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ABSTRACT Feature selection is an important research area for big data analysis. In recent years, various
feature selection approaches have been developed, which can be divided into four categories: filter, wrapper,
embedded, and combined methods. In the combined category, many hybrid genetic approaches from
evolutionary computations combine filter and wrapper measures of feature evaluation to implement a
population-based global optimization with efficient local search. However, there are limitations to existing
combined methods, such as the two-stage and inconsistent feature evaluation measures, difficulties in
analyzing data with high feature interaction, and challenges in handling large-scale features and instances.
Focusing on these three limitations, we proposed a hybrid genetic algorithm with wrapper−embedded
feature approach for selection approach (HGAWE), which combines genetic algorithm (global search)
with embedded regularization approaches (local search) together. We also proposed a novel chromosome
representation (intron+exon) for global and local optimization procedures in HGAWE. Based on this
‘‘intron+exon’’ encoding, the regularization method can select the relevant features and construct the
learning model simultaneously, and genetic operations aim to globally optimize the control parameters in
the above non-convex regularization. We mention that any efficient regularization approach can serve as
the embedded method in HGAWE, and a hybrid L1/2 + L2 regularization approach is investigated as an
example in this paper. Empirical study of the HGAWE approach on some simulation data and five gene
microarray data sets indicates that it outperforms the existing combined methods in terms of feature selection
and classification accuracy.

INDEX TERMS Feature selection, wrapper−embedded method, memetic framework, genetic algorithm,
L1/2 + L2 regularization.

I. INTRODUCTION
Explosive growth of data urgently requires development of
new technologies and automation tools that can intelligently
help us translate large amounts of data into useful information
and knowledge. Indeed, it is not that all the features in the data
are essential. The purpose of feature selection is, therefore,
to select only a small portion of the relevant features from the
original large data set so as to speed up the learning process
and improve the performance of the learning model.

In recent years, various approaches have been developed
for feature selection, which generally are divided into four
categories: filter, wrapper, embedded and combinedmethods.

For filter approaches, different feature selection measures
have been applied to rank individual features [1], e.g.,
1) information theoretic measures [2]; 2) consistency mea-
sures [3]; 3) dependency (or correlation) measures [4];
4) distance measures [5]; 5) rough set theory [6] and 6) fuzzy
set theory [7]. A major drawback of the filter methods is
that they examine each feature independently, and ignore the
individual performance of the feature in relation to the group,
of which it is a part, despite the fact that features in a group
may have a combined effect in a machine learning task.

For wrapper approaches, different machine learning algo-
rithms have been used to evaluate the performance of selected
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feature subsets, e.g., support vector machines (SVMs) [8];
K-nearest neighbors (KNN) [9]; artificial neural networks
(ANNs) [10]; decision tree (DT) [11]; Naive Bayes (NB)
[12]; multiple linear regression for classification [13];
extreme learning machines (ELMs) [14]; and linear discrim-
inant analysis (LDA) [15]. Often, the results of the wrapper
methods are superior to those of the filter methods, but the
computational cost of the wrapper methods is high.

The third group of feature selection approaches is
embedded methods, which integrate feature selection and
learning procedure into a single process. Regularization
methods are an important embedded technique and per-
form both learning model construction and automatic feature
selection simultaneously. Recently, the applications of reg-
ularization approaches for feature selection have become
increasingly interesting. Focusing on high dimensional fea-
ture selection problems such as gene expression microar-
ray data, Lasso (L1) [16], smoothly clipped absolute
deviation (SCAD) [17], minimax concave penalty (MCP)
[18] and L1/2 regularization [19], [20] are popularly used reg-
ularization approaches. In gene expression studies, if genes
share the same biological pathway, they are usually highly
correlated and grouped [21]. Therefore, some approaches
have been proposed to deal with issues of high relevance
and grouping features, for example, group Lasso [22],
Elastic net [23], SCAD-L2 [21], and hybrid L1/2 + L2
regularization (HLR) [24].

The fourth group of feature selection procedures is com-
bined methods. Given that each feature evaluation measure
has its own advantages and disadvantages, combined means
that the evaluation procedure includes different types of fea-
ture selection measures such as filter and wrapper [25], [26].

Recently, evolutionary computations (EC) approaches
have been widely used for feature selection because they
are well known for their global optimization capabili-
ties/potential. In the survey literature Xue et al. [27] men-
tioned that over 500 papers have been published in recent
years on this topic. Based on the relevant evaluation crite-
ria, the EC algorithms of feature selection are also divided
into four categories, similar to the categorization mentioned
above: 1) filter approaches: genetic algorithm (GA) [28],
genetic programming (GP) [29], particle swarm optimiza-
tion (PSO) [30], ant colony optimization (ACO) [31], dif-
ferential evolution (DE) [32], evolutionary strategy (ES) [4];
2) wrapper approaches: GA [33], GP [34], PSO [35],
ACO [36], DE [37], ES [38], estimated distribution algorithm
(EDA) [39]; 3) embedded approaches: GP [34], [40]–[42];
and 4) combined approaches: GA [8], PSO [43], ACO [44],
DE [45] and memetic algorithm (MA) [46]–[51].

In the combined methods, many memetic-based feature
selection approaches, which combine wrapper and filter
methods, provide an opportunity for population-based opti-
mization with local search. For example, Zhu et al. [46]
applied GAs for wrapper feature selection and used Markov
blanket approach as a local search for filter feature
selection. However, such two-stage approaches have the

potential limitation that filter evaluation measures may elim-
inate potentially useful features regardless of their perfor-
mance in the wrapper approaches. In addition, the wrapper
approaches usually involve a large number of assessments,
and each assessment usually takes a considerable amount of
time, especially when the numbers of features and instances
are large. The second limitation of the existing combined
feature selection methods is that they are primarily concerned
with the relatively small numbers of features and instances.

Feature interaction (or grouping effect [21]) presents
another difficulty in feature selection. On the one hand, a
feature, which is weakly relevant to the target, could end up
significantly improving the accuracy of the learning model
when used together with some complementary features; on
the other hand, an individually relevant feature can become
redundant when used together with other features. Feature
interaction occurs frequently in many areas. The third limi-
tation of the existing combined feature selection approaches
is that filter measures, which evaluate features individually,
do not workwell, and a subset of relevant or grouping features
is required to be evaluated as a whole.

To solve these three limitations of the combined feature
selection approaches, we proposed a hybrid genetic algorithm
with wrapper−embedded approaches (HGAWE) to combine
evolutioanry optimization (global search) and embedded reg-
ularization approaches (local search) for feature selection.

Regularization methods are an important embedded tech-
nique and perform both model learning and automatic fea-
ture selection simultaneously. Focusing on high dimensional
feature selection problems, such as relevant gene selection
in microarray data, many regularization approaches have
been proposed in recent years, for instance, Lasso [16],
SCAD [17], MCP [18] and L1/2 [19], [20]. Since Lasso
is a convex penalty function, the gradient-based coor-
dinate descent algorithm is suitable and widely used
for the global optimization of Lasso. Some efforts have
also been made in response to the problem of highly
correlated and grouped features, for example, Elastic
net [23], SCAD-L2 [21], and hybrid L1/2 + L2 regular-
ization [24]. Liu et al. [52] have proposed a complex
harmonic regularization approach (CHR) for uncertain
probabilities distribution of data. Meng et al. [53] have
proposed a self-paced curriculum learning (SPLC) regular-
ization approach, which significantly improves the learn-
ing efficiency when the number of instances is large.
Regularization approaches are one-stage feature evaluation
measures, which are suitable for complex feature selection
problems with high interaction and large scales of features
and instances.

However, in regularization methods, the control parameter
between loss function and penalty function is very important
for their performance in feature selection. The feasible value
of the control parameter is generally tuned by the grid search
method with k-fold cross violation approach. In recent years,
many efficient regularization methods using non-convex
and multimodal penalty functions have been proposed.
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These regularization methods need to search across multiple
parameters, which are suitable to be optimized by
EC approaches, for example, GA can deal with both unimodal
and multimodal search space well, and the population-based
search can find the global optima of these control parameters
efficiently.

Therefore, the goal of our proposed hybrid genetic algo-
rithm with wrapper−embedded approaches (HGAWE) is to
improve learning performance and accelerate the search to
identify the relevant feature subsets. Particularly, the embed-
ded method fine-tunes the population of GA solutions by
selecting the signature feature, and constructs the learning
model based on efficient gradient regularization approaches.
The wrapper methods induce the population of GA solutions,
using heuristic search strategies to globally optimize the con-
trol parameters for the non-convex regularization. Therefore,
we focus on hybrid evolutionary framework, which is able
to integrate feature selection and learning model construction
into a single process under the global optimization of the non-
convex regularization. We note that any efficient regulariza-
tion approach can serve as the embeddedmethod in HGAWE,
and a hybrid L1/2 + L2 regularization (HLR) approach is
investigated as an example in this paper. Empirical study of
HGAWE on some simulation data and five gene microarray
data sets indicates that it outperforms existing combined fea-
ture selection methods in terms of classification accuracy and
feature selection.

The rest of this paper is organized as follows. Section II
describes the related works of the HGAWE method.
Section III presents a hybrid genetic algorithm based
on the genetic operators and the gradient regularization
approach for gene selection and cancer classification.
The experimental results and discussions are presented
in Section IV. Finally, Section V concludes this
paper.

II. RELATED WORKS
A. REGULARIZATION APPROACHES
Regularization is an important embedded feature selection
approach. Suppose X denotes the n × p data matrix whose
rows are Xi = (xi1, xi2, . . . , xip), 1 ≤ i ≤ n, Y denotes the
corresponding dependent variable (y1, y2, . . . , yn)T .

For any control parameter λ (λ > 0), the common form of
regularization is:

L(λ,β) = argmin
β
{R(β)+ λP(β)} (1)

where β ∈ Rp are the estimated coefficients, R(β) is a
loss function and P(β) represents the regularization term.
The most commonly used regularization method is the least
absolute shrinkage and selection operator (Lasso, also the
L1 penalty) [16], i.e., P(β) =

∑p
j=1 |βj|

1. It is perform-
ing continuous shrinkage and gene selection at the same
time. Some other L1-norm type regularization methods have
also been proposed. For example, the SCAD penalty [17] is
symmetric, non-convex, and can produce spare solutions at

the origin in the parameter space. The adaptive Lasso [54]
penalizes the different coefficients with the dynamic weights
in the L1 penalty. The MCP provides the convexity of the
penalized loss in sparse regions to the greatest extent, given
certain thresholds for feature selection and unbiasedness.
However, for large-scale feature selection problem, such as
genomic data analysis, the results of the L1 type regulariza-
tion may not be sparse enough for real application. Actually,
a typical gene microarray or RNA-seq data sets have many
thousands of genes, and researchers often desire to select
fewer but informative genes. Although the L0 regularization,
where P(β) =

∑p
j=1 |βj|

0, yields the sparsest solution theo-
retically, it has to solve an NP-hard combinatory optimiza-
tion problem. In order to obtain a more concise solution
and improve the predictive accuracy of the machine learning
model, the researchers studied the Lp-norm (0 < p < 1),
especially p = 1

10 ,
1
2 ,

2
3 , or

9
10 [20], [55]. In the litera-

ture [19], Xu et al. have proposed that a L1/2 regularization
can be taken as a representative of the Lp (0 < p < 1)
penalties, and analyzed its analytically expressive threshold-
ing representation. Based on this thresholding representation,
solving the L1/2 regularization is much easier than solving the
L0 regularization. Moreover, the L1/2 penalty is unbiased and
has oracle properties [19], [20], [56]. These advantages make
L1/2 penalty an effective tool for high dimensional feature
selection problems [57].

However, like most regularization methods, the L1/2
penalty ignores the correlation between features, and there-
fore cannot analyze data with dependent structures. If there
is a set of features whose correlations are relatively high,
the L1/2 method tends to select only one feature to represent
the corresponding group. In order to solve the problem of
highly relevant features, Zou andHastie [23] proposed Elastic
net penalty, which is a linear combination of L1 and L2 (the
ridge technique) penalties; such a method emphasizes the
grouping effect, where strongly correlated features tend to
enter or leave the learning model together. Becker et al. [58]
proposed the Elastic SCAD (or SCAD-L2), a combination
of SCAD and L2 penalties for feature interaction. Recently,
Huang et al. [24] proposed the hybrid L1/2+L2 regularization
(HLR) approach to fit the logistic regression models for gene
selection, where the regularization is a linear combination of
the L1/2 and L2 penalties. For any fixed control parameter λ1,
λ2 (λ1, λ2 > 0), the hybrid L1/2 + L2 regularization (HLR)
is defined as follows:

L(λ1, λ2,β) = argmin
β

{
R(β)+ λ1|β|1/2 + λ2|β|2

}
(2)

where |β|1/2 =
∑p

j=1 |βj|
1/2, |β|2 =

∑p
j=1 |βj|

2.

The HLR estimator β̂ is the minimizer of Eq. (3):

β̂ = argmin
β
{L(λ, α, β)} (3)

where λ = λ1 + λ2, and α =
λ1

λ1+λ2
.

In theory, a strictly convex penalty function provides a
sufficient condition for the grouping effect of features and
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the L2 penalty ensures a strict convexity [21]. Therefore, the
L2 penalty induces the grouping effect simultaneously in the
HLR approach. Experimental results on artificial and real
gene expression data in the literature [24] demonstrated that
the HLR method is very promising.

However, many efficient regularization methods are non-
convex and need to tune across multiple penalized parame-
ters, which are generally adjusted by the grid search method
with k-fold cross violation approach. We believe that the
population-based search in EC is an efficient approach to
globally optimize these penalized parameters.

B. HYBRID EVOLUTIONARY APPROACHES FOR
FEATURE SELECTION
In Evolutionary Computations (EC), an initial population
of candidate solutions is randomly generated in the search
space and iteratively updated by artificial crossover, mutation
and selection operators. After several generations, the pop-
ulation can gradually develop high quality solutions to the
optimization problems. Over the past years, local search (LS)
technologies have increasingly been combined into the ran-
dom search process of EC to improve the optimization
efficiency [59]. These hybrid algorithms are usually called
hybrid evolutionary approaches ormemetic algorithms (MA).
Hybrid evolutionary approaches for feature selection, which
combine wrapper and filter feature evaluation measures, pro-
vide an opportunity for population-based optimization with
local search. For example, Zhu et al. [60] proposed the fil-
ter feature ranking method in MA to balance the local and
global searches for the purpose of improving the optimization
quality and efficiency. Then, Zhu et al. [61] integrated the
Markov blanket approach intoMA to simultaneously identify
all and part of the relevant features. Another two-stage feature
selection algorithm was proposed in [62], where a Relief-F
algorithm was used to rank individual features and then the
top-ranked features were used as input to the memetic wrap-
per feature selection algorithm. Some researchers introduced
heuristic mixtures that combine the filter ranking scores to
guide the search processes of GA and PSO for wrapper
feature selection [43], [49], [63]. Moreover, Hybrid evolu-
tionary approaches for feature selection have already been
used to solve some real application problems, such as, optimal
controller design [64], motif-finding in DNA, mircoRNA and
protein sequences [65], [66].

As is shown above, inmost hybrid evolutionary approaches
for feature selection, the EC stage is for wrapper feature
selection, and the filter-based LS algorithm helps to reach
a local optimal solution. However, these ‘‘ wrapper+filter’’
two-stage hybrid evolutionary approaches do not guarantee
that the selected features in the filter stage are also optimal
candidates for the EC stage, since the evaluation criteria
of each stage are totally different. Thus, the filter stage in
hybrid evolutionary approaches may eliminate potentially
useful features with no regard to their performance in the
wrapper process.

III. HYBRID GENETIC ALGORITHM WITH
WRAPPER−EMBEDDED APPROACHES
FOR FEATURE SELECTION
Given that existing combined feature selection methods have
limitations of inconsistency in feature evaluation measures,
feature interactions and large scales of features and instances,
in this section, we introduce a hybrid genetic algorithm
with wapper−embedded approaches (HGAWE) to combine
genetic operations and hybrid L1/2+L2 regularization (HLR)
for feature selection. We propose a new chromosome rep-
resentation including intron (the penalized control parame-
ters) and exon (the coefficients of the features in the learn-
ing model) for HGAWE optimization procedure. In the first
step of HGAWE, the GA population is randomly initialized
with each chromosome encoded by intron and exon parts.
Subsequently, the hybrid L1/2 + L2 regularization approach
(local search) is performed on the exon parts under the fixed
intron parts, to reach a local optimal solution or to improve
the fitness of individuals in the search population. Genetic
operators such as crossovers and mutations are performed on
the intron parts of the chromosomes, and the selection oper-
ator generates the next population. This process repeats itself
till the stopping conditions are satisfied. Each component is
explained as follows.

A. CHROMOSOME REPRESENTATION: INTRON
AND EXON
In our proposed hybrid genetic algorithm with wrapper−
embedded algorithm (HGAWE), a representation for the
two penalized control parameters λ, α, and the coefficients
(β1, β2,· · · , βp) of the candidate feature subset can be
encoded as a chromosome: intron + exon = (λ, α, β1,
β2, . . . , βp). The length of the chromosome is denoted as
p + 2, where p is the total number of features. The chro-
mosome is a real value string and its intron part is globally
optimized by GA operators. Although the search space of the
intron part is nonconvex and multimodal, GA has the global
optimal ability because the dimension of the intron is quite
low. On the other hand, the exon part is optimized by the
regularization approach for learning model construction and
feature selection synchronously. In the exon part, a nonzero
value of βi implies that the corresponding feature has been
selected. In contrast, the candidate feature has been rejected
if its corresponding coefficients βi is equal to zero. The
maximum allowable number of nonzero βi in the exon of each
chromosome is denoted as T . When prior knowledge about
the optimal number of features is available, we may limit T
to no more than the pre-defined value; otherwise T is equal
to p.

B. OBJECTIVE FUNCTION
The objective function is defined by:

Fitness(chromosome) = Accuracy of the

classfication model with(λ, α, β1, β2, . . . , βp) (4)
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where nonzero βi denotes the corresponding selected features
subset encoded in the exon part of the chromosome. The
objective function evaluates the significance of the given fea-
ture subset. In this paper, the fitness of the objective function
is specified as the classification accuracy of the logistic reg-
ularization model with the chromosome λ, α, β1, β2, . . . , βp,
using the hybrid L1/2 + L2 penalties method. Note that when
two chromosomes are found to have similar fitness, i.e., the
difference between their fitness is less than a small value
of e (e = 10−5 in our experiments), then the one with a
smaller number of selected features is given higher chances
of surviving to the next generation.

C. LS IMPROVEMENT PROCEDURE WITH HLR IN
LOGISTIC REGRESSION
In this section, we consider the use of the hybrid L1/2 + L2
penalties method with the coordinate descent algorithm as
local search approach in our proposed HGAWE. In general,
the coordinate descent algorithm [67] is an efficient method
for solving regularization problems because its computational
time increases linearly with the dimension of the feature
selection problems. Therefore, HGAWE is capable of con-
structing the learning model and selecting the relevant fea-
tures with grouping effect efficiently and synchronously.

The hybrid L1/2+ L2 regularization (HLR) [24] in logistic
model is formed as:

β̂ = argmin
[
R̂(β)+ λP̂(β)

]
(5)

where λ = λ1 + λ2, and R̂(β) is a loss function in logistic
regression:

R̂(β) = argmin
β

{
−
1
n

n∑
i=1

yi · X ′iβ + log(1+ exp(X
′
iβ))

}
(6)

Here, (y1, y2, . . . , yn)T = Y denotes the decision vector of a
binary value with 0 or 1 in logistic model.
P̂(β) is the HLR penalty function and it is defined as:

P̂(β) = α
p∑
j=1

√
|βj| + (1− α)

p∑
j=1

|βj|
2 (7)

where α = λ1
λ1+λ2

, and 0 ≤ α ≤ 1.
Following Friedman et al. [68], Liang et al. [57] andHuang

et al. [24], we use the approach of the original coordinate-
wise update:

βj←
Half (ωj, λα)
1+ λ(1− α)

(8)

where 1 ≤ j ≤ p and

ωj =

n∑
i=1

xij(yi − ỹ
(j)
i ) (9)

Here, as the partial residual for fitting βj, ỹ
(j)
i is defined as:

ỹ(j)i =
∑
k 6=j

xikβk (10)

Additionally, Half (·) is the L1/2 thresholding operator
coordinate-wise update form for the HLR approach:

Half (ωj, λ) =


2
3ωj(1+ cos(

2(π−ϕλ(ωj))
3 ))

if |ωj| >
3√54
4 (λ)

2
3

0 otherwise

(11)

where ϕλ(ω) = arccos(λ8 (
|ω|
3 )−

3
2 ), π = 3.14.

Therefore, the Eq. (5) can be linearized by one-term Taylor
series expansion:

β̂ ≈ argmin[
1
2n

n∑
i=1

(Zi − X ′iβ)
′Wi(Zi − X ′iβ)+ λP̂(β)] (12)

where Zi is the estimated response andWi is the weight for Zi,
which can be defined as follows.

Zi = X ′i β̃ +
yi − f (X ′i β̃)

f (X ′i β̃)(1− f (X
′
i β̃))

(13)

Wi = f (X ′i β̃)(1− f (X
′
i β̃)) (14)

where f (X ′iβ) is evaluated value under the current parameters:

f (X ′iβ) =
exp(X ′iβ)

1+ exp(X ′iβ)
(15)

Thus, we can redefine Eq.(13) and (14) for fitting current β̃
as:

Z̃ (j)
i =

∑
k 6=j

xik β̃k (16)

ωj =

n∑
i=1

Wixij(Zi − Z̃
(j)
i ) (17)

The procedure of the coordinate descent algorithm for the
HLR penalized logistic model is described as follows.

Algorithm 1 The Coordinate Descent Algorithm for the HLR
Penalized Logistic Model
1: Initialize all βj(m)← 0(j = 1, 2, . . . , p),

set m← 0 and λ, α are set by GA;
2: if β(m) dose not converge then
3: repeat
4: Calculate Z (m) andW (m) and approximate the loss

function Eq. (12) based on the current β(m);
5: for j = 1 to p do
6: Compute Z̃ (j)

i (m)←
∑

k 6=j xikβk (m) and

ωj(m)←
∑n

i=1Wi(m)xij(Zi(m)− Z̃
(j)
i (m));

7: Update βj(m)←
Half (ωj(m),λα)

1+λ(1−α) ;
8: end for
9: m← m+ 1, β(m+ 1)← β(m);
10: until there are no more features to be removed;
11: end if
12: return the optimal feature subset;
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FIGURE 1. The crossover operator at α point in each chromosome.

D. GENETIC OPERATORS IN HGAWE
In the evolution process of HGAWE, standard GA operators
such as fitness proportionate selection, one point crossover
and uniform mutation operators can be applied. Moreover,
if prior knowledge on the optimal number of features is
available, the number of nonzero of βi in each exon part of
the chromosome may be constrained to a maximum of T in
the evolution process.

1) CROSSOVER
We first randomly select two parents (pa,ma) from cur-
rent population for later breeding. Then, the operation
of crossover is used with a crossover probability pc
(pc = 0.85 in our experiments) to produce offsprings that
inherit characteristics from both parents. A single crossover
point on the intron of both pa and ma chromosomes is gen-
erated between the penalized control parameters λ and α;
then these two penalized control parameters on both sides
of that point are swapped in the intron of the parent’s
chromosomes to create the intron part of the offsprings’
chromosomes c1 and c2. The exon β of these two off-
springs chromosomes are evaluated by the local optimization
strategies. This procedure of crossover operation is shown
in Fig 1.

2) MUTATION
The mutation operator allows diversity of populations and
larger exploration of search space. During this stage, we ran-
domly choose one of the penalized control parameters λ,
α with a mutation probability pm ( pm = 0.1 in our
experiments) to mutate a selected chromosome. The fitness
and β of the new chromosome generated by the muta-
tion operation are also evaluated by the local optimization
strategies.

3) SELECTION
The roulette-wheel selection [69] is used to generate the next
generation from the parent and offspring populations. The
selection probability probc of the chromosome c is directly
proportional to its fitness, i.e.,

probc =
f (c)∑

f (parent)+
∑
f (offspring)

(18)

At the genetic selection stage, the candidate chromosomes
with higher accuracy will be less likely to be eliminated and
still have the chance to be possible.

TABLE 1. Parameters set for the EC algorithms in the seven approaches.

IV. RESULTS AND DISCUSSION
A. ANALYSIS OF SIMULATED DATA
The goal of this section is to evaluate the performance of the
HGAWE approach in the simulation study. Six approaches
are compared: GA, GP, MA, Elastic net, SCAD-L2, and the
hybrid L1/2 + L2 regularization (HLR) respectively. We sim-
ulate data from the true model

log(
y

1− y
) = X ′β + σε, ε ∼ N (0, 1)

where X ∼ N (0, 1), ε is the independent random noise and
σ is the control parameter for noise. Three scenarios are
presented here. In every example, the dimension of features
is 6000. The notation ·/· represents the number of observa-
tions in the training and test sets respectively, e.g. 100/100.
Here are the details of the three scenarios.

(a) In Scenario 1, the dataset consists of 200/200 observa-
tions, we set the noise control parameter σ = 0.2 and

β = (1,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
100

, 0, . . . , 0︸ ︷︷ ︸
1900

,

2,−2, 2,−2, . . . , 2,−2︸ ︷︷ ︸
100

, 0, . . . , 0︸ ︷︷ ︸
1900

, 2, 2, . . . , 2︸ ︷︷ ︸
100

, 0, . . . , 0︸ ︷︷ ︸
1900

).

We simulated a grouped feature situation

xj = ρ × x1 + (1− ρ)× xj, j = 2, 3, . . . , 100;

xj = ρ × x2001 + (1− ρ)× xj, j = 2002, 2003, . . . , 2100;

xj = ρ × x4001 + (1− ρ)× xj, j = 4002, 4003, . . . , 4100.

where ρ is the correlation coefficient of the grouped variables.
In this example, there are three groups of correlated features.
An ideal sparse regression method would select only the
300 true features and set the coefficients of the 5700 irrelevant
features to zero.

(b) Scenario 2 is defined similarly to Scenario 1, except
that we consider the case when there are other inde-
pendent factors, which also contribute to the decision
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TABLE 2. Results of the simulation.

variable y

β = (1,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
100

, 1.5,−2, 1.7, 3,−1︸ ︷︷ ︸
5×20

, 0, . . . , 0︸ ︷︷ ︸
1800

,

2,−2, 2,−2, . . . , 2,−2︸ ︷︷ ︸
100

, 1.5,−2, 1.7, 3,−1︸ ︷︷ ︸
5×20

, 0, . . . , 0︸ ︷︷ ︸
1800

,

2, 2, . . . , 2︸ ︷︷ ︸
100

, 1.5,−2, 1.7, 3,−1︸ ︷︷ ︸
5×20

, 0, . . . , 0︸ ︷︷ ︸
1800

).

In this example, there are three groups of correlated fea-
tures (similar to Scenario 1) and 300 single independent
features. An ideal sparse regression method would select the
600 true features and set the coefficients of the 5400 irrelevant
features to zero.

(c) In Scenario 3, the true features were added up to 1000 of
the total features, σ = 0.1, and the dataset consists of 500/100
observations, and

β = (1,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
100

, 1.5,−2, 1.7, 3,−1︸ ︷︷ ︸
5×20

, 0, . . . , 0︸ ︷︷ ︸
1800

,

2,−2, 2,−2, . . . , 2,−2︸ ︷︷ ︸
100

, 1.5,−2, 1.7, 3,−1︸ ︷︷ ︸
5×20

, 0, . . . , 0︸ ︷︷ ︸
1800

,

2, 2, . . . , 2︸ ︷︷ ︸
100

, 1.5,−2, 1.7, 3,−1︸ ︷︷ ︸
5×20

, 1, 1, . . . , 1︸ ︷︷ ︸
400

, 0, . . . , 0︸ ︷︷ ︸
1400

).

xj = ρ × x1+(1−ρ)× xj, j = 2, 3, . . . , 100;

xj = ρ × x2001+(1−ρ)× xj, j=2002, 2003, . . . , 2100;

TABLE 3. The detailed information of five real gene expression datasets
used in the experiments.

xj = ρ × x4001+(1−ρ)× xj, j = 4002, 4003, . . . , 4100;

xj = 0.1× x4201+0.9× xj, j = 4202, 4203, . . . , 4600.

In this example, there are three groups of correlated fea-
tures (similar to Scenario 1), 400 correlated features(the
corrected parameter is 0.1) and 300 independent features.
An ideal sparse regression method would select only the
1000 true features and set the coefficients of the 5000 irrele-
vant features to zero.

In our experiment, we set the correlation coefficient ρ of
features to 0.1, 0.4, 0.7 respectively. The learning model in
GA, MA, Elastic net, SCAD-L2, HLR and HGAWE is the
logistic classification approach. In GP, the multitree classifier
is used. For each iteration of GA and MA, the number of
selected features based on the filter of information gain is set
to 2000. The configuration parameters used by EC algorithms
in these seven approaches are listed in Table 1.
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TABLE 4. Results of empirical datasets.

In the regularization algorithms of these seven approaches,
the control parameters of Elastic net, SCAD-L2, and HLR
approaches are tuned by the 10-fold cross-validation (CV)
approach in the training set. Note that, the Elastic net and
HLR methods are tuned by the 10-CV approach on the
two-dimensional parameter surfaces. The SCAD-L2 is tuned
by the 10-CV approach on the three-dimensional parameter
surfaces. Then, different classifiers are built by these seven
feature selection approaches. Finally, the obtained classifiers
are applied to the test set for classification and prediction.
We repeat the simulations 100 times for each method and
compute the mean classification accuracy on the test sets.
To evaluate the quality of the selected features for these

approaches, the sensitivity and specificity of the feature selec-
tion performance [70] are defined as follows:

TruePositive(TP) :=
∣∣∣β. ∗ β̂∣∣∣

0
,

TrueNegative(TN ) :=
∣∣∣β̄. ∗ ¯̂β∣∣∣

0
,

FalsePositive(FP) :=
∣∣∣β̄. ∗ β̂∣∣∣

0
,

FalseNegative(FN ) :=
∣∣∣β. ∗ ¯̂β∣∣∣

0
,

Sensitivity :=
TP

TP+ FN
, Specificity :=

TN
TN+FP

.
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TABLE 5. The 10 top genes in the AML dataset.

where the .∗ is the element-wise product, and | · |0 calculates
the numberof non-zero elements in a vector, β̄ and ¯̂β are the
logical ‘‘not’’ operators on the true coefficients vector β and
the simulated β̂.
Table 2 shows the feature selection and classification per-

formances of different methods in the different parameter
settings with Scenarios 1-3. We found that with the decrease
of the correlation coefficient ρ, the models’ performances
can be better. In Table 2, the HGAWE approach always
selects the most correct relevant features in different data
environment with Scenarios 1-3. The highest sensitivities
and specificities of feature selection obtained by HGAWE
means that HGAWE selectsmost relevant features and deletes
most irrelevant features respectively. Thus, the classification
accuracy obtained by theHGAWEapproach also outperforms
other EC and regularization methods.

B. ANALYSIS OF REAL DATA
In this section, we use five publicly available gene expression
microarray datasets: AML, DLBCL, Prostate, Lymphoma
and Lung cancer, to further evaluate the effectiveness of our
proposed HGAWE method. The AML dataset, first men-
tioned by Bullinger et al. [71], has 116 patients, which con-
tain 6,283 genes. The DLBCL contains about 240 samples’
information, which was first published in [72] by Rosenwald.
Each sample includes the expression data of 8,810 genes. The
Prostate dataset was originally proposed by Singh et al. [73];
it contains the expression profiles of 12,600 genes for 50 nor-
mal tissues and 52 prostate tumour tissues. The Lymphoma
dataset [74] contains 77 microarray gene expression pro-
files of the 2 most prevalent adult lymphoid malignancies:
58 samples of diffuse large B-cell lymphomas and 19 follicu-
lar lymphomas (FL). The original data contains 7,129 gene
expression values. The Lung cancer dataset [75] contains
164 samples with 87 lung adenocarcinomas and 77 adja-
cent normal tissues with 22401 microarray gene expres-
sion profiles. The Lung cancer dataset can be downloaded
at www.ncbi.nlm.nih.gov/geowith through access number
(GSE40419). A brief introduction of these datasets is sum-
marized in Table 3.

In order to accurately assess the performance of the seven
different feature selection approaches, the real datasets are
randomly divided into two pieces: two thirds of the samples
are put in the training set used for the model estimation, and
the remaining one third of data are used to test the estimation
performance. For regularization approaches, the penalized
parameters are tuned by the 10-fold cross validation. For
each real dataset, the procedures using different methods are
repeated over 100 times respectively.

Table 4 describes the averaged training accuracies (10-CV)
and test accuracies obtained by different feature selection
approaches regularization models in the five datasets. It is
obvious that the performance of the HGAWE approach is bet-
ter than the other six approaches. The relevant gene selection
performances of different approaches in the five real datasets
are also shown in Table 4. The number of genes selected
by our proposed HGAWE model is the smallest compared
to the other six feature selection approaches. In regulariza-
tion approaches with grouping effect, such as Elastic net,
SCAD-L2, and HLR, the performance of HLR is better than
that of Elastic net and SCAD-L2 in gene selection. On the
contrary, in EC approaches, such as GA, GP andMA, the per-
formance of GP is better than that of GA and MA in gene
selection and classification. Comparing the performances of
the seven feature selection algorithms, Table 4 proves that our
proposed HGAWE approach has better performances in both
gene selection and predictive classification.

C. DISCUSSION
For biological analysis of the results, 10 top-ranked selected
genes obtained by the different methods in the AML dataset
are shown in Table 5. Compared with the other feature selec-
tion methods, the HGAWE approach selects some unique
genes, such as SFRP1 and SFRP2, which are members of
the Sfrp family, a kind of signal transduction proteins. The
Sfrp family proteins play a key role in transmitting the
TGF-beta signals from the cell-surface receptor to cell
nucleus, mutation or deletion of AML disease, which has
been proved to lead to pancreatic cancer [73]. We think the
Sfrp family may be strongly associated with AML diseases.
In the other genes selected by theHGAWEapproach, the gene
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FLT3 can stimulate themotility of AMLdiseases. The expres-
sion of FLT3 has been found to be up regulated in some
different kinds of AML diseases [71]. The protein encoded
by the gene NPM1 is said to be very similar to the tumor
suppressor of drosophila, which is a highly relevant gene to
AML diseases [76]. Moreover, some relevant genes selected
by other regularization models using Elastic net, SCAD-L2,
and HLR approaches are also found by the HGAWE, for
example, SFRP5 and GSTM1. They are significantly asso-
ciated to AML diseases, which has been discussed in [77].

We also obtain similar experimental results from the anal-
ysis of the other four real gene expression datasets. The
biological analysis shows that the HGAWE approach not only
can find the relevant genes that are selected by other feature
selection methods, but also can find some unique genes,
which are not selected by other models but are significantly
associated to diseases. Hence, the HGAWE approach may
identify the relevant genes accurately and efficiently.

V. CONCLUSION
In this paper, we developed a hybrid genetic algorithm with
wrapper−embedded (HGAWE) to combine genetic opera-
tions and hybrid L1/2+2 regularization approaches for feature
selection in learning model construction, cancer classifica-
tion and gene selection. Genetic operators such as crossover,
mutation and selection for global optimization and an effi-
cient regularization method for local search are designed
to complete this HGAWE approach. The experiment results
show that the HGAWE approach outperforms some exist-
ing feature selection regularization estimation approaches.
It can effectively select the relevant features of bio-mark
genes, predict the patients’ class, and construct the learning
model accurately in high dimensional biological datasets. The
HGAWE approach is proved a more practical tool for feature
selection and learning prediction.
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