image respectively. Cross-domain co-
occurring feature can be constructed by connecting the two
kinds of features in series. Then, based on these features,

a visible vocabulary tree, an infrared vocabulary tree and a
co-occurring vocabulary tree are built. In the second por-
tion, through these vocabulary trees, the query image and
database images are quantized into the leaf nodes of their
own visual domain. With the correspondence relationship
in co-occurring features, the query and database images are
represented as a vector by the leaf node IDs of co-occurring
vocabulary tree. Finally, we compare the similar distance
between these vectors and the image with the highest simi-
larity score is the matching result.

The main contributions of our work can be summarized as
follows:
• We propose a novel concept of cross-domain
co-occurring feature to explore the relationship between
visible and infrared images. Cross-domain co-occurring
feature is constructed by a pair of cross-domain fea-
ture. The visible feature and infrared feature in one
co-occurring feature are corresponding one by one.
By co-occurring feature, the interrelations among dif-
ferent visual domain are well mined.

• We introduce an image representation approach
which combines vocabulary trees and cross-domain
co-occurring features. We convert each visible/infrared
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FIGURE 3. An illustration of our visible-infrared image matching method based on cross-domain co-occurring feature. Our approach contains
two main parts: cross-domain co-occurring feature construction and visible-infrared image matching. In the first part, we employ a
visible-infrared image database as the training database. At the beginning, through feature extraction, we obtain two kinds of image features
and construct the cross-domain co-occurring feature. The vocabulary trees are built by hierarchical clustering these features. On the basis of the
first part, we utilize the cross-domain co-occurring feature and vocabulary trees to represent each image as a vector which is a list of leaf node
IDs. Here TCid is the leaf node ID of co-occurring feature vocabulary tree. Finally, we measure the similarity of these vectors and the matching
result is the highest scoring database image.

feature into a co-occurring feature by utilizing the
relationship among visible vocabulary tree, infrared
vocabulary tree and co-occurring vocabulary tree. After
co-occurring feature mapping, images from different
visual domains can be represented by a list of co-
occurring vocabulary leaf nodes. Ourmethod overcomes
the gap between different imaging sensors and it has
been proved that this approach enjoys strong robustness.

• Based on cross-domain co-occurring feature and image
representation, we present a visible-infrared image
matching algorithm. What’s more, our approach is a
two-way work which can achieve visible-to-infrared
matching and infrared-to-visible matching simultane-
ously. To evaluate the proposed algorithm, we apply it
on the KAIST All-day Place Recognition Database [24].
Since the raw data is a video, we frame it and set up a
new visible-infrared database with these images. Exper-
imental results demonstrate that the proposed method
achieves encouraging result.

The remainder of this paper is organized as follows.
In Section II, we propose a visible-infrared image matching
algorithm base on cross-domain co-occurring feature. The
experiment result is presented in Section III. Finally, we con-
clude the paper in Section IV.

II. CROSS-DOMAIN CO-OCCURRING FEATURE FOR
VISIBLE-INFRARED IMAGE MATCHING
This section elaborates our proposed approach for visible-
infrared imagematching based on cross-domain co-occurring
feature. An overview of this algorithm is shown in Fig. 3. The
co-occurring feature construction method is firstly presented
which is the fundamental technique in this paper. In this step,
with the visible-infrared image database, we detail the feature
extraction and construction process to lay a solid foundation
for the follow-up work. And the vocabulary tree training
method is discussed by using these features. Next, on the
basis of co-occurring feature and vocabulary tree, a bridge
connected the two domains is established. With this relation-
ship, we introduce the procedure of image representation as
shown. After this process, each image is converted into a list
of leaf node IDs. Finally, we implement a visible-infrared
image matching system by similarity measurement.

A. CROSS-DOMAIN CO-OCCURRING FEATURE
CONSTRUCTION
The proposed visible-infrared image matching approach is
based on the idea of ‘‘cross-domain co-occurring feature’’.
In our opinion, although visible image and infrared image
show completely different in many kinds of features, there is
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FIGURE 4. Cross-domain co-occurring feature construction and vocabulary trees building. With visible-infrared image database, we firstly extract their
feature separately. Co-occurring feature is generated by connecting visible feature with its corresponding infrared feature in series. On the basis of
these features, a visible vocabulary tree, an infrared vocabulary tree, and a co-occurring vocabulary tree will be built.

still a symbiotic relationship between these features. There-
fore, in this part, we firstly extract image feature from the
training database and construct cross-domain co-occurring
feature. Then, on the basis of these features, visual vocabulary
trees are built by feature clustering algorithm.

1) FEATURE EXTRACTION AND CONSTRUCTION
Before cross-domain co-occurring feature construction,
we firstly introduce the training database: visible-infrared
image database. This database contains a number of one-to-
one visible-infrared image pairs and images from the same
pair are matched one by one (shown in Fig. 4). Why should
we use such an image database? This is because we must
ensure that there is one-to-one correspondence between visi-
ble feature and infrared feature in the process of co-occurring
feature construction. In this way, the symbiotic relationship
between visible domain and infrared domain can be estab-
lished accurately, which is the key to the success of visible-
infrared matching. Moreover, this database is also employed
for visible and infrared vocabulary tree training.

Let image sets DC = (V1, I1, . . . ,Vi, Ii, . . . ,Vm, Im) is
a visible-infrared image database which contains m pairs
of cross-domain image, how do we use it to establish co-
occurring feature? Fig. 5 describes the procedure intuitively.
Firstly, we extract feature of each training database image.
Here we adopt Scale Invariant Feature Transform (SIFT)
descriptor [25] due to its good performance for a variety
of image matching tasks, its matching speed, robustness of
rotation, adaptability to infrared image and its wide applica-

tion. SIFT algorithm includes four steps: scale-space extrema
detection, keypoint localization, orientation assignment and
keypoint descriptor. In the first step, difference of gaussian
(DoG) simulates the multi-scale images and establishes a
gaussian pyramid. Once the DoG is built, they search for
the local extreme point over scale and space. The results
are the potential keypoint locations. In order to get more
accurate results, they use Taylor series expansion of scale
space to determine the feature points. Finally, according to the
gradient direction, the major direction to each feature point
is assigned, and the keypoint descriptor is constructed by its
orientation information. However, since visible light image
and infrared image vary greatly in feature, it cannot guar-
antee the one-to-one corresponding relation between visible
feature and infrared feature if detect feature point directly.
Without this correspondence relationship, the cross-domain
co-occurring feature cannot be constructed.

To tackle this problem, we use the method shown in Fig. 5
to extract and construct feature. At the beginning, the original
image is parted into disjoint sub-blockswith same size andwe
take the center of each block as the feature point. Themethods
of uniform image segmentation and specified feature location
can guarantee the one to one correspondence of cross-domain
features. For example, if the image size is 320 × 240 and
each block size is 16 × 16, an image will be divided into
300 patches and the patch enters are the keypoints. After
such a procedure, features from the same keypoint of one
visible-infrared image pair are mutually matched. Next, with
these accurately matched feature pairs, we connect a visible
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FIGURE 5. The illustration of feature extraction and construction. Take a
visible-infrared image pair as an example, we first block the images and
the center of each block is the feature point. Then through feature
extraction, the visible feature and the infrared feature are generated.
As the figure shown, the cross-domain co-occurring feature is constructed
by connecting and in series.

feature and its corresponding infrared feature in series to form
a cross-domain co-occurring feature. Suppose that a visible
feature vector fV and its corresponding infrared feature vector
fI , the cross-domain co-occurring feature vector fC is con-
structed as following;

fC =

P1,P2 . . . ,P128︸ ︷︷ ︸
f V

,W1,W2 . . . ,W128︸ ︷︷ ︸
f I

 (1)

where Pi and Wi represent an integer which is computed by
direction amplitude of SIFT feature, 128 is the dimension
of feature descriptor. And in our method, fV and fI are
128-dimensional, the dimension of fC is 256. In this feature
pair, the infrared feature and optical feature is a pair of sym-
biotic feature and they construct a cross-domain co-occurring
feature vector fC . In this way, cross-domain co-occurring fea-
ture records this one-to-one relationship. The visible feature
and infrared feature in one co-occurring feature is symbiotic.
In the practical matching, when a feature appears in one visual
domain, its symbiotic feature is likely to occur in another
visual domain. At this point, co-occurring feature is employed
to help us match the two kinds of features across different
visual domain.

After feature extraction, we can obtain three feature col-
lections by collating the three kinds of features above. They
are visible feature set FV , infrared feature set FI and co-
occurring feature set FC . If an image is represented by

100 SIFT features, feature collections are denoted as:

FV = {fV1 , . . . , fV100︸ ︷︷ ︸
VIS image V1

, fV101 , . . . , fV200︸ ︷︷ ︸
VIS image V2

, . . . , fV100×m} (2)

FI = { fI1 , . . . , fI100︸ ︷︷ ︸
IR image I1

, fI101 , . . . , fI200︸ ︷︷ ︸
IR image I2

, . . . , fI100×m} (3)

FC = {fC1 , . . . , fC100︸ ︷︷ ︸
VIS-IR pair C1

, fC101 , . . . , fC200︸ ︷︷ ︸
VIS-IR pair C2

, . . . , fC100×m} (4)

2) VOCABULARY TREE BUILDING
In order to integrate these image features for image matching,
we employ vocabulary tree [26] to index features. Although
this method has been put forward for nearly a decade, vocab-
ulary tree shows good performance on feature index and has
great potential in image matching. Vocabulary tree combines
the bag of words model [27] and tree framework. Each leaf
node of the vocabulary tree can be seen as a visual word.
Image matching is realized by quantizing features into leaf
nodes andmeasuring similarity. In this section, we build three
vocabulary trees: a visible vocabulary tree, an infrared vocab-
ulary tree and a co-occurring feature vocabulary tree with
the feature collections FV , FI and FC . The building process
mainly includes two steps: (1) Vocabulary tree establishment.
(2) Creation of leaf node index file.

After determining the tree parameter and feature
collection, the first step of vocabulary tree building is fea-
ture clustering. We utilize hierarchical K-means (HKM) as
the clustering approach. HKM is usually used for speeding
up the large-scale vocabulary tree construction which just
an approximate method of K-means. In our system, HKM
cluster SIFT feature which efficiently groups visually similar
patches into one cluster. Supposing that the vocabulary tree
depth L and the branch factor K , HKM splits all features
in feature collection into K clusters firstly and then divides
the data in the same cluster recursively. Feature vector is
denoted as fj, we divide all data into K classes as S =
{S1, . . . , Si, . . . , SK }. And we compute the minimize value
to establish each layer of the vocabulary tree, as in (5):.

argmin
S

K∑
i=1

∑
fj∈Si

‖fi − ci‖2 (5)

where ci is the centroid of ith classes Si. After L iterations,
a vocabulary tree with K-branch and L-depth is built. The
total number of cluster centers is calculated by (6). In the
vocabulary tree, each leaf node (that is the cluster center) is
labeled by an integer of 0 ∼ KL

− 1.

L∑
i=1

K i
=
KL+1

− K
K − 1

≈ KL (6)

Through this vocabulary tree building process and three
feature collections (visible feature collection FV, infrared
feature collection FI, co-occurring feature collection FC),
we obtain three vocabulary trees: visible vocabulary tree
TV, infrared vocabulary tree TI and co-occurring vocabulary
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FIGURE 6. The process of index file creation. Suppose that the ith visible feature vector is fVi and its corresponded infrared feature vector fIi,
the cross-domain co-occurring feature vector constructed by them is fCi. These features are mapped to a path of visual word from root to a leaf node in
their own trees and we add its feature tag i at the end of the index file which is attached with leaf node.

tree TC. These three vocabulary trees can be regarded as the
dictionaries in visible visual domain, infrared visual domain
and co-occurring feature domain. The tree leaf nodes are the
visual words in dictionary. Through vocabulary tree, features
are represented by a vector which is a list of leaf nodes in their
own field.

After vocabulary tree establishment, index file attached
with leaf node is needed to create for imagematching.We add
each feature to a leaf node and the structure of index file
is shown in Fig. 6. Take ith visible feature vector fVi in FV
and the ith infrared feature vector fIi in FI as an example,
the ith feature vector fCi in FC is the co-occurring feature
vector which is constructed by connect a visible feature vector
and its corresponding infrared feature vector in series. Feature
vector fVi, fIi and fCi will be mapped to a path of visual word
from root to a leaf node in their own vocabulary tree TV , TI
and TC . And we add its feature tag at the end of the index file
which is attached to leaf node. In addition, to represent the
symbiotic relationship between features, the cross-domain
co-occurring features are labeled by the same number as
follows:

FV =
{
fV1 , fV2 , . . . , fVi , . . .

}
(7)

FI =
{
fI1 , fI2 , . . . , fIi , . . .

}
(8)

FC =
{
fC1 , fC2 , . . . , fCi , . . .

}
(9)

No.feature : 1 2 . . . i . . .

B. VISIBLE-INFRARED IMAGE MATCHING
So far, cross-domain co-occurring feature and three vocab-
ulary trees are all set up. But how do we apply it to
visible-infrared image matching? In this section, inspired by
the image representation method [28], we propose a novel
matching algorithm to deal with this problem. As illus-
trated in Fig. 7, we take visible-to-infrared image matching
as an example to express our approach conveniently and
infrared-to-visible image matching is the same principle as
it. Let the image database to be matched denoted as D =
{D1,D2, . . . ,Di, . . . ,DL}, which contains L infrared images.
Q is the query image from visible visual domain.
Before facilitate data matching, each image should be rep-

resented by a vector. First of all, we extract SIFT feature from
each database image Di and query image Q, as in (11) and
(16)). Then, the features will be mapped to the vocabulary
tree in their own visual domain. Each feature fi is traversed
in their vocabulary tree from root to a leaf node to find the
nearest node. Here we use Euclidean distance to find which
leaf nodeWi is most similar with the image feature vector fi.
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FIGURE 7. Image representation. On the basis of cross-domain co-occurring feature and vocabulary tree, database image and query image are
represented by a list of leaf node IDs in co-occurring vocabulary tree from feature vector step by step.

The concrete calculating method is as follows:

D (fi,Wi) = ‖fi −Wi‖
2 (10)

According to feature extraction approach, SIFT feature
vector is 128-dimensional and the high dimensional fea-
ture will increase the complexity of subsequent computation.
In order to simplify the operation and improve the matching
efficiency, we replace each 128-dimensional feature vector by
an integer. And in this paper, on the basis of vocabulary tree,
feature vectors are replaced by its nearest leaf node IDs as in
(12) and (17). Meanwhile, the index files attached with these
leaf nodes can be obtained.

However, we cannot match them directly since the query
image and database image belong to different visual domain
and they are represented by the leaf node of different

vocabulary trees. To overcome this gap, it time to employ
cross-domain co-occurring feature which contains the rela-
tionship between visible and infrared visual domain. Inspired
by the matching method in [28] which is also applied to
cross-domain matching, we propose a matching approach
on the basis of co-occurring feature. The specific process
is as follows. First of all, according to the leaf node in
(12) and (17), we can know which feature is persevered
in its index file during the training process. The features
from the same index file can be seen as similar features.
Then, by the co-occurring feature with the same label which
is marked at the last section, we represent visible features
and infrared features with cross-domain co-occurring fea-
ture as (14) and (19). In other words, with the symbiotic
relationship between infrared feature and visible feature,
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each infrared or visible is replaced by its corresponding co-
occurring
feature.

Thus, database image Di and query image Q are both
expressed by a bag of co-occurring features. And next we
use co-occurring feature vocabulary tree TC to quantize each
co-occurring feature into its nearest leaf node. Finally, to sim-
plify representation, each feature descriptor is replaced by the
leaf node IDs in co-occurring vocabulary tree as (15) and (20).
Therefore, the image representation process is finished.

V (Di) H⇒ { fI1, fI2, . . . , fIn } (11)

H⇒ {TI id1, TI id2, . . . ,TI idn } (12)

H⇒ { fI1, fI2, . . . , fIn1 } (13)

H⇒ { fC1, fC2, . . . , fCn1 } (14)

H⇒ {TC id1,TC id2, . . . ,TC idn1} (15)

V (Q) H⇒ { fV1, fV2, . . . , fVn } (16)

H⇒ {TV id1, TV id2, . . . ,TV idn} (17)

H⇒ { fV1, fV2, . . . , fVn2 } (18)

H⇒ { fC1, fC2, . . . , fCn2 } (19)

H⇒ {TC id1,TC id2, . . . ,TC idn2} (20)

After the above procedure, we are ready to match visible
image and infrared image. Assume that there is a query image
Q which is a visible light image, how to find its corre-
sponding infrared image? The method is detailed following.
We firstly measure the similarity of the query image vector
V (Q) and candidate vectorV (Di). The highest scoring image
in database is the matching result. For similarity scoring
method, we count how many the same leaf nodes they have
and the number is the similar score. This is because V (Di)
and V (Q) are made up of leaf node IDs instead of feature
vectors. Themore same leaf nodes they have, themore similar
they are.

III. EXPERIMENTS
Extensive experiments are conducted to evaluate the per-
formance of the visible-infrared image matching approach
based on cross-domain co-occurring feature. In this section,
we employ the KAIST All-day Place Recognition Datasetas
the evaluated database and it is described in subsection A.
As for visible-infrared image matching, we perform two
kinds of cross-domain matching tasks. One is visible-to-
infrared matching, i.e., using a visible image to find relevant
infrared images. The other is infrared-to-visible match-
ing, i.e. using an infrared image to match relevant visible
images. In addition, to validate our approach, we compre-
hensively compare it with some other cross-domain matching
work.

The common configurations for all experiments are sum-
marized here. All the images are resized to 320 × 240. The
program is implemented in C++ and all results are based
on an Intel(R) Core(TM) i7-4700MQ (2.40 GHz CPU, 8 GB
RAM).

FIGURE 8. The general view of the KAIST All-day Place Recognition
Dataset [24]. (Left) Experimental installation, The top left figure is the
Beam-splitter and the side view of sensor setup is under it. (Right) Some
typical scenarios of the KAIST all-day place recognition database,
including bend or straightway, congested road or not, road with rich
texture or not, road with roadside buildings or trees.

A. EXPERIMENTAL SETUP
1) DATASET
To manifest the advantages and generalization of the propose
framework, experiments are performed on the KAIST All-
day Place Recognition Dataset. This database is initially
released by Yukung et al. [24] as a benchmark for testing
computer vision and robotics algorithms. They utilize mul-
tiple imaging sensors to collect a lot of data around the Korea
Advanced Institute of Science and Technology (KAIST) cam-
pus of 42km sequences at 15-100Hz. The sensors onto a stan-
dard sport utility vehicle are illustrated on the left of Fig. ??.
Note that the visible imaging sensor and thermal imaging sen-
sor are combined with beam-splitter, which is made of zinc-
oxide and silicon materials. This optical device can reflect
visible wavelengths and transmit long-wavelengths infrared
lights (LWIR).

The reasons why we utilize this database are summa-
rized as follows: (1) Unlike most visible-infrared databases
which are monitoring scene, this database is a novel database
including dynamic objects and diverse illumination changes.
It is captured in six fixed time : 4:00, 6:00, 11:00, 14:00,
18:00 and 24:00. The richness of scene and diversity of
imaging condition are just what we need to prove the
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TABLE 1. The performance of different matching tasks.

robustness of the proposedmethod. (2)With the beam-splitter
setup, the alignment of visible image and thermal image
is completely parallax-free. Thus, without additional use of
image rotating or straightening algorithms, the accurately
matching between thermal image and visible image is easily
done. It meets the demands of visible-infrared image database
which contains a number of corresponding cross-domain
image pairs.

To be specific, we use three subsets of this database which
is captured at 11:00, 14:00, and 18:00. In order to apply it
to image matching, we resolve these video into frames and
obtain 3500 visible light images and 3500 infrared images.
We divided these images into two parts: one is utilized to
test our approach which contains 500 images in total and the
remaining of them are employed as the training database. The
training database and test images are captured from different
roads to better evaluate the effectiveness of co-occurring
feature. Moreover, in order to guarantee the completeness of
our experiments, these images contain variety road conditions
( shown on the right of Fig. 8), including bend, straightway,
congested traffic, non-congested traffic, road with rich tex-
ture, road with low texture, road with roadside buildings, and
road with roadside trees.

2) EVALUATION METRICS
We employ the Top-K precision as the performance measure.
As for relevant images of each query, we define the database
images which are spaced within 5 frames as the ground truth.
Although these images are not exactly registered with the
query, they share at least 70% same scene. Suppose N is the
number of queries, we compute the Top-K precision of each
query:

Top− K =
1
N

N∑
i=1

P (qi) (21)

where qi is the ith query image and P(·) is defined as an
indicator function whose value is 1 if one of the first K returns
is relevant to query or 0 otherwise.

B. EXPERIMENTAL RESULTS
As a bi-directional matching approach, we explore the per-
formance of the proposed method on two kinds of visible-
infrared matching tasks: visible-to-infrared matching and
infrared-to-visible matching. Fig. 9 and Fig. 10 display some
matching results and Table 1 summaries the matching data of
quantitative analysis.

We first analyze the system performance qualitatively
(shown in Fig. 9 and Fig. 10). We divided the query images

into four traffic situations: bend or straightway, congested
traffic or not, road with rich texture or not, road with many
roadside buildings or trees. As we can see from these figures,
the queries which are presented in the first column are great
different in variety image characterises and the richness of
scene help us to better evaluate performance. we firstly ana-
lyze the matching data as a whole. Most of the returns are
highly related to the query image, even some of them and
its queries are from the same scene. The first returns which
have the highest similarity scoring are accurately registered
with query images in many cases. What’s more, according
to statistics, the Top-1 precision is more than 70 percent for
visible-to-infrared matching and approximately 60 percent
for infrared-to-visible matching. For scene matching,we only
need to a correct result to help us on scene location and recog-
nition. The first return precision of the proposed approach is
enough to meet the need of practical applications. As for the
other returns, we find that these images also show the target
scene in a similar viewpoint. This provides user with more
information about the query scene to analyze comprehen-
sively. However, as these figures shown, the matching system
still returns some error images. Although these images are not
from the corresponding scene, they have some extent coin-
cided with the query scene. In another sense, these images
are not the exactly results for image matching task, but some
of them is the right returns for image retrieval task which is
not such stringent on the degree of image similarity. This also
indicates that our approach has potential on image retrieval
and we will study the performance of this field in the future
work.

We then carry out a quantitative analysis of the proposed
method. For quantitative evaluation, we calculate the Top-K
precision on the two matching directions respectively, where
K is 1, 2, 5, 10. As shown in Table 1, both visible-to-infrared
matching and infrared-to-visible matching show encouraging
results in efficiency and precision. In accuracy, as the number
of results increases, the rate of correctness rises and more
than 90 percent queries can get its correct matches within
the top 10 results on both matching directions. Thus, if we
return the first ten returns, almost all images can obtain the
correct result. That means visible-infrared image matching
is well realized with our approach. The great performance is
not just in terms of precision, but also in terms of efficiency.
The proposed method only takes about 600ms per query
which verifies the better time-consuming performance of the
proposed method.

In addition, from Table 1, our approach achieves unbal-
anced performance in the two matching directions on time
and accuracy. Visible-to-infrared matching shows better
Top-K precision and infrared-to-visible matching has lower
response time. The reasons of this phenomenon are analyzed
as follows. Firstly, infrared image tends to be less significant
in the area of image feature than visible image. That makes
some local features extracted from infrared query image diffi-
cult for matching. Then, visible imaging sensor has the higher
resolution because of its imaging principle. For matching,
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TABLE 2. The performance comparison of previous cross-domain matching methods.

the higher resolution the image is, the better performance
achieves. The two reasons mainly affect the matching pre-
cision. However, due to the lower resolution, infrared image
is faster in image reading and feature extraction, so infrared-
to-visible image matching is more efficient.

All in all, extensive experimental results demonstrate the
effectiveness and efficiency of the proposed approach in both
matching directions and the great performance can satisfy
users demands well.

C. DISCUSSION
1) THE PERFORMANCE COMPARISON
The following matching algorithms are chosen as the contrast
experiments.

a: VOCABULARY TREE [26]
Vocabulary tree is an index scheme which is a significantly
powerful tool for many image matching tasks. This approach
first hierarchically quantizes the feature descriptors extracted
from local regions. Then it employs L1-norm as image simi-
larity definition and the matching result is the highest scoring
database image. Vocabulary tree is robust to background
clutter and it help us process large data sets more efficiently.

b: VISUAL TRANSLATOR [28]
Visual vocabulary translator is proposed to establish a bridge
between different visual domains. Visual translator consists
of two main modules: one is a pair of vocabulary trees which
can be regarded as the codebooks in their respective fields,
whereas the other is the index file based on cross-domain
image pair. Through such a translator, a feature from one
visual domain is translated into another and cross-domain
image matching system is implemented. After extensive
experiments, the proposed algorithm shows great results on
different cross-domain matching tasks and visual vocabulary
translator is effectiveness and efficiency for cross-domain
image.

c: SIFT [25], SURF [29], AND ORB [30]
SIFT is one of the most widely used feature extraction algo-
rithms. Speeded Up Robust Features (SURF) and Oriented

FAST and Rotated BRIEF (ORB) are the improved meth-
ods for SIFT. Since they are proposed, there have appeared
several visible and infrared researches [31]–[34] on the basis
of these three methods. Therefore, we chose them as the
comparison methods. For visible-infrared image matching,
we firstly extract feature from visible and infrared image,
respectively. Then, these features are matched each other by
Euclidean distance and the number of good matches is the
image similarity. The image with the highest score of simi-
larity is the matching result. In addition, since these methods
do not exploit any index algorithm which has a great impact
on the matching time, we only compare the precision with our
proposed method.

Table 2 shows the performance of visible-infrared image
matching in terms of Top-K precision over the KAIST
database. The proposed method outperforms the other meth-
ods in both precision and matching time. (1) For pre-
cision, the proposed method based on cross-domain co-
occurring feature achieves the relative improvement of
more than 65 percent for visible-to-infrared image matching
and approximately 55 percent for infrared-to-visible image
matching. Fig. 11 and Fig. 12 intuitively shows the advan-
tages of our approach. We can see from these figures that the
vocabulary tree basically impossible to match between visi-
ble image and infrared image. Visual translator also returns
incorrect database images, but some of these results have a
certain similarity with the query image in structure. Almost
all the matching results with SIFT, SURF and ORB methods
are incorrect. That means the classical matching algorithms
which are effective on intra-domain matching cannot solve
the problem of cross-domainmatching. But with the proposed
method, most of query images can obtain its right matches.
(2) For matching time, the approach using vocabulary tree
has the lowest efficiency and the average matching time of
the proposed algorithm is the shortest which takes 600ms per
query execution. In other words, the proposed method can
matches two times in a second. That indicates that our algo-
rithm based on ordinary hardware configuration is significant
to meet the demands of real-time image processing.

Moreover, as figures display, the comparing methods only
can correctly match for a few times. This has not been of
statistical significance to visible-infrared image matching.

VOLUME 6, 2018 17691



J. Li et al.: Cross-Domain Co-Occurring Feature for Visible-Infrared Image Matching

FIGURE 9. Some examples of visible-to-infrared matching. The query visible images are in the first column and the following images are matching results.
The similarity score of each result is reduced in turn from left to right. Infrared images marked by a yellow cross mean that they are irrelevant with its
corresponding query, and the results with a green circle at the top right corner have the same scene with the query.

17692 VOLUME 6, 2018



J. Li et al.: Cross-Domain Co-Occurring Feature for Visible-Infrared Image Matching

FIGURE 10. Some examples of infrared-to-visible matching. The infrared images in the first column are query images and the matching results are
shown in the other columns. From left to right, the similarity score of each result is reduced in turn. The results with a green circle in the top right
are the relevant images, whereas images marked by cross indicate that they are not from the same scene as the query.

VOLUME 6, 2018 17693



J. Li et al.: Cross-Domain Co-Occurring Feature for Visible-Infrared Image Matching

FIGURE 11. Qualitative comparison of our approach against the other contrast methods for visible-to-infrared matching. We evaluate the performance
on two traffic situations (bend and straightway, congested road and non-congested road). Yellow cross: irrelevant image with the query. Green circle:
the correct matches which are from the same scene as the query.
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FIGURE 12. Qualitative comparison of our approach against the other contrast methods for infrared-to-visible matching. We evaluate the performance
on two traffic situations (road with rich texture or not, road with roadside buildings or trees). Yellow cross: irrelevant image with the query. Green circle:
the correct matches which are from the same scene as the query.
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FIGURE 13. Quantity comparison of our approach against the other contrast methods for visible-to-infrared matching and infrared-to-visible
matching.The performance of our approach which is shown with blue rectangle far better than the other methods. And the Top-10 precision of the
proposed approach is more than 90 percent on both matching directions.

Due to the poor performance, we think that they do not
have ability to solve the matching between visible image and
infrared image. On the other hand, our approach achieves
great precision on both matching directions. That verifies
the proposed method not only able to realize visible-infrared
matching but also shows satisfying result.

The high performance of our approach is due to cross-
domain co-occurring feature, which well links up the visible
domain and infrared domain. Firstly, the vocabulary tree
method directly treats visible image and infrared image as
one kind of image. SIFT, SURF and ORB immediately match
these cross-domain features. These approaches do not con-
sider the huge difference between visible feature and infrared
feature. Its precision of cross-domain image matching is nat-
urally low. But the proposed method respects the difference
of the two kinds of features and employs co-occurring fea-
tures to establish the symbiotic relationship between visible
domain and infrared domain. Then, as for visual translator,
though it is proposed for cross-domain image matching tasks,
it still exists its limitation. This method requires a certain
repeatability on keypoint detection and it is suitable for cross-
domain imagewith certain structural similarity. Visible image
and infrared image appear quite different in image structure.
Visual translator directly detects feature point whichmay lead
to a wrong visual translator. So this translator cannot build a
correct bridge between the two visual domains and unable
to match. However, the proposed method takes more account
of these differences and using the strategy of image blocking
to build a connection of the two features. So it achieves far
better performance than the comparing method. Finally, for
the matching time, vocabulary tree uses high-dimensional
feature vector to represent the image and it will costmore time
on the matching process. This leads to low efficiency. Visual
translator only takes a little longer matching time than our
approach, which is because its SIFT feature detection. The
keypoint localization of our approach is the center of each
image block that is much time-saving than visual translator.
To sum up, for visible-infrared image matching, our approach

FIGURE 14. Precision curves under different parameters of vocabulary
tree: tree depth L and branch number K. When the tree depth L is 7 and
branch number K is 13 (as shown with a red line), matching performance
is best.

based on cross-domain co-occurring feature is more accurate
and more efficient.

2) THE EFFECT OF VOCABULARY TREE PARAMETER
Since the performance of visible-to-infrared matching and
infrared-to-visible matching is similar, we take visible-to-
infrared matching as an example to discuss the effect of
vocabulary tree parameter on matching performance. There
are two parameters in vocabulary tree: tree depth L and
branch number K . The precision curves by varying the two
parameters are given in Fig. 14.

From this figure, we find that when the parameters are
increased, the performance is increased at the beginning. But
when the parameters are set too big, the precision is dropped.
That is caused by the index file which is attached with leaf
node. When the parameters are small, the number of leaf
node is small. The number of image feature is same, so one
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index file will contains too many features. That increases
the effect of unrelated features and the matching precision
is naturally influenced. And if the number of leaf node is too
large, some of the index file maybe empty and the similar
feature will be missed which makes the accuracy lower. After
a great deal of experiments and analysis, the best parameter
is L = 7,K = 13 with 3000 visible-infrared image pairs in
training database.Moreover, for other training database scale,
the performance will be better when each index file contains
5-10 features.

IV. CONCLUSION
This paper proposes a novel visible-infrared image matching
approach based on cross-domain co-occurring feature. In the
proposed approach, we exploit cross-domain co-occurring
feature to explore the inherent relationship between vis-
ible domain and infrared domain. For co-occurring fea-
ture construction, we firstly establish a cross-domain image
database which is composed of some one-to-one visible-
infrared image pairs. Then through feature extraction, cross-
domain co-occurring feature is constructed by connecting a
visible feature and its corresponding infrared feature in series.
With these features, a visible vocabulary tree, an infrared
vocabulary tree and a co-occurring vocabulary tree can be
built, respectively. Finally, on the basis of co-occurring fea-
tures and three vocabulary trees, a visible-infrared image
matching system is successfully executed. Extensive experi-
mental results on a public database (the KAIST All-day Place
Recognition Database) confirm that co-occurring feature is
effective and efficient for visible-infrared image matching.
In addition, it can solve the matching problem bidirectionally.
With the same co-occurring features, users can match visible
images with a query infrared image or use a visible image to
match infrared images. Furthermore, the current work shows
great potential on various visual domains. In the future work,
we will consider to extend our work to multiple fields and
develop it to general.
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