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ABSTRACT Performance of a collaborative task is mostly dependent on the collective effort from par-
ticipants. To accomplish a participatory task effectively and efficiently, the team formation problem (TFP)
outweighs all other considerations. It is even more complicated when social connections among candidates
is taken into account. As we can imagine, a large number of tasks require members of the team to be socially
close. On the contrary, a portion of tasks, e.g., proposal review, pay more attention to a multidimensional
view, and team members should be selected from a variety of cliques. Due to the nature of tasks, it is
challenging to find a subset that meets the skill requirement of the task as well as socially diversity demand
of team members from a pool of candidates. In this paper, we explore the TFP in a social network. Based on
different task objectives, we first formulate the TFP as TFP with strong ties (TFP-ST) and TFP with weak
ties (TFP-WT), respectively. Both TFP-ST and TFP-WT are proven to be NP-hard, and we then design
corresponding heuristic algorithms to solve the two problems. Through extensive simulations, we show that
the solution to TFP-ST can achieve significant improvement in terms of collaboration cost, team size, as well
as running time, and the solution to TFP-WT can provide better performance than existing approaches at the
same time.

INDEX TERMS Team Formation, social network, strong tie, weak tie.

I. INTRODUCTION
Participatory tasks, e.g., software product development, mes-
sage propagation [1], data offloading [2], etc, combine
the collective intelligence of the massive crowd. However,
whether a task is accomplished successfully depends not
only on the proficiency of participants, but also on how all
of participants communicate, cooperate and work together
as a team. Therefore, selection of participants is vital for
participatory tasks. Diversity of candidates’ skills and the
social relationship among them make participant selection
(team formation, interchangeably) a challenging problem.

The team formation problem [3] is one of themost essential
problems for participatory tasks. The duty of group forma-
tion is to find a team of participants, that can fulfill the
requirements of one certain task, from a pool of candidates.
Every participant then makes her contribution to the spe-
cific task. To meet different design objectives, a number of
solutions [4]–[7] to the team formation problem have been
proposed. However, these existingworks did not take levels of
social connection among team members into consideration.

As we can imagine, a large number of tasks require members
of the team to be socially close. On the contrary, a portion
of tasks, e.g., proposal review, pay more attention to a multi-
dimensional view, team members should be selected from a
variety of cliques. As shown in Fig.1, candidate A and B, who
are connected by the solid line, are close socially, we call this
type of connection as ‘strong tie’. On the other hand, due to
‘weak tie’ between candidate A and H who are from different
cliques, the communication cost will be higher and diversity
will be better at the same time. Thus, it is crucial how to find
a subset that meets the skill requirement of the task as well
as socially diversity demand of team members from a social
network.

Based on different task objectives, we first formulate the
team formation problem as TFP with strong ties (TFP-ST)
and TFPwith weak ties (TFP-WT), respectively. The TFP-ST
problem aims to minimize the collaboration cost among
team members. Lappas et al. [3] studied the method of
forming a team with strong ties, and defined two metrics
about collaboration cost to evaluate performance of the result
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FIGURE 1. The logic structure of a social network.

of team formation. Since then, a series of studies [8]–[10]
have been conducted, a few metrics, such as distance collab-
oration function, diameter cost etc., were discussed, and load
balancing was also considered as a factor in reference [8].
Unlike previous works, in this paper, we introduce a new
metric, i.e., success ratio of tasks, to evaluate the execution
result of tasks by a chosen team, a successful task means
the result achieved by the proposed algorithm satisfies a
certain quality requirement, below which this task cannot be
accomplished successfully. Obviously, every team member
has different contribution to a specific task because of the
heterogeneity in her skill level. For example, for a proof-
reading task which requires that the error ratio is less than
1%, a candidate who can guarantee correct ratio less than
99% is unqualified, this task fails if the candidate is chosen
exclusively. On the other hand, the TFP-WT problem aims
to form a diverse team. There exist only few works on this
field. Yin et al. [11] defined the social influence metric
for a team, and studied the problem about finding a team
with minimized social influence. However, parameters, e.g.,
authority, used in this work are difficult to attain in real life, as
analyzed in [12].

Our original contributions in this paper are two-fold. First,
we propose TFP-ST and TFP-WT to model the team forma-
tion problem for participatory tasks, and provide two corre-
sponding heuristic algorithms to solve TFP-ST and TFP-WT,
respectively. Second, we introduce two metrics, i.e., suc-
cess ratio and collaboration cost, to evaluate our algorithms.
We have conducted extensive simulations to assessment the
performance of our proposed algorithms. Through extensive
simulations, we show that the solution to TFP-ST can achieve
significant improvement in terms of collaboration cost, team
size as well as running time, and the solution to TFP-WT can
provide better performance than existing approaches at the
same time.

The remainder of this paper is organized as follows.
We survey related works in Section 2. In Section 3,
we present the preliminaries, including basic models and
metrics, in detail. We define TFP-ST and TFP-WT to

model the team formation problem in Section 4. Discus-
sions about the problems and corresponding algorithms
are presented in section 5. Simulation results are pre-
sented in Section 6. Finally, we conclude this paper
in Section 7.

II. RELATED WORK
Traditional team formation problem has been studied
widely [4]–[7], [14]. The team formation problem is mod-
elled as an integer linear program problem, and often solved
based on simulated annealing [4], Heuristic [5] or genetic
algorithms [6]. However, these studies didn’t take the under-
lying social network structure into consideration, which is
the main different between previous research and our work.
In this paper, we leverage different objectives of tasks, and
then present corresponding social connection aware algo-
rithms for TFP-ST and TFP-WT, respectively. The team for-
mation problem has become more complicated when taking
social connection, especially the social network structure,
into consideration. Social connection related team formation
has attracted lots of researchers’ attention. Research about
forming a team with strong ties is first conducted in [3],
in which the collaboration cost of a team is used to evaluate
levels of social connection among members. Lappas et al.
introduced two metrics, i.e., diameter communication cost
as well as Minimum Spanning Tree (MST) communication
cost. Kargar and An [9] proposed a solution to the problem
of finding a team of experts with a leader. They defined
the sum of distances collaboration function, and used a met-
ric, i.e., leader distance, to evaluate the proposed algorithm.
Majumder et al. [10] introduced the bottleneck edge cost, and
proposed a novel solution to the team formation problem.
In [8] and [14], the density of the subgraph was used to
identify a highly collaborative team. Based on both closeness
centrality and eigenvector centrality, Ashenagar et al. [13]
presented an effective solution to minimize the communica-
tion cost of a team for the team formation problem. In addition
to aforementioned research, a few new metrics which can
work as evaluation criteria have been introduced, such as
collaboration cost and load balancing [8], [15], personnel
cost [16], [17], time limit [18], team formation efficiency [19]
and other factors [20], lots of solutions related to thesemetrics
have been proposed to solve the team formation problem.
These existing works assumed that a task is accomplished
successfully as long as one candidate serves it. However,
candidates have heterogeneous skill levels because of their
diversity in proficiency, capabilities and experience. There-
fore, to find a team with high efficiency, both diversity of
candidates and success ratio of tasks should be taken into
consideration.

The team formation problem with weak ties is still an
open research topic. Yin et al. [11] introduced a metric to
evaluate the social influence of a team, and then proposed
a solution that can minimize the social influence for the
team formation problem. However, the metric, e.g., authority,
described in [11] is hard tomeasure. In this paper, we evaluate
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levels of the social influence by using the collaboration cost
of a team, which is widely used in this area. In view of team
members from different cliques, the high communication cost
can result in the impartiality of the execution result of a task,
which is exactly the goal of some certain tasks. In this paper,
we use two metrics, i.e., success ratio and collaboration cost,
and formulate the team formation problem as TFP-ST and
TFP-WT according to different requirements of tasks, and
then propose two corresponding heuristic algorithm to solve
TFP-ST and TFP-WT, respectively.

III. PRELIMINARIES
In this section, we explain some notations, and define our
social connection aware team formation problem with strong
ties and weak ties, respectively.

A. SYSTEM MODEL
We consider a social network as an undirected graph G =
(V ,E,w), where V denotes a set of candidates, edges in E
denote social connection between any two candidates, and w
is the weight of edge E , where 0 < w ≤ 1. The value of w
stands for the collaboration cost between two neighbouring
candidates in a social network. A smaller w implies that these
two candidates are socially close, a bigger wmeans that these
two candidates can not cooperate well and a resulting higher
communication cost.

The collaboration cost among candidates can be esti-
mated by means of several methods, e.g., analyzing historic
data or collecting information from the hierarchy structure in
an institution. For candidate u and v which are not socially
close, the collaboration cost between u and v is defined as
sum of the weights of edges which constitute the shortest path
between u and v. The distance function satisfies the triangle
inequality, i.e., d(u, v) < d(u, x) + d(x, v), where x stands
for any candidate. The set of candidates along the shortest
path from u to v are denoted as Path(u, v). The distance
between candidate u and a set of candidates X is defined
as d(u,X ) = minx∈X d(u, x), and the nearest node to u is
denoted by N (u,X ) = {x∗|d(u, x) ≥ d(u, x∗),∀x ∈ X}.
Thus, we have d(u,X ) = d(u,N (u,X )) and Path(u,X ) =
Path(u,N (u,X )).

We assume project P is composed of several tasks, and
can be denoted by P = {t1, t2, . . . , tp}, p ≥ 1. We assume
that these tasks are independent from each other. Naturally,
the result of project P can be deduced from the combination
of the results of p tasks. Every task has its own requirement
in skill. A task can only be successfully accomplished when
its quality demand is satisfied. In other words, task tp is
successful only if a candidate, whose skill level is larger
than the quality requirement by task tp, is chosen to serve it.
However, such a qualified candidate does not always exist.
Thus, we introduce a metric, success ratio, to represent the
probability whether tp, p ≥ 1, to be executed successfully.
The success ratio is computed as the ratio of the skill level
of the chosen candidate to the quality requirement of task tp.
Let Sp denote the quality requirement of task tp, 0 < Sp ≤ 1.

The quality requirement for project P can be described as
{〈t1, S1〉 〈t2, S2〉 . . . , 〈tp, Sp〉}. From another point of view,
the success ratio constraint also gives us a chance to differen-
tiate the tasks based on their importance.

Team members can participate in different tasks, and pro-
vide a corresponding success ratio for a certain task. Let
Mi = {t1, t2, . . . , tm} denote the set of tasks inwhichmember
i can participate, qki denote the quality provided by member i
for task tk , which can be estimated using the data mining
technology proposed by [21]. Members who can serve the
same task tk form a set for task tk , denoted by C(tk ).
A team member can provide her contribution to any task.

This means that the success ratio of task tk can be defined as
one minus the probability that everyone in the team fails to
serve it. Accordingly, the aggregate quality for task tk should
be described as qk = 1 −

∏
i∈V ′ (1 − q

k
i ). We think the team

formation problem is solved when team members, which are
selected to serve task tk , 1 ≥ k ≥ p, can provide the quality
guarantee, i.e., qk ≥ Sk , 1 ≥ k ≥ p. Accordingly, project P
is accomplished successfully only if all tasks are executed
successfully, i.e., qk ≥ Sk ,∀tk ∈ P.
We summarize major parameters and their definitions

in Table 1.

TABLE 1. Key Parameters.

B. METRICS
How all of team members cooperate is critical for a project.
Obviously, keeping socially close makes collaboration more
efficient. However, it is hard to evaluate the level of the social
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connection among members. As described in aforementioned
research, the collaboration cost of a team is adopted to eval-
uate the level of social connections among members. We use
similar definition of collaboration cost to estimate the level of
strong ties in this paper. Intuitively, a team can collaborative
well to pursue bigger benefit if they have lower collaboration
cost. We borrow the definition of collaboration cost of a team
from [3].
Definition 1: The collaboration cost of team V ′, which

is composed of chosen candidates from a social network
G = (V ,E,w), is the cost of the minimum spanning tree
(MST) of G(V ′,E ′,w), denoted as C_MST (V ′).

To evaluate the rating of weak ties, we introduce a metric,
i.e., the minimum collaboration cost. The minimum collabo-
ration cost represents the smallest cooperation cost between
any two members in a team. Thus, the objective of team for-
mation problem with weak ties is to maximize the minimum
collaboration cost of a team.
Definition 2: The minimum collaboration cost of team V ′,

which is a subset of candidates from the social network
G = (V ,E,w), is denoted as C_Min(V ′), where
C_Min(V ′) = minu,v∈V ′ d(u, v), representing the smallest
collaboration cost among team members.

IV. PROBLEM FORMULATION
In this section, we formulate the team formation problemwith
strong ties as TFP-ST based on the Group Steiner Tree prob-
lem, and formulate the team formation problem with weak
ties as TFP-WT based on theMultiple-choice Cover problem.
Evidence suggests that the communication cost among a team
is a key factor for forming of a team.

A. TEAM FORMATION PROBLEM WITH STRONG TIES
Problem 1: Given a social network, G = (V ,E,w),

project P, {〈t1, S1〉 〈t2, S2〉 . . . , 〈tp, Sp〉}, and the pro-
file of every candidate i, Mi = {t1, t2, . . . , tm},
{〈t1, q1i 〉 〈t

2, q2i 〉 . . . , 〈tk , qki 〉}, 1 ≤ i ≤ n, 1 ≤ k ≤ p,
team formation problem with strong ties is to find a group of
candidates, i.e., a subset V ′ ⊆ V , which can meet the quality
requirement of all tasks and minimize the total collaboration
cost at the same time. We call this problem TFP-ST. Mathe-
matically speaking, TFP-ST can be formulated as follows:

Minimize C_MST (V ′) (1)

Subject to : V ′ ⊆ V (2)

E ′ ⊆ E (3)

qk = 1−
∏
i∈V ′

(1− qki ) (4)

qk ≥ Sk , ∀tk ∈ P (5)

Proposition 1: The TFP-ST problem is NP-hard.
Proof: We prove the proposition by a reduction from the

Group Steiner Tree (GST) problem [22], which has been
proven to be NP-hard.

An instance of the GST problem is defined as follows:
Given an undirected and weighted graph of candidates

G = (V ,E,w),w is the weight of edge E , and p is the number
of subsets (called group) {g1, g2, . . . , gp} with gi ⊆ V , 1 ≤
i ≤ p. The GST problem is to find whether there exists a
subtree G′ = (V ′,E ′,w) of G = (V ,E,w) (i.e., V ′ ⊆ V
and E ′ ⊆ E) such that |V ′

⋂
gi| > 0, 1 ≤ i ≤ p, and the

collaboration cost
∑

e∈E ′ w(e) ≤ W , whereW is a predefined
constant.

We transform an instance of the GST problem to an
instance of the TFP-ST problem as follows: for group gi,
1 ≤ i ≤ p, we create set C(tk ) for task tk , 1 ≤ k ≤ p,
accordingly. We assume that member i in C(tk ) can serve
task tk with the quality guarantee, such that every task tk

only need to select only one candidate from C(tk ), 1 ≤
k ≤ p, to optimize the communication cost. Thus, the graph
G′ of the TFP-ST problem is identical to the graph G of
the GST problem, where the communication cost function
corresponds the weight of the edge in the TFP-ST instance
of the problem. Given this mapping, it is easy to indicate that
there exists a solution to the GST problem with collaboration
cost W at most, if and only if there exists a solution to the
TFP-ST problem with communication cost W at most. This
problem is trivially in NP.

The GST instance is a special case of the TFP-ST problem.

Normally,
qki
Sk ≥ 1, 1 ≤ i ≤ n, 1 ≤ k ≤ p, does not always

hold for the TFP-ST problem, our problem should be more
complicated than the special case. Therefore, the TFP-ST
problem is NP-hard.

B. TEAM FORMATION PROBLEM WITH WEAK TIES
Problem 2: Given a social network, G = (V , E,w),

project P = {t1, t2, . . . , tp}, p ≥ 1, and the profile of candi-
date i, Mi = {t1, t2, . . . , tm}, {〈t1, q1i 〉 〈t

2, q2i 〉 . . . , 〈tk , qki 〉},
1 ≤ i ≤ n, 1 ≤ k ≤ p, we assume that every candidate in
C(tk ) is qualified to serve task tk . Team formation problem
with weak ties is to find a group of candidates, i.e., a subset
V ′, V ′ ⊆ V , to serve every task, |V ′

⋂
C(tk )| > 0,∀tk ∈ P,

and maximize the communication cost at the same time.
We call this problem TFP-WT. Mathematically speaking,
TFP-WT can be formulated as follows:

Maximize C_Min(V ′) (6)

Subject to : V ′ ⊆ V (7)

|V ′
⋂

C(tk )| > 0, ∀tk ∈ P (8)

C_Min(V ′) = min
u,v∈V ′

d(u, v) (9)

Proposition 2: The TFP-WT problem is NP-hard.
PROOF: We prove the TFP-WT problem is NP-hard by

a reduction from the MCC-MD (Multiple-choice cover of
maximum dispersion) problem, which was proven to be
NP-hard [23].

An instance of the MCC-MD problem is defined as fol-
lows: Given a set of vertices, V = {1, . . . , n}, matrix D =
(dij) ∈ <

n×n
+ representing the distance between any two

vertices in V , and a group of subsets, {H1, . . . ,Hp
}, where

H k
⊆ V , 1 ≤ k ≤ p. The MCC-MD problem is to choose
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a set of vertices V ′, V ′ ⊆ V , such that |V ′
⋂
H k
| > 0, 1 ≤

k ≤ p, and maximize the distance between the two nearest
nodes in V ′. Given a constant Y , the solution to theMCC-MD
problem is to findwhether there exists a setV ′ ⊆ V satisfying
that |V ′

⋂
H k
| > 0, 1 ≤ k ≤ p, and the distance between

the two nearest nodes in V ′ satisfies d̂ = max{min dkl |k,
l ∈ C} ≥ Y .
We transform an instance of the MCC-MD problem to an

instance of the TFP-WT problem as follows: we regard H k ,
1 ≤ k ≤ p as a set of candidates for task tk , 1 ≤ k ≤ p,
i.e., C(tk ), 1 ≤ k ≤ p, and the element of matrix D = (dij) ∈
<
n×n
+ as the weight of any two candidates. The project P

consists of tk , 1 ≤ k ≤ p, the set of chosen members needs
to satisfy |V ′

⋂
C(tk )| > 0, 1 ≤ k ≤ p. It’s easy to say that

there exists a solution to the MCC-MD problem with cost at
least Y , if and only if there exists a solution of the TFP-WT
problem with minimum collaboration cost at least Y . Thus,
the TFP-WT problem is NP-hard.

V. PROPOSED ALGORITHMS
Since there does not exist polynomial approximation solu-
tions to both the TFP-ST problem and the TFP-WT problem
with a bounded error guarantee, we propose two heuris-
tic algorithms to solve the two problems in this section,
respectively.

A. THE PROPOSED ALGORITHM FOR
THE TFP-ST PROBLEM
The TFP-ST problem needs to find a team which meets
the requirement of success ratio for every task. Since the
TFP-ST problem is NP-hard, there does not exist a polyno-
mial approximation solution with a bounded error guarantee.
Thus, based on the solution of Group Steiner Tree prob-
lem [22], we present a heuristic algorithm for the TFP-ST
problem.

FIGURE 2. An example of a social network.

The MPH algorithm [24], [25] is a classical algorithm
to the Steiner tree problem. We propose our solution to
the TFP-ST problem based on the MPH algorithm. Given
a social network, G = (V ,E,w), as shown in Fig.2, A,
B, C and D are four candidates, edges in E reflect the

social connection among candidates, and the weights of
edges imply the communication cost between two neighbour-
ing candidates. We assume that the set of tasks T , T =
{t1, t2, t3, t4}, C(t1) = {A,D}, C(t2) = {A}, C(t3) = {B,D},
C(t4) = {C,D}.

FIGURE 3. Illustration of our proposed algorithm for the TFP-ST problem.

For project P, P = {t1, t2, t3}, our algorithm for the
TFP-ST problem is described as follows: (1) Addition of
virtual candidates and virtual edges. First, add task t1, t2, t3

as virtue vertices into graph G, the set of essential nodes is
denoted by R = {t1, t2, t3}. Second, add |C(tk )| virtual edges
for task tk , where a new virtual edge is produced between task
tk and every candidate in C(tk ), as well as set the weight of
all virtual edges to a large value Z . The generated graph is
shown in Fig.3. (2) Process of our proposed algorithm for the
TFP-ST problem. Add a task with minimum cardinality into
set V ′, i.e., t2. Then find the nearest candidate in R \ V ′ =
{t1, t3} to the set of chosen candidates V ′, i.e., t1, and add t1

as well as all candidates along the shortest path to set V ′ into
V ′, where Path(t1,V ′) = Path(t1, t2) = {t1,A, t2}. Then,
we have V ′ = {t1,A, t2}. Similarly, t3 is chosen, add t3 and
all candidates along the shortest path to set V ′ into V ′, where
Path(t3,V ′) = Path(t3,A) = {t3,B,A}. Thus, we have V ′ =
{t1,A, t2, t3,B, }, R \V ′ = ∅. (3) Optimization of the chosen
team. Delete virtual candidates and virtual edges, we have
the set of qualified candidates as a team, i.e., V ′ = {A,B},
and the minimized collaboration cost, C_MST (V ′) = 0.5.
The proposed algorithm for the TFP-ST problem is shown in
Algorithm 1.

In Algorithm 1, from line 3 to line 8, we add virtual
vertices and corresponding edges into graph G, and fix
a large number Z as the weight of these virtual edges,
where Z is bigger than the sum of weights of edges in
graph G. In line 9, we choose the task with the lowest
cardinality, i.e., trarest = argmintk∈P |C(t

k )|, and add it
into V ′. Let R denote the set of tasks whose requirements
are not met. In line 12, the virtual node, which is the nearest
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Algorithm 1 RarestSteiner

Input: G = (V ,E,w), P = {t1, t2, . . . , tp}, Mi, C(tk ),
{〈tk , qki 〉}, {〈t

k , Sk 〉}, 1 ≤ i ≤ n, 1 ≤ k ≤ p.
Output: Team V ′.
1: R = P.
2: V ′ = ∅.
3: for task tk in P do
4: G.add-node(tk ).
5: for candidate i in C(tk ) do
6: G.add-edge(tk ,i,weight=Z).
7: end for
8: end for
9: trarest = argmintk∈P |C(t

k )|.
10: V ′ = {trarest }.
11: while R 6= ∅ do
12: v∗ = argminu∈U\V ′ d(u,V ′).
13: if Path(v∗,V ′) 6= ∅ then
14: V ′ = V ′ ∪ Path(v∗,V ′).
15: else
16: return failure.
17: end if
18: V ′ = V ′\P.
19: R = {tk |qk = 1−

∏
i∈V ′ (1− q

k
i ) < Sk , tk ∈ P}.

20: Ev = virtual edges in Path(v∗,V ′).
21: E = E\Ev.
22: if V\V ′ == ∅ and R 6= ∅ then
23: return failure.
24: end if
25: end while
26: Clean-up(V ′).
27: return V ′.

candidate to V ′, v∗ = argminu∈U\V ′ d(u,V ′), is chosen.
In line 13-14, candidates,Path(v∗,V ′), along the shortest path
are added into V ′. Finally, virtual vertices and virtual edges
should be deleted. There might exist some redundant candi-
dates in V ′. These redundant candidates should be deleted
to improve the performance of the team. This procedure is
shown in Algorithm 2. Since we add nodes into V ′ step
by step, it’s easy to record the leaf nodes. For every leaf
node, we can test whether it is redundant, and then delete the
redundant nodes.

B. DISCUSSIONS FOR THE TFP-ST PROBLEM
(1) Weight of virtual edges. Virtual vertex tk will generate
|C(tk )| virtual edges, 1 ≤ k ≤ p. The weight of a virtual edge
should be larger than the sum of weights of all edges in graph
G. The main reason for this is to prevent these virtual vertices
from being selected by the shortest path. As shown in Fig.3,
during the process of finding the shortest path between t3 and
{t1,A, t2}, d(t3, t1) = 2 ∗ Z , d(t3,A) = Z + 0.5, d(t3, t2) =
2∗Z+0.5.With a smaller Z , 2∗Z < Z+0.5might hold. Thus,
we have Path(t3,V ′) = Path(t3, t1) = {t3,D, t1}. Finally,
V ′ = {t1, t2, t3,A,D}. V ′ = {A,D} after all virtual vertices

Algorithm 2 Clean-Up

Input: T (V ′,E ′,w), Mi, {〈tk , Sk 〉}, {〈tk , qki 〉}, 1 ≤ i ≤ n,
1 ≤ k ≤ p.

Output: The team V ′.
1: L ←leaf nodes in T (V ′,E ′); M ← ∅.
2: while L\M not empty do
3: if node-i in L\M is redundant then
4: tem-node=node-i.neighbor.
5: remove node-i in V ′.
6: if tem-node is a leaf node then
7: L = L ∪ {tem-node}.
8: end if
9: else
10: M = M ∪ {nodei}.
11: end if
12: end while

are deleted. Unfortunately, project P fails because there is no
strong tie between A and D.

(2) Success ratio constraint. In this paper, we introduce
the success ratio constraint. A candidate provides different
success ratios for different tasks. As shown in Fig.3, during
the process of adding candidates into set V ′, after the first
step, V ′ = {t1} becomes V ′ = {t1,A, t2}, and so on,
the final team will be V ′ = {A,B}. If q1A < S1, project
P fails. To deal with this, let R denote the set of tasks
whose quality requirements have not been met. In the begin-
ning, R = {t1, t2, t3}. When V ′ = {t1,A, t2}, we need to
check whether the success ratio constraint is satisfied. Since
q1A < S1, R = {t1}, such that other candidates in C(tk )
can be chosen for task t1 until the success ratio constraint
is met.

(3) Selection of the first candidate. As shown in Fig.3,
t1 and D will be added into V ′ if t1 is chosen as the first
candidate. Then t2, A and B will be added into V ′ during the
process of finding the shortest path between t2 and set V ′.
Finally, V ′ = {A,B,D}, and C_MST (V ′) = 1. As all we
know, C_MST (V ′) = 0.5 if t2 is selected as the first can-
didate. Thus, we should choose trarest as the first candidate,
where trarest = argmintk∈P |C(t

k )|.
(4) The clean-up process. Usually, the final team might

contain redundant candidates for the same task. This is
because a few candidates in C(tk ) might be added in V ′

successively. Thus, the chosen team must go through the
clean-up process to further optimize the result if redundant
nodes exist.

(5) Time complexity. It is clear that RarestSteiner consists
of four parts. In the first phase, we add virtual nodes and
edges, the running time of this part is O(pCmax), where Cmax
is the largest cardinality of C(tk ), 1 ≤ k ≤ p, in project P,
and the worst case is O(pn). The second phase is to choose
trarest and add it into set V ′, the running time is O(p). The
third part calculates v∗, in the worst case, all candidates in
graph G are added into V ′, thus the running time is O(n3).
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The clean-up procedure costs time O(pn2). Thus, the time
complexity of our proposed algorithm for the TFP-ST prob-
lem is O(n3).

C. THE PROPOSED ALGORITHM
FOR THE TFP-WT PROBLEM
Since the TFP-WT problem is similar to the MCC-MD prob-
lem, and Arkin and Hassin [23] have proved that there is
no any polynomial approximation solution to the MCC-MD
problemwith a bounded error guarantee. Thus, there is no any
polynomial approximation solution to our TFP-WT problem
with a bounded error guarantee.

Algorithm 3 RarestFirstWT

Input: G = (V ,E,w), C(tk ), Mi, P = {t1, t2, . . . , tp}, 1 ≤
i ≤ n, 1 ≤ k ≤ p.

Output: Team V best ; best-r.
1: V best

= ∅.
2: best_r = 0.
3: R = P.
4: trarest = argmintk∈P |C(t

k )|.
5: for every seed in C(trarest ) do
6: V ′ = ∅.
7: V ′ = {seed}.
8: relation = ∞.
9: R = {tk ||V ′

⋂
C(tk )| == 0, tk ∈ P}.

10: while R 6= ∅ do
11: C(R) = ∪tk∈UC(t

k ).
12: v∗ = argmaxu∈C(R)\V ′ d(u,V ′).
13: relation = min(relation, d(v∗,V ′).
14: V ′ = V ′ ∪ {v∗}.
15: R = {tk ||V ′

⋂
C(tk )| == 0, tk ∈ P}.

16: end while
17: if relation > best_r then
18: V best

= V ′.
19: best_r = relation.
20: end if
21: end for
22: return V best ,best_r .

We propose a heuristic algorithm to solve the TFP-WT
problem. The proposed algorithm for the TFP-WT problem,
called as RarestFirstWT, is shown in Algorithm 3. We first
choose the task with the lowest cardinality, i.e., trarest =
argmintk∈P |C(t

k )|. Then we select a candidate from C(tk ) as
a seed, and add it into a temporary solution V ′, Let R denote
the set of tasks that are not covered yet by the chosen can-
didates. We add incrementally candidates into V ′ according
to the following rules. The set of tasks in R form a new set
C(R) = ∪tk∈RC(t

k ). We choose the candidate, which has
maximum distance to current team V ′, in C(R)\V ′, add the
special candidate v∗, where v∗ = argmaxu∈C(R)\V ′ d(u,V ′),
into V ′, and update the minimum collaboration cost of the
team finally. We can get a temporary team this way. For every
seed in C(trarest ), we can get such a temporary team, and

then we select the team with the biggest C_Min(V ′) as the
best team.
We compute the distance matrix of any two candidates in

graph G, and store this matrix based on hashtable, which
will reduce the running time of the proposed algorithm. The
running time of the whole loop is O(pn2). Thus, the running
time of our solution to the TFP-WT problem, RarestFirst,
is O(C(trarest ) · pn2). Finally, we have O(C(trarest ) · n2) for
the time complexity of our proposed algorithm because p is
far less than n.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
algorithms, referred to as RarestStener and RarestFirstWT in
the following figures, respectively. We implement a greedy-
based algorithm as the benchmark for comparison.

A. THE DBLP DATASET
In this paper, we use the dataset provided by [26], which
is applied usually for the team formation problem. The
social network structure is extracted from the DBLP data,
which records the papers published by different researchers
in field of computer science. Social relationship among
authors as well as the areas of expertise of authors can
be extracted from paper publication. Wang et al. [26] pro-
vide a data set which contain lots of computer conferences,
including DB = {SIGMOD,VLDB, ICDE, ICDT ,PODS},
T = {SODA,FOCS, STOC, STACS, ICALP,ESA}, DM =
{WWW ,KDD, SDM ,PKDD, ICDM ,WSDM},AI = {IJCAI ,
NIPS, ICML,COLT ,UAI ,CVPR}. We assume that the
author can be a candidate if he or she published at least
three papers in upon conferences, social connection between
two authors exists if they published at least two papers
collaboratively, and the keywords of papers are regarded as
tasks.

We calculate the collaboration cost between any two
authors i and j as the Jaccard distance. Let Pi and Pj denote
the set of publications of author i and j, respectively, then
the collaboration cost between i and j can be computed
as 1 − |Pi

⋂
Pj|

|Pi
⋃
Pj|

. Unfortunately, we find the data provided
by [26] generates a disconnected graph. Thus, we preprocess
the network structure, and only used its biggest connected
subgraph to conduct our experiments. As a result, we obtain
a social network consisting 5880 candidates, 14205 edges
and 4090 tasks. We sort tasks based on their cardinality in
descending order.

B. EXPERIMENTAL ENVIRONMENT
Each simulation are conducted in our experiments on a PC
with an Intel(R) Core(TM) i5-3470 CPU, a RAM of 8GB
and a Windows OS. The algorithms are implemented in
Python 2.7. The Networkx tool is used to handle the calcu-
lation of the graph.
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C. EXPERIMENTS FOR THE TFP-ST PROBLEM
We evaluate the proposed algorithm for the TFP-ST problem,
and compare the performance of RarestSteiner with a greedy-
based algorithm.

1) THE GREEDY-BASED ALGORITHM
We implement a greedy-based algorithm, referred to as
EnhancedGreedy in the following figures, as the benchmark
for comparison. EnhancedGreedy is a intuitive solution to the
TFP-ST problem. Let R denote the tasks whose requirements
are not yet met, andC(R) = ∪tk∈RC(t

k ) denote the set of can-
didates. At first, the candidate v0 = argmaxi∈C(R) |Mi

⋂
R| is

added into set V ′. Then this algorithm iteratively adds other
candidates to form a solution. The selected candidate is the
one who has the biggest utility, and the utility function is
defined as follows:

E(i) =

∑
tk∈P |ftask (V

′
⋃
{Path(i,V ′)}, tk )|

C_MST (V ′
⋃
{Path(i,V ′)})

−

∑
tk∈P |ftask (V

′, tk )|
C_MST (V ′

⋃
{Path(i,V ′)})

(10)

where ftask (V ′, tk ) represents the utility produced by task tk

for team V ′, defined as the following equation. The success
ratio of tk in V ′ is calculated as pk = 1−

∏
i∈V ′ (1−p

k
i ). If the

success ratio for tk is met, the income is 1, otherwise 0.

ftask (V ′, tk ) =

{
1, pk ≥ Sk

0, otherwise

At each iteration, candidate iwith biggest utility is chosen,
where i∗ = argmaxi∈C(R)\V ′ E(i), and the set of candidates
Path(i∗,V ′) is added to the current solution V ′. Then we
applied the clean-up procedure proposed in Algorithm 2 to
delete redundant candidates.

2) PERFORMANCE EVALUATION
Recall that we define the success ratio as ratio of the skill level
of chosen candidate to the quality requirement of a corre-
sponding task. A task can be successfully accomplished only
when its quality requirement is met. Accordingly, a project
can be successfully accomplished only when all tasks which
belong to this project are executed successfully. In this set of
simulations, both project P and its quality requirement are
generated randomly, let P(tk , Sk ), 1 ≤ k ≤ p, denote a
project, where p represents the number of tasks in project P,
and Sk is the requirement on the success ratio for task
tk in project P, e.g., P(20, 0.95) illustrates that the project
has 20 tasks, and the quality requirement for every task
is 95%. To simplify performance evaluation, we assume that
every task has the same requirement on quality. The success
ratio of task tk provided by member i is chosen randomly
from [0.5, 1].
We compare our proposed algorithm for the TFP-ST

problem, i.e., RarestSteiner, with EnhancedGreedy in
terms of collaboration cost, team size and running time.

Each simulation runs for 500 times on aforementioned exper-
imental environment.

FIGURE 4. Collaboration cost comparison. (a) success ratio is 80%.
(b) success ratio is 85%. (c) success ratio is 90%. (d) success ratio is 95%.

Fig.4 illustrates the team collaboration cost, i.e., min
C_MST , under different quality requirements and number
of tasks. Compared with the benchmark, RarestSteiner can
achieve lower communication cost. The collaboration cost
of a team, generated by both RarestSteiner and Enhanced-
Greedy, increases with number of tasks as well as the qual-
ity requirement. As expected, bigger S and more tasks will
result in a bigger team. Reasonably, the more team members,
the higher collaboration cost is.

FIGURE 5. Team size comparison. (a) success ratio is 80%. (b) success
ratio is 85%. (c) success ratio is 90%. (d) success ratio is 95%.

Actually, the cardinality of a team is equivalent to the size
of this team. As shown in Fig.5, RarestSteiner can produce
a smaller size for the final team, and EnhancedGreedy will
result in a bigger cardinality of the chosen team. This is
because that RarestSteiner can select candidates from V more
efficiently. We can also know that the team size grows along
with the growth of p and S. When the number of tasks and
their requirements on success ratio go up, more candidates
need to be recruited. Therefore, the cardinality of the team,
i.e., the size of the team, is getting bigger and bigger.
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FIGURE 6. Running time comparison. (a) success ratio is 80%. (b) success
ratio is 85%. (c) success ratio is 90%. (d) success ratio is 95%.

Fig.6 reveals the difference between RarestSteiner and
EnhancedGreedy in terms of running time under different
success ratio and number of tasks. The running time of
RarestSteiner increases along with the requirement on suc-
cess ratio and number of tasks. Though RarestSteiner and
EnhancedGreedy have the similar increasing trend, the run-
ning time of RarestSteiner is much shorter than that of the
benchmark. The running time should be longer because more
task and higher requirements result in a bigger number of
iterations.

D. EXPERIMENTS FOR THE TFP-WT PROBLEM
We evaluate the proposed algorithm for the TFP-ST prob-
lem, and compare the performance of RarestFirstWT with a
greedy-based algorithm.

1) THE BENCHMARK ALGORITHM
We implement a greedy-based algorithm, referred to as
GreedyWT in the following figures, as the benchmark for
comparison. GreedyWT is a intuitive solution to the TFP-WT
problem. Let R denote the set of tasks whose requirements are
not yet satisfied, and C(R) = ∪tk∈RC(t

k ) denote the set of
candidates. Firstly, a candidate in C(R) is randomly chosen
and added into V ′. Then GreedyWT iteratively adds other
node to V ′. The chosen candidate is the one who bring the
largest utility. The utility function is defined as follows:

E(i) = C −
∑
tk∈P

|ftask (V ′, tk )| −Min(V ′
⋃
{i}) ·

∑
tk∈P

|ftask (V ′
⋃
{Path(i,V ′)}, tk )| (11)

where ftask (V ′, tk ) presents the utility related to task tk for
team V ′, defined as the following Equation. If the task tk

can be served by team V ′ successfully, the utility is 1, and
0 otherwise.

ftask (V ′, tk ) =

{
1, |V ′ ∩ C(tk )| > 0
0, otherwise.

At every step, candidate i∗ with largest utility is found,
where i∗ = argmaxi∈C(R)\V ′ E(i), and node i∗ is added to
the temporary solution V ′.

2) PERFORMANCE EVALUATION
In this set of simulations, both project P and its quality
requirement are generated randomly, letP(p) denote a project,
where p represents the number of tasks in project P, e.g.,
P(20) indicates that the project has 20 tasks. To simplify
performance evaluation, we assume that every task has the
same requirement on success ratio.

We compare our proposed algorithm for the TFP-WT prob-
lem, i.e., RarestFirstWT, with GreedyWT in terms of collabo-
ration cost, team size and running time. Each simulation runs
for 500 times on aforementioned experimental environment.

FIGURE 7. Communication cost comparison.

Fig.7 reveals the general trend of collaboration cost under
different number of tasks. Compared with the benchmark,
GreedyWT, RarestFirstWT can obtain higher communication
cost. The communication cost of the team, produced by both
RarestFirstWT and GreedyWT, raise along with the number
of tasks. The reason for this is that amajority of social connec-
tions among team members are weak ties, or no connection
exists. Fortunately, it happened to be our original intention to
find a team with weak ties, such that objective of the result
can be guaranteed for a task, e.g., proposal review.

FIGURE 8. Team size comparison.

Fig.8 shows the difference of team size, i.e. the cardinality
of the team, under different number of tasks. Team size
generated by RarestFirstWT is a little bit larger than that of
EnhancedGreedy. We can know that the team size goes up
along with the growth of p, this is because more candidates
are needed to serve more tasks.
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FIGURE 9. Running time comparison.

Fig.9 illustrates running time comparison of two algo-
rithms under different number of tasks. After pre-computing
the distance matrix between any two candidates in graph G
using hashtable, the running time is quite small. Obviously,
the running time grows along with the growth of p. As shown
in Fig. 9, the running time of RarestFirstWT is longer than
GreedyWT. Since we need to find several candidates accord-
ing to different seed nodes and choose the one with largest
C_Min, this may induce longer running time. Though the
running time of RarestFirstWT is much longer than that
of benchmark, combining with the results of Fig. 7 and
Fig.8, it is clear that there is a tradeoff between objective
of results and performance improvement. In comparison,
RarestFirstWT leverages every candidate for a fair result and
amultidimensional view, and take a better advantage of social
connection to choose the best candidate, resulting in a team
which is composed of different cliques.

VII. CONCLUSIONS
In this paper, we investigated the social connection aware
team formation problem for participatory tasks. Due to
the nature of tasks, we distinguished the social connection
between strong ties and weak ties, and then formulated the
TFP-ST problem and the TFP-WT problem, respectively.
Since both the TFP-ST problem and the TFP-WT problem are
NP-hard, we propose two corresponding heuristic algorithms
to solve these two problems. Through extensive simulation
results, we verified that our proposed algorithms can achieve
desired performance.
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