
SPECIAL SECTION ON MOBILE EDGE COMPUTING

Received February 5, 2018, accepted March 19, 2018, date of publication March 26, 2018, date of current version April 23, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2819690

Joint Computation Offloading and Resource
Allocation Optimization in Heterogeneous
Networks With Mobile Edge Computing
JING ZHANG , WEIWEI XIA , FENG YAN, (Member, IEEE), AND LIANFENG SHEN
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

Corresponding author: Weiwei Xia (wwxia@seu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61741102, Grant 61471164,
and Grant 61601122.

ABSTRACT In this paper, we propose a distributed joint computation offloading and resource allocation
optimization (JCORAO) scheme in heterogeneous networks with mobile edge computing. An optimization
problem is formulated to provide the optimal computation offloading strategy policy, uplink subchannel
allocation, uplink transmission power allocation, and computation resource scheduling. The optimization
problem is decomposed into two sub-problems due to theNP-hard property. In order to analyze the offloading
strategy, a sub-algorithm named distributed potential game is built. The existence of Nash equilibrium is
proved. To jointly allocate uplink subchannel, uplink transmission power, and computation resource for the
offloading mobile terminals, a sub-algorithm named cloud and wireless resource allocation algorithm is
designed. The solutions for subchannel allocation consist of uniform zero frequency reuse method without
interference and fractional frequency reusemethod based onHungarian and graph coloring with interference.
A distributed JCORAO scheme is proposed to solve the optimization problem by the mutual iteration of the
two sub-algorithms. Simulation results show that the distributed JCORAO scheme can effectively decrease
the energy consumption and task completion time with lower complexity.

INDEX TERMS Mobile edge computing, heterogeneous networks, offloading strategy, resource allocation,
game theory.

I. INTRODUCTION
As the popularity of smart phones, laptops and tablets is
increasing dramatically, more novel sophisticated applica-
tions are emerging, such as face recognition, interactive
gaming and augmented reality [1]. However, running com-
putationally demanding applications at the mobile termi-
nals (MTs) is constrained by the limited battery power and
scarce computing capabilities [2]. Suitable solution impeding
the performance of service qualities of the MTs is to offload
the complicated applications as the tasks to a cloud server [3].
Computation offloading has given rise to an exponential
growth of demand for not only high data rate in wireless
networks but also high computational capability in cloud
server.

One recently proposed solution for tackling the data rate
issue is the use of heterogeneous networks (HetNets). Het-
Nets often indicate the use of multiple types of access nodes
in a wireless network. Multiple small cells and the traditional

macro cells constitute HetNets [4], which meet MTs’ high-
rate requirements. Small cells with small coverage area and
low transmission power usually include microcells, picocells,
femtocells and relays [5]. The previous signal processing and
transmission techniques applied in the conventional cellular
networks may not be efficient to meet MTs’ requirements
of high throughput. The deployment of low-cost small cells
is a very significant way to improve spectrum and energy
efficiency.

In addition, to solve the computational capability issue,
mobile edge computing (MEC) system has been a typi-
cal paradigm that combines wireless network service and
cloud computing to enable MTs to enjoy the abundant wire-
less resources and vast computation power ubiquitously [6].
MEC is an IT service environment and has cloud-computing
capability located at the edge of the mobile networks, within
the radio access networks and in close proximity to MTs [7].
MEC server is a data center typically collocated with a base
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station in a network cell, and accessible by nearby MTs
via one-hop wireless connection [8]. MEC allows MTs to
perform computation offloading by uploading their compu-
tational tasks to the MEC server via HetNets [9]. In terms
of network topology, the computation resources of MEC are
supposed to be in proximity of the MTs so as to decrease
transmission delay. Besides, MTs can save energy consump-
tion by trading off heavy computational load for lightweight
communication [10].

In the previous researches, many works investigated the
computation offloading and resource allocation strategies in
the scenario of MEC [11]–[19]. The authors of [11]–[13]
studied the computation offloading strategy. The works
in [14]–[15] mainly laid emphasis on joint radio and cloud
resource allocation algorithms. Some researches [16]–[19]
focused on joint computation offloading and resource
allocation. There were also many works studying the
resource allocation algorithm in the HetNets [20]–[24]. The
HetNets are confronted with many challenges due to the
limited radio communications capabilities, such as interfer-
ence management and wireless resource allocation. However,
only the authors of [25]–[28] considered the heterogene-
ity of networks in the context of MEC. Nevertheless,
Sardellitti et al. [25] did not consider the offloading strategy.
The wireless resource allocation was not involved in [26].
The work in [27] did not consider the impact factor of
monetary cost that MTs paid for wireless and computation
resources. The authors of [28] only concentrated on sin-
gle MT in the coverage of small base station rather than
multi-MTs.

Different from the previous works, this paper jointly opti-
mizes the offloading strategy, subchannel allocation, uplink
power allocation and CPU-cycle assignment in the HetNet
with MEC. When solving the resource allocation problem,
monetary cost is considered including wireless and computa-
tion resource. In addition, there is competition among numer-
ous MTs over both constrained communication resources
in HetNets and limited computation resources in the MEC
server. This paper proposes a distributed joint computation
offloading and resource allocation optimization (JCORAO)
scheme in HetNets with MEC. The main contributions of this
paper are listed as follows.

1) An optimization problem is formulated to provide the
optimal computation offloading strategy policy, uplink
subchannel allocation, uplink transmission power allo-
cation and computation resource scheduling. The
objective of the optimization problem is to mini-
mize all MTs’ cost while satisfying offloading latency
constraints.

2) The optimization problem is decomposed into two sub-
problems due to the NP-hard property. On one hand,
a sub-algorithm named distributed potential game is
built to model and analyse the offloading strategy. The
existence of Nash equilibrium (NE) is proved. On the
other hand, to jointly allocate uplink subchannel, uplink
transmission power and computation resource for the

offloading MTs, a sub-algorithm named cloud and
wireless resource allocation algorithm (CWRAA) is
designed. A distributed JCORAO scheme is proposed
to solve the optimization problem by the mutual iter-
ation of the two sub-algorithms. In the CWRAA,
interference management is taken into consideration
for uplink subchannel allocation. CWRAA focuses
on two situations. One is the subchannel allocation
using uniform zero frequency reuse (UZFR) method
where no interference exists among MTs. Another is
the subchannel allocation using fractional frequency
reuse based on Hungarian method and graph coloring
(FFR-HGC) method that pays attention to interference
migration among MTs.

3) Simulation results show that the distributed JCORAO
scheme outperforms other algorithms by making trade-
off between the total cost and algorithm complex-
ity. In addition, the distributed JCORAO scheme can
effectively decrease the energy consumption and task
completion time. Furthermore, FFR-HCG method is
an effective way to mitigate the interference among
neighboring MTs.

The rest of the paper is organized as follows. Section II
introduces some related work. In Section III, system model
and optimization problem are presented. Section IV intro-
duces the distributed JCORAO scheme. In Section V, the sim-
ulation results are shown. Finally, conclusion is given
in Section VI.

II. RELATED WORK
A. OFFLOADING STRATEGY IN MEC ENVIRONMENT
Computation offloading and resource allocation for MEC
systems have attracted significant attention in recent years.
Some previous researches investigated the computation
offloading mechanism design. Chen et al. [11] formulated
the computation offloading strategy making problem among
multiple MTs for MEC as a distributed game. Tang et al. [12]
established a socially aware computation offloading game
considering the social tie structure among mobile users.
Zhang et al. [13] utilized auction theory to model the
matching relationship between MEC server and MTs so
as to offload tasks to the optimal MEC server. Works
on resource allocation have also acquired some achieve-
ments. The study of [14] jointly allocated communica-
tion and computation resources to minimize the total MTs
energy consumption under latency constraints by succes-
sive convex approximation. Molina et al. [15] concentrated
on how to tackle the allocation of the communication and
computational resources among the MTs to achieve low
latency.

B. JOINT OFFLOADING AND RESOURCE ALLOCATION
IN MEC ENVIRONMENT
There are many excellent works on offloading strategy and
resource allocation respectively. There are also some liter-
atures jointly considering offloading strategy and resource
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allocation. Mao et al. [16] jointly decided the offloading
strategy, the CPU-cycle frequencies for mobile execution,
and the transmit power for computation offloading. How-
ever, energy consumption was not involved in [16] since the
energy used by MTs was assumed to be renewable resources.
Yu et al. [17] studied offloading strategy, subcarrier alloca-
tion for task offloading and CPU time allocation for task
execution in the MEC server. The work in [18] jointly
optimized the offloading selection, radio resource alloca-
tion, and computational resource allocation coordinately to
make the energy consumption minimum. In [19], a power
consumption minimization problem with task buffer sta-
bility constraints was formulated and an online computa-
tion offloading algorithm was studied based on Lyapunov
optimization.

C. RESOURCE ALLOCATION IN HETNETS
Many works concentrate on the resource allocation in Het-
Nets. Coskun and Ayanoglu [20] studied the tradeoff between
energy efficiency and spectral efficiency in multicell Het-
Nets. User association and power allocation in mmWave-
based ultra dense networks were modeled as a mixed-integer
programming problem in [21]. The work in [22] used the
Lyapunov optimization method to explore the dynamic sub-
channel and power allocation in spectrum sharing hetero-
geneous small cell networks. A heuristic, joint QoE-aware
resource allocation and dynamic pricing algorithm was pro-
posed to maximize the mobile network operators profit
while providing high users QoE in [23]. The work in [24]
investigated interference management and power allocation
problem in two-tier HetNets with massive MIMO by appro-
priate approximation.

D. OFFLOADING STRATEGY AND RESOURCE
ALLOCATION IN HETNETS WITH MEC
All researches above did not combine the HetNets and MEC.
However, there have been some research works considering
the scenario of HetNets with MEC. Sardellitti et al. [25]
jointly allocated the transmit precoding matrices of the MTs
and the CPU cycles of MEC server to minimize the over-
all MTs energy consumption, while meeting latency con-
straints based on a novel successive convex approximation
technique, but this paper did not consider the offloading
strategy. The work in [26] jointly optimized the compu-
tation offloading and content caching strategy considering
the total revenue of the network. However, the wireless
resource allocation was not involved in it. In [27],
Zhang et al. jointly optimized offloading and radio resource
allocation to minimize energy consumption under the latency
constraints, but they did not consider the monetary cost
that MTs paid for wireless and computation resources. The
study in [28] took the computation offloading, physical
resource block and MEC computation resource allocation
into consideration. However, it only concentrated on sin-
gle MT in the coverage of small base station rather than
multi-MTs.

FIGURE 1. An example of heterogeneous networks with mobile edge
computing.

III. SYSTEM MODEL AND JCORAO PROBLEM
FORMULATION
In this section, system model including network model,
communication model and computation model are described
firstly, then the optimization problem is formulated.

A. NETWORK MODEL
In HetNets, each MT has complicated tasks to be dealt
with and needs to decide local computing or cloud comput-
ing. Local computing will occupy MTs’ local computation
resources and consume large quantities energy. In addition,
the task completion delay may be very high due to the limited
computation capabilities. To cope with these problems, edge
cloud computing allows MTs to offload their computational
tasks to the MEC server via HetNets. Then each MT is
associated with a clone in MEC server, which executes the
compute-intensive tasks on behalf of that MT. Computation
offloading may save energy consumption and time delay.
As shown in Fig. 1, an example of MEC system includes
MEC server and HetNets. The MEC server can be a small
data center deployed on the edge of HetNets by telecom
operators. It connects to the macro base station (MBS) and
provides computation resources (e.g. CPU cycles per second)
for MTs by the HetNets. It can serve for surrounding MTs to
extend their computation capability and can deal with tasks
parallelly. In a particular cell of a two-tier HetNets, J small
base stations (SBSs) and one MBS provide communication
resources (e.g. subchannels) to K MTs. The set of MBS
and SBSs is denoted by J = {0, 1, 2, . . . , J} in which
0 represents the MBS and {1, 2, . . . , J} denote the SBSs in
a cell. Let the set of MTs served by BS j denote as Vj (j ∈ J )
and the set of all MTs as K = {1, 2, . . . ,K }. The total
number of MTs is K . Furthermore, the set of offloading MTs
is denoted by Kc, and the set of MTs for local computing is
denoted by Kl . Besides, |Kc

| = K c
=
∑K

k=1 ak and |Kl
| =

K l
= K − K c. There are N available orthogonal OFDM

subchannels that can be assigned for uplink communication
in a cell of the HetNets. Let N = {1, 2, . . . ,N } denote the
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set of subchannels. MBS and SBSs can reuse subchannels
in set N . The bandwidth of each subchannel is w0. The
MTs subscribed to one MBS (SBS) are allocated orthogonal
OFDM subchannel while theMTs subscribed to different BSs
can share the same subchannels. Therefore, there exists intra-
cell interference [27] among MTs. Moreover, for simplicity,
we only consider MTs and BSs with single-antenna in this
paper.

It is assumed that each MT has computationally inten-
sive and delay sensitive tasks to be completed at present
moment. Typical tasks offloading from MTs usually include
two aspects: CPU cycles to be used to execute the tasks and
the amount of data to be transmitted to MEC server. Each
MT could offload the tasks to the MEC server through the
BS with which it is associated, or execute the computation
tasks locally. For MT k (k ∈ K), the tasks are character-
ized by sk the number of instructions to be executed and
by bk the size of input data necessary to be transferred.
The tasks of MT k are supposed to be completed within T̃k
which is the task completion time threshold that does not
affect MTs’ experience. The offloading strategy set of MTs
is defined as A = {a1, a2, . . . , ak , . . . , aK }, k ∈ K}. ak = 1
implies that MT k offloads its tasks to MEC server. ak = 0
indicates that MT k executes its tasks locally. For MEC,
the server can deal with tasks from all MTs due to multi-
tasking capability. MEC server is capable of handling fS
instructions per unit time and the tasks of MT k are allocated
the number of fk instructions per unit time under the con-
straint of

∑
k fk ≤ fS . Similar to previous work in MEC [23],

a quasi-static scenario is considered where the set of MTs
K remains unchanged during a computation offloading
period.

The notations mainly used in this paper are summarized
in Table 1.

B. COMMUNICATION MODEL
Each MT needs to obtain full channel state information (CSI)
of all uplink subchannels. The signal-to-interference-plus-
noise ratio (SINR) for MT k in BS j using subchannel n can
be expressed as

SINR(j)
kn =

pknh
(j)
kn

σ 2
kn + I

′′
kn + I

′(j)
kn

(1)

where σ 2
kn is defined as the power of the additive white Gaus-

sian noise at subchannel n (n ∈ N ), pkn is the transmission
power of MT k at subchannel n, hjkn is the channel gain
between MT k and BS j at subchannel n. The interference
coming from MBSs and SBSs in adjacent cells is denoted
by I ′′kn. For sake of simplicity, we regard I

′′

kn as constants. The
intra-cell interference from other BSs to MT k of BS j in
current cell is denoted by I ′(j)kn. In particular, we define I

′(j)
kn =∑

j′ 6=j
∑

k ′∈Vj′
pk ′nh

(k ′)
kn where h(k

′)
kn represents the channel gain

between MT k in BS j and MT k ′ in BS j′ on subchannel n.
In heterogeneous cellular cell, we introduce a subchannel
association table C, which is an K c

× N matrix with binary

TABLE 1. Parameter notations.

variable ckn. The binary variable means whether subchan-
nel n is assigned to the uplink communication of MT k .
ckn = 1 represents that subchannel n is assigned to the uplink
of MT k and ckn = 0 otherwise. The throughput of the
uplink communication for MT k in BS j can be given by
R(j)kn = W0 log(1 + ckn · SINR

(j)
kn). In the subsequent context,

the superscript j is omitted in SINR(j)
kn, h

(j)
kn andR

(j)
kn whenMT k

is attributed to BS j.
The uplink transmission rate rk of MT k is given as

rk =
∑
n∈N

Rkn (2)

For subchannel allocation, we utilize two categories of
solutions according to the number of MTs and subchannels:

1) If N ≥ K c, UZFR method is applied. There is no
interference among MTs in this approach since sufficient
orthogonal subchannels are available. Each MT is assigned
with an equal number of orthogonal subchannels expressed
as nk =

⌊ N
K c

⌋
.

2) IfN < K c, FFR-HGCmethod is used. In the scenario of
frequency reuse for uplink channels, the interference among
MTs is inevitable. For mitigating the interference, we take
advantage of Hungarian method initially put forward in [29]
and graph coloring originally proposed in [30] synthetically
to complete the fractional frequency reuse (FFR). For reduc-
ing the complexity, we assume one MT can only use one
subchannel in FFR-HGC. The detailed description is shown
in Section IV.
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C. COMPUTATION MODEL
The offloading latency T ck consists of four parts [31],
the uplink communication delay 1ul , backhaul link
delay 1bh, downlink delay 1dl and cloud task processing
delay 1exe. The backhaul link rate between BS and MEC
server is much higher than wireless link so that we can neglect
1bh. Compared with the size of input bits bk , the size of
output bits from MEC server is less, so the downlink delay
1dl is regarded as a constant ε. We use Tk = T̃k − ε to
represent the delay that comprises the uplink communication
delay 1ul and cloud task processing delay 1exe when MT
decides to offload its tasks.

1) EDGE CLOUD COMPUTING
The energy consumption ofMT k including uplink and down-
link energy consumption is given by

Eck = pk1ul
k + p

r
k1

dl
k (3)

where pk =
∑

n∈N cknpkn. prk denotes the received power
of MT. If one MT is assigned multi-subchannel, the transmit
power pk is averagely distributed with pkn =

pk∑
n∈N ckn

.
Monetary cost of MTs can be expressed as

M c
k = βrk + qfk (4)

The first item is the communication cost and the second item
is the computation cost. For BS, the unit price of transmission
rate is β. For MEC server, the unit price of computation
resources is q.

The offloading latency of MT k by MEC server computing
is defined as

T ck = 1
ul
+1dl

+1bh
+1exe (5)

1ul is given as 1ul
= bk/rk and 1exe is defined as 1exe

=

sk/fk . According to (3) and (4), the overhead of the edge
cloud computing approach in terms of energy consumption
and monetary cost can be computed as

zck = γ
E
k E

c
k + γ

M
k M c

k (6)

where γ Ek ∈ R+ means the impact factor of energy con-
sumption on the overhead of MT k and keeps the energy
consumption as the same order of magnitude. γMk ∈ R+ is
defined as the impact factor of monetary cost. It should be
noticed that fk = 0 if the tasks are executed locally.

2) LOCAL COMPUTING
Let f lk denote the computation capacity of MT k . Different
MTs have different computation capacity. According to [32],
the energy consumption is given by

E lk = κsk (f
l
k )

2 (7)

where κ is the effective switched capacitance relying on the
chip architecture [24].

The local execution latency of MT k by local computing is
denoted as

T lk =
sk
f lk

(8)

According to (7) and (8), the overhead of the local com-
puting approach in terms of energy consumption and local
execution time cost can be computed as

zlk = γ
E
k E

l
k + γ

T
k (T

l
k − T̃k ) (9)

where T lk − T̃k denotes the local execution time cost and
γ Tk represents the impact factor of the local execution time
cost. If T lk > T̃k , the second term makes the overhead of the
local computing increase, vice versa.

Task computation time is equal to T lk if MT k decide
local computing. Otherwise, task computation time is equal
to offloading latency T ck .

D. JCORAO PROBLEM FORMULATION
The MEC server makes the offloading strategy for MT k on
comparison of its local and offloading computation overhead,
i.e., comparison of {

ak = 1, zlk > zck
ak = 0, zlk ≤ z

c
k

(10)

The cost for MT k can be computed as

zk = (1− ak )zlk + akz
c
k (11)

The aim of JCORAO is to provide the optimal com-
putation offloading strategy policy A∗, uplink subchannel
allocation C∗, uplink transmission power allocation P∗ and
computation resource scheduling F∗ for all MTs such that the
total cost is minimized. Therefore, the optimization problem
can be formulated as

min
A,C,P,F

Z (A, C,P,F) =
K∑
i=1

(1− ak )zlk + akz
c
k

s.t. C1 : T ck ≤ T̃k , ∀k

C2 :
∑
k

fk ≤ fS

C3 : fk ≥ 0, ∀i

C4 : 0 ≤ pk ≤ pkT

C5 : ak ∈ {0, 1}, ∀k ∈ K
C6 : ckn ∈ {0, 1}, ∀n ∈ N , k ∈ K
C7 :

∑
k

ckn ∈ {0, 1},∀k ∈ Vj (12)

whereA = (a1, a2, . . . , aK ), P = {pk |0 ≤ pk ≤ pkT , k ∈ K}
and F = {fk |0 ≤ fk ,

∑
k fk ≤ fS , k ∈ K}. C1 is the offloading

latency constraint that does not affect MTs’ experience. The
maximum processing capability constraint of MEC server is
indicated by Constraint C2. Constraints C3 means the non-
negativity of computation resources. Constraint C4 manifests
the change range of uplink transmission power. Constraint C7
ensures that one subchannel in the same BS can be used by
only one MT or no use.

The key challenge in (12) is that the integer constraint from
the above optimization objective. ak ∈ {0, 1} and ckn ∈ {0, 1}
make (12) become a mixed integer programming problem.
Problem (12) is non-convex and NP-hard, thus it is extremely
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urgent to design an efficient and simplified mechanism. Next,
the distributed JCORAO scheme is proposed to allow the
MTs to determine the offloading strategy A, the subchan-
nel selection C, power control P and computation resource
requirements F by themselves.

IV. THE DISTRIBUTED JCORAO SCHEME
In this section, the distributed JCORAO scheme is proposed
to solve the optimization problem. The scheme consists of
two sub-algorithms. One is the distributed potential game.
Another is the CWRAA. Driven by the finite improvement
property (FIP) [11] and the existence of NE of potential game,
offloading strategy A is formulated as a distributed potential
game. When tasks of MTs are offloaded to the MEC server,
the CWRAA is designed to acquire the subchannel selec-
tion C, power control P and computation resource require-
mentsF for theseMTs. A distributed JCORAO scheme solves
the optimization problem by the mutual iteration of the two
sub-algorithms.

A. GAME FORMULATION AND CWRAA
a−k = {a1, . . . , ak−1, ak+1, . . . , aK } is denote as the
computation offloading strategy profile by all other MTs
except MT k . Given strategy profile a−k , MT k would like
to select a proper decision ak , by using either the local com-
puting (ak = 0) or the edge cloud computing (ak = 1) to
minimize its own computation overhead in the competitive
environment. Mathematically, the distributed computation
offloading strategy making problem is formulated as:

min
ak∈{0,1}

uk (ak , a−k ) = (1− ak )zlk + akz
c
k ,∀k ∈ K (13)

According to (6) and (9), we can obtain the overhead
function of MTs as

uk (ak , a−k ) =
{
zck , ak = 1
zlk , ak = 0

(14)

We then formulate the distributed computation offload-
ing strategy making problem as a distributed potential game
G = {K, (ak )k∈K, (uk )k∈K} which is described as follows:

Players. Each MT is one player and there are K partici-
pants selecting local computing or edge cloud computing.

Strategies. The offloading strategy ak ∈ {0, 1} is the
strategy for MT k . A is the offloading strategy profile for
all MTs.

Cost function. The overhead function uk (ak , a−k ) in (14)
is denoted as the cost function for MT k . The cost function
for offloading MT k is zc. If MT chooses local computing,
the cost function will be zl .

The solution for the game model is NE, the definition is
denoted as:
Definition 1: A strategy profile A∗ = (a∗1, a

∗

2, . . . , a
∗
K ) is

a NE of the distributed potential game model. At the equilib-
rium A∗, no player can further reduce its cost by unilaterally
altering its strategy, i.e.,

uk (a∗k , a
∗
−k ) ≤ uk (ak , a

∗
−k ),∀ak ∈ {0, 1}, k ∈ K

The NE has significant self-stability property such that the
MTs at the equilibrium can derive a mutually satisfactory
solution and noMT has the incentive to deviate. This property
is very important to the non-cooperative computation offload-
ing problem, since the MTs are selfish to act in their own
interests.

From the objective function (12), we can see that the
offloading strategiesA are associated with C,P,F. The solv-
ing process of these variables requires mutual iteration.

In the potential game, initially, offloading strategy pro-
fileA is set asA0 of which the elements are all 1 representing
all MTs choose offloading tasks to MEC server. Given the
strategies A of all MTs, the CWRAA is proposed to allocate
the cloud and wireless resources for the MTs that prepare to
offload tasks to MEC server. Given the resource allocation,
the offloading strategy A is updated by potential game until
achieving NE. The purpose of the CWRAA is to minimize
the total cost of all offloading MTs. According to (3), (4), (5)
and (6), the objective function of the CWRAA is defined as:

min
C,P,F

Z c(C,P,F)

=

K∑
k=1

akzck

=

K∑
k=1

ak
(
γ Ek

bk
∑N

n=1 cknpkn∑N
n=1 cknw0log2(1+ αknpkn)

+γMk (β
N∑
n=1

cknw0log2(1+ αknpkn)+ qfk )
)

(15)

subject to constrains C1-C7 except C5. The first term
means energy consumption while the second term represents
monetary cost. αkn = SINRkn/pkn represents the channel
parameter.

For subchannel allocation C, two categories of solutions
are utilized according to the number of offloading MTs and
subchannels: 1) If N ≥ K c, UZFR method is applied with-
out considering interference among MTs. 2) If N < K c,
FFR-HGC method is used by considering interference
among MTs.

Before introducing the CWRAA without interference
and with interference, the color graph is described.
As Fig. 2 shows, one color represents one subchannel and
one vertex refers to a MT. The vertexes subscribed to the
same BS are supposed to be assigned different color. Thus,
the maximum capability of one BS for MTs is N . For
example, there is one MBS, two SBSs and six subchannels
in Fig. 2. Fig. 2 (a) describes the color graph with UZRF
and there are six offloading MTs in total. The number of
offloading MTs is equal to the number of subchannels and
oneMT is allocated one orthogonal subchannel. Thus there is
no interference among MTs. The case of FFR-HGC is shown
as Fig. 2 (b). The number of offloading MTs, 4+4+5 = 13,
is more than the number of subchannels so that subchannels
must be reused and there exists interference among MTs.
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FIGURE 2. Color graph.

The edge between two MTs denotes the interference inten-
sity in Fig. 2 (b). With the color graph described above,
the subchannel assignment problem is formulated as a graph
coloring problem.

B. CWRAA WITHOUT INTERFERENCE
Due to the identical channel gain among N subcahnnels,
the uplink transmission rate rk of MT k for UZRF method
can be transformed as according to (2):

rk = w0nk log2(1+ αknpkn) (16)

where nk = b NK c c denotes the number of subchannels ofMT k
assigned by BS and pkn represents transmission power of one
subchannel scheduled byMT. The total transmission power of
MT k is defined as pk = nkpkn. bxc represents that fractions
are rounded down. αkn = hkn/σ 2

kn is the channel parameter
for MT k on subchannel n. It should be noticed that pk = 0 if
the tasks are executed locally. According to (16), (15) can be
transformed as:

min
P,F

Z c(P,F) =
K∑
i=1

ak
(
γ Ek

bkpkn
w0log2(1+ αknpkn)

+γMk
(
βw0nk log2(1+ αknpkn)+ qfk

))
(17)

The partial derivative of (17) is shown as below:

∂Z c

∂pkn
=

bkγ Ek
w0nk log2(1+ αknpkn)

(
1−

1

log 2
2(1+ αkn)

·
αknpkn

(1+ αknpkn) ln 2

)
+ γMk βw0nk

αkn

1+ αknpkn ln 2
(18)

where αknpkn is denoted as SINR and the value is larger
than 1, thus ∂Z c

∂pkn
> 0 and it implies that the function is an

increasing function with respect to pkn. To minimize the cost
function Z c, it is more beneficial when the value of pkn and fk
is smaller. However, the offloading latency T ck increases with
pkn and fk decreasing and offloading latency is less than T̃k .
Therefore, according to C1, the relation between pkn and fk

can be described as:
bk

w0nk log2(1+ αknpkn)
+
sk
fk
= Tk (19)

From (19), we have 1+αknpkn = 2ξk/τk and pkn = (2ξk/τk−
1)/αkn, where ξk = bk/(w0nk ) and τk = Tk − sk/fk . Variable
τk denotes the uplink transmission time from MT k to BSs.
To minimize the cost function, the problem in (17) can be
simplified as:

min
τ
y(τ )=

∑
k

γ Ek τknk
2ξk/τk − 1

αk
+γMk (β

bk
τk
+ q

sk
Tk − τk

)

(20)

subject to ∀k ∈ K

C8 :
bk

w0nk log2(1+ αkp
T
k /nk )

≤ τk ≤ Tk

C9 :
∑
k

sk
Tk − τk

≤ fS

C8 denotes the changing range of τk . The minimum value
of τk is the ratio of bk and maximum uplink transmission

rate rmk , r
m
k = w0nk log2(1+ αk

pTk
nk
). C9 is the transformation

of C2.

∂2y

∂τ 2k
=
γ Ek nk (ak ln 2)

2
· 2ξk/τk

αkτ
3
k

+2γMk β
bk
τ 3k

+2γMk q
sk

(Tk − τk )3

(21)

Derived from (21),
∂2 y

∂τ 2k
> 0. The convex of the function

is proved. The Lagrange function can be attained based on
KKT (Karush Kuhn Tucker) conditions as below (22).

L(τ ,µ, ν, θ)

=

∑
k

γ Ek τknk
2ξk/τk − 1

αk
+ γMk (q

sk
Tk − τk

)

+γMk β
bk
τk
+

∑
k

µk

( bk
w0nk log2(1+ αkp

T
k /nk )

− τk

)
+

∑
k

νk (τk − Tk )+ θ (
∑
k

sk
Tk − τk

− fS ) (22)

where the variables µk , νk , θ are all nonnegative coefficients
representing the Lagrange multipliers. The KKT conditions
are as follows, for ∀k .

∂L
∂τk
= γ Ek nk

2ξk/τk − 1
αk

(1−
ξk ln 2
τk

)− γ Ek nkξk ln 2
1
αkτk

+ (γMk q+ θ )
sk

(Tk − τk )2
− γMk β

bk
τ 2k
− µk + νk = 0

(23)

µk

( bk
w0nk log2(1+ αkp

T
k /nk )

− τk

)
= 0 (24)

νk (τk − Tk ) = 0 (25)

θ (
∑
k

sk
Tk − τk

− fS ) = 0 (26)
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The optimal τ ∗k can be obtained from the KKT condition.
Then p∗kn and f

∗
k can be derived by (27) and (28).

p∗k = nk
2ξk/τ

∗
k − 1
αk

(27)

f ∗k =
sk

Tk − τ ∗k
(28)

Lagrange multipliers update as below.

µk (t + 1) = [µk (t)+ δ(t)(tmink − τk )]+ (29)

νk (t + 1) = [νk (t)+ δ(t)(τk − tmaxk )]+ (30)

θ (t + 1) = [θ (t)+ δ(t)(
∑
k

sk
Tk − τk

− fS )]+ (31)

where variable t represents the tth iteration, δ(t) implies the
step of the iteration and [z]+ = max{z, 0}. tmink represents
the left side of C8 and tmaxk denotes the right side of C8.
The optimal resource allocation can be iteratively derived by
utilizing the KKT condition.

C. CWRAA WITH INTERFERENCE
A fractional frequency reuse based on hungrian and graph
coloring methods (FFR-HGC) is applied to allocate subchan-
nels for MTs when K c > N . The frequency reuse among
MTs results in intra-cell interference. Therefore, the purpose
of FFR-HGC method is to mitigate the interference received
at the MTs from the MTs of other BSs and achieve frac-
tional frequency reuse at the same time. In order to execute
graph coloring, the constructed interference graph in Fig 2(b)
is modified into a weighted interference graph, where the
weight of every directed edge is calculated as

ρkm|k∈Vj,m∈Vj′ =

{
0, j = j′

pkhmkn, j 6= j′
(32)

where hmkn represents the channel gain between the MT k of
BS j and theMTm of BS j′. pk denotes the transmission power
of MT k associated to BS j and is set as fixed value in the
process of FFR-HGC. The weight ρkm means the intensity of
interference at MT m associated to BS j′.
The steps of the FFR-HGC are described below.

1) INITIALIZATION
In this step, the MEC server sets the subchannel association
table C(K c

×N ) mentioned above to zeros, and initializes the
interference table O, which is also an K c

×N table. Table O
has real-valued variable okn representing the sum interference
from all other offloading MTs experienced byMT on color n.
So, okn is given by

okn|k ∈ Vj =
∑

m∈Vj′ |j′ 6=j

cmnρkm (33)

The interference tableO is set as zeros in the initialization
step, too. We set the uncolored vertices as U . Its initial value
U0 is set as all offloading MTs Kc.

2) ORTHOGONAL SUBCHANNEL ALLOCATION
Since the number of MTs is more than the amount of sub-
channels and the number of orthogonal subchannels is N ,
we should take measures to select N MTs from U0 to take
up the N orthogonal subchannels. Hence, to maximize the
throughput of the N MTs, we apply a method besed on
Hungarian method [33] to allocate the subchannels. Once the
N subchannels allocated, the N MTs will be selected. The
method is denoted as:

ckn = argmax
K∑
k=0

rk , 1 ≤ k ≤ K , 1 ≤ n ≤ N (34)

There are K c
−N MTs left needing allocated subchannels

on which there exists interference from other MTs. The set of
uncolored vertices U is updated and the size of U is K c

−N .

3) FINDING THE COLOR WITH THE SMALLEST
INTERFERENCE
In order to mitigate the interference on MT k ∈ U , the sub-
channel with smallest interference in current time should be
assigned to MT k . So it is necessary to find the color with the
smallest interference.We search for the color by searching for
the color on whichMT k can achieve the highest transmission
rates. Assuming color n is assigned to MT k , we calculate the
estimated transmission rate of MT k as follows:

rkn|k ∈ Vj = w0log2(1+
pkhkn

σ 2
kn + okn

) (35)

Therefore the expected n̄ is derived by:

n̄ = argn∈N max{rkn} (36)

Then n̄ is allocated to MT k .

4) UPDATE TABLES
Both the subchannel association table C and the interference
tableO are updated in this step. According to the subchannel
allocation to vertex k in the previous step, the corresponding
variables of the assigned colors in table C are set to 1, and the
interference caused by this new assignment is calculated and
updated in table O.

5) UPDATE THE SET OF UNCOLORED VERTICES
The vertex k got colored will be excluded from the uncolored
vertices set U and U is updated.

6) CHECK WHETHER ALL VERTICES ARE COLORED
The uncolored vertices set U will be checked. If the set U is
not empty, steps 3) to 5) will be repeated. If set U is empty,
we will go to the next step.

7) COLOR ASSIGNMENT
The set of colors will be allocated to the corresponding ver-
tices according to the subchannel association table C.
After assigning the subchannels, the transmission power

and CPU cycles are allocated according to (15).
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The partial derivative of (15) is shown as (37) when

ckn = 1. If ckn = 0,
∂Z c

∂pkn
is equal to 0.

∂Z c

∂pk
=

bkγ Ek
w0log2(1+ αknpk )

(1−
1

log 2
2(1+ αkn)

·
αknpk

1+ αknpk ln 2
)+ γMk βwckn

αkn

1+ αknpk ln 2
(37)

where αknpk is denoted as SINR and the value is larger than 1,
thus ∂Z c

∂pk
> 0 implies that the function is an increasing

function with respect to pk .
The solution for p∗k and f

∗
k is similar with CWRAAwithout

interference and does not be repeated it here.

D. THE EXISTENCE OF NE
We then study the existence of NE of the distributed potential
game model. To proceed, we first introduce an important
concept of potential game [17].
Definition 2: A game is called an exact potential game if

it admits a potential function φ(A) such that for every k ∈
K, a−k , and ak , a′k ∈ Ak , if

uk (ak , a−k )− uk (a′k , a−k ) = φ(ak , a−k )− φ(a
′
k , a−k )

Theorem 1: Every ordinal potential game with finite strat-
egy sets owns as least one pure-strategy NE and has the FIP.
Ordinal potential game includes exact potential game [34].
A nice property of ordinal potential game is that it always
admits a NE.
Theorem 2: The potential game model using UZFR sub-

channel allocation method is an exact potential game with the
potential function as given in (38), and hence always has a NE
and the finite improvement property.

φ(A) = (1− ak )
(∑
k ′ 6=k

(
γ Ek ′ pk ′nbk ′

w0b
N

(1+
∑K

j 6=k aj)
c log2(1+ αk ′pk ′n)

+γMk ′ M
c
k ′ )+ z

l
k

)
+ ak

K∑
k=1

zck (38)

Proof : Based on (13), we have that

uk (1, a−k )− uk (0, a−k ) = zck − z
l
k (39)

Based on (38), φ(1, a−k ) and φ(0, a−k ) can be written as
follows respectively,

φ(1, a−k ) =
K∑
k=1

zck = zck +
K∑
k ′ 6=i

zck ′ = zck +
∑
k ′ 6=k

(γMk ′ M
c
k ′

+
γ Ek ′ pk ′nbk ′

w0bN/(1+
∑K

j 6=k aj)c log2(1+ αk ′pk ′n)
)

(40)

φ(0, a−k ) =
∑
k ′ 6=k

(
γ Ek ′ pk ′nbk ′

w0bN/(1+
∑K

j 6=k aj)c log2(1+ αk ′pk ′n)

+γMk ′ M
c
k ′ )+ z

l
k (41)

From (40) and (41), we can achieve that

φ(1, a−k )− φ(0, a−k ) = zck − z
l
k (42)

From (39) and (42), we obtain that φ(1, a−k )−φ(0, a−k ) =
uk (1, a−k ) − uk (0, a−k ). Similarly, we can derive that
φ(0, a−k ) − φ(1, a−k ) = uk (0, a−k ) − uk (1, a−k ) as well.
Therefore, the gamemodel utilizingUZFRmethod is an exact
potential game and there is at least one pure-strategy NE and
has the FIP.
Theorem 3: The distributed game model using FFR-HGC

subchannel allocation method is an exact potential game with
the potential function as given in (43), and hence always has
a NE and the finite improvement property.

φ(A) = (1− ak )(
∑
k ′ 6=k

(
γ Ek ′ pk ′bk ′

w0log2(1+
hk′npk′n

σ 2
k′n
+I
′′

k′n
+I
′j
k′n
+hknpkn

)

+γMk ′ M
c
k )+ z

l
k )+ ak

K∑
k=1

zck (43)

Proof : Based on (43), φ(1, a−k ) and φ(0, a−k ) can be
written as follows respectively,

φ(1, a−k ) =
K∑
k=1

zck = zck

+

∑
k ′ 6=k

( γ Ek ′ pk ′bk ′

w0log2(1+
hk′npk′n

σ 2
k′n
+I
′′

k′n
+I
′j
k′n
+hknpkn

)
+ γMk ′ M

c
k ′

)
(44)

φ(0, a−k ) =
∑
k ′ 6=k

( γ Ek ′ pk ′bk ′

w0log2(1+
hk′npk′n

σ 2
k′n
+I
′′

k′n
+I
′j
k′n
+hknpkn

)

+γMk ′ M
c
k ′

)
+ zlk (45)

From (44) and (45) ,we can achieve that

φ(1, a−k )− φ(0, a−k ) = zck − z
l
k (46)

From (39) and (46), we obtain that φ(1, a−k )−φ(0, a−k ) =
uk (1, a−k ) − uk (0, a−k ). Similarly, we can derive that
φ(0, a−k ) − φ(1, a−k ) = uk (0, a−k ) − uk (1, a−k ) as well.
Therefore, the distributed game model using FFR-HGC
method is an exact potential game and there is at least one
pure-strategy NE and has the FIP.

E. ALGORITHM DESCRIPTION
In this section, we describe the process of the distributed
JCORAO scheme. Due to the decentralized mechanism, each
MT makes the computation offloading strategy locally and
it is beneficial for reducing the controlling and signaling
overhead in the system. The NE is achieved by Algorithm 1
and Algorithm 2. Algorithm 2 is the sub-algorithm of
Algorithm 1. When the NE is attained and the opti-
mal offloading strategy profile A∗ and resource allocation
C∗,P∗,F∗ are obtained, all MTs will follow the optimal
offloading strategies without deviation because of the prop-
erty of NE.

For Algorithm 1, in the initial phase, all MTs choose to
offload their tasks into MEC server. Then we compute the
local execution cost by (8) and obtain offloading execution
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Algorithm 1 Process of the Distributed JCORAO Scheme
Input: K : number of MTs;

l: the index of iteration times;
bk , sk , γ E , γM , γ T , βk , qk , hk , σ 2

k ,Tk , p
T
k , κ, f

l
k .

Output: {A∗, C∗,P∗,F∗}:optimal resource allocation
1: initialize: A0
2: for k = 1 to K do
3: compute the local execution cost zlk by (8).
4: use Algorithm 2 to get optimal resources C∗, p∗k , f

∗
k

and corresponding offloading cost zck .
5: if zlk > zck then
6: ak = 1
7: else
8: ak = 0
9: end if
10: end for
11: update A.
12: while A 6= A0 do
13: A0 = A and l = l + 1
14: for k = 1 to K do
15: ak = 1 and update A
16: utilize Algorithm 2 to get corresponding offloading

cost zck .
17: if zck > zlk then
18: ak = 0
19: else
20: ak = 1 and update the offloading strategy A.
21: end if
22: end for
23: end while
24: the offloading strategy profile A∗ and optimal resource

allocation C∗,P∗,F∗ are obtained.

cost by Algorithm 2. By comparing the size of the two costs,
the offloading strategy profile A is updated. In the cycle
phase, each MT does not update their offloading strategy
until all MTs have no motivations to change their strategy.
In each episode, MTs intend to decrease respective cost and
have no incentive to decrease the total cost of all MTs such
that each MT makes its decision by comparing own local
execution cost with offloading execution cost. In addition,
the optimal resource allocation C∗,P∗,F∗ is recalculated
in this episode when the offloading strategy profile A is
updated.

For Algorithm 2, in initial phase, current offloading strat-
egy profile A determines to utilize UZFR or FFR-HGC
to allocate subchannels. In cycle phase, the optimal com-
munication and computation resources are attained iter-
atively based on KKT condition. The offloading exe-
cution cost of offloading MTs zck is computed in last
phase.

By executing Algorithm 1 and Algorithm 2, we achieve
NE such that the optimal offloading strategy A∗ and optimal
resource allocation C∗,P∗,F∗ are obtained.

Algorithm 2 Process of CWRAA
Input: K c:number of offloading MTs;

A:current offloading strategy profile;
max_iteration:maximum number of iterations;

Output: C∗:optimal subchannel allocation table;
p∗k :optimal communication resources;
f ∗k : optimal computation resources.

1: initialize:set initial Lagrange multiplier µ0, ν0, θ0.
2: if (

∑K
k=1 ak ) ≤ N then

3: use UZFR to derive subchannels C∗.
4: else
5: use FFR-HGC to derive subchannels C∗.
6: end if
7: for n = 1 to max_iteration do
8: set δ = 1/(50+ n)
9: for k = 1 to K c do
10: compute τ by (24) based on KKT condition.
11: end for
12: update Lagrange multiplier µk (t + 1), νk (t + 1) and

θ (t + 1) by (29)(30)(31)
13: k=k+1
14: end for
15: compute p∗k by (27).
16: compute f ∗k by (28).
17: compute offloading execution cost of offloading MTs zck .

V. SIMULATION RESULTS
In this section, we use computer simulations to evaluate the
performance of the distributed JCORAO scheme.

A. PARAMETER SETTINGS
In the simulation, one MBS and 4 SBSs are deployed in
a 100 × 100 m2 area. The MBS is located in the center
of the area and SBSs are placed in the four corners of the
world. The number of MTs associating to BS j is a randomly
integer. There are

∑j=4
j=0 VjMTs conducting joint computation

offloading and resource allocation optimization. The initial
cost function weights are set as γ Ek = γ Tk = γMk = 0.5.
The transmission power of single MT, pnk is set to 10 dBm
at the beginning. The channel gain models presented in
3GPP standardization [35] are adopted here.

ForMTs, the maximum transmission power and offloading
latency threshold are respectively set as the 20 dBm and 3 s.
The local computation capability of MTs follows the Gaus-
sian distribution CN (µ1, σ

2
1 ), where the mean µ1 =

1000 Mega/s, and the standard deviation σ1 = 50. The data
size of the tasks and computing load follows the Gaussian
distribution CN (µ2, σ

2
2 ) and CN (µ3, σ

2
3 ), where µ2 = µ3 =

1000 KB and σ2 = σ3 = 50 [32]. According to realistic
measurements, κ is set as 10−11 [24].
For the wireless access, we set the channel bandwidth of

each subchannel w0 = 5 MHz and the channel power gain
of the MTs follows the Gaussian distribution CN (µ4, σ

2
4 ),

where µ4 = 10, σ4 = 1. There are in all 30 subchannels.
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FIGURE 3. The subchannel distribution among MTs. (a)Subchannel
allocation with FFR-HCG in initial phase. (b)Subchannel allocation with
FFR-HCG in final phase. (a) FFR-HCG in initial phase. (a) FFR-HCG in final
phase.

In addition, thermal noise power of the MTs follows the
Gaussian distribution CN (µ5, σ

2
5 ), where µ5 = 5, σ5 = 1.

For the MEC server, we set the maximum computation capa-
bility fS as 40000 Mega cycles. The price for communication
rate is 0.05 $/Mbit. The charge for computation resources
is 0.1 $/Mega.

B. PERFORMANCE EVALUATION OF DISTRIBUTED
JCORAO SCHEME
1) SUBCHANNEL ALLOCATION WITH FFR-HCG METHOD
Fig. 3 shows the subchannel distribution among 40 MTs in
the coverage of oneMBS and four SBSs with 30 subchannels.
Some MTs suffers interference from their neighboring MTs.
Fig. 3 (a) shows the results of orthogonal subchannel allo-
cation based on Hungarian method which is the first step in
the FFR-HGC approach and Fig. 3 (b) indicates the whole
results of subchannel allocation with FFR-HGC method.
It can be observed that 30 orthogonal subchannels are allo-
cated with Hungarian method at first and then the remaining
MTs are allotted subchannels with color graph method. From
Fig. 3 (b), we can see that the MTs in the same BS do not
occupy the same subchannel and the subchannel is reused
by the MTs far away, rather than the MTs near to each
other. we can also observe from Fig. 3 (b) that a subchan-
nel is used at most twice, such as subchannel 3 and 11.
The results of subchannel allocation illustrate that FFR-HCG

FIGURE 4. Comparison of transmission power and CPU cycles for
different weights.(a)transmission power. (b)CPU cycles. (a) Transmission
power allocation comparison. (a) CPU cycles comparison.

method is an effective way to mitigate the interference among
neighboring MTs.

2) THE EFFECT OF WEIGHS AMONG IMPACT FACTORS
In addition, we take the weights among impact factors into
consideration on the transmission power and CPU cycles
in Fig. 4. In order to display more clearly, we select 9 rep-
resentative MTs from 40 MTs. As shown in Fig. 4 (a),
the optimal transmission power to the MTs decrease with
the increasing of the communication resource cost weight.
It can be seen from Fig. 4 (b) that the optimal CPU cycles
allocated to the MTs increase with the decreasing of the
computation resource cost weight. This is reasonable since a
larger γ E will lead to the increase of cost on communication
resources which in turn result in the decrease of cost on
computation resources. We choose γ E = γM = 0.5 as
simulation parameters to balance the monetary cost between
communication and computation cost.

3) ALGORITHM COMPARISON WITH EXISTING ALGORITHMS
We evaluate the distributed JCORAO scheme performance
compared with several baseline algorithms, such as local exe-
cution completely algorithm (LECA), cloud execution com-
pletely algorithm (CECA) and centralized JCORAO scheme.
In LECA, all MTs decide to execute their tasks locally. On the
contrary, all MTs determine to execute their tasks on the
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FIGURE 5. The impact of number of MTs.

TABLE 2. Algorithm complexity comparison.

MEC server in CECA. In centralized JCORAO scheme,
the method of exhaustion is utilized to solve the optimization
problem of (12).

At first, the total cost comparison with the number of MTs
is analyzed. As shown in Fig. 5, the total cost has a tendency
to rise with the increasing of participants for all algorithms
because the occupation of communication resources and
computation resources is more. By comparison with LECA
and CECA, the total cost of distributed JCORAO scheme
is minimum. Proposed scheme’s total cost is a little higher
than but nearly the same as the centralized JCORAO scheme.
However, the centralized JCORAO scheme has very high
algorithm complexity which is NP hard problem.

Fig. 6 shows the impact of communication and compu-
tation resource prices on MTs’ total cost. We can observe
from Fig. 6 (a) that the total cost increases with the growth
of communication price but the growth rates of total cost
decreases slowly. It is due to that the cost of offload-
ing begins to be more than the local cost and the num-
ber of offloading MTs starts descending when communi-
cation price increases. The phenomenon is more obvious
in Fig. 6 (b) and the growth rate is eventually equal to zero.
With the ascent of computation price, the cloud execution
cost increases so that more MTs deal with tasks locally.
At last, all MTs offload no task to MEC server. Therefore,
the curves of LECA, distributed JCORAO and centralized
JCORAO coincide when the computation price is bigger
than 0.3 $/Mega.

Next, the complexity of above algorithms is analyzed.
Table 2 describes the complexity of LECA, CECA, dis-
tributed JCORAO scheme and centralized JCORAO scheme.
max_iteration is iteration times of KKT condition solution
defined at Algorithm 2. We can also see the complexity
difference among these algorithms in Fig. 7.

FIGURE 6. The impact of computation resource price and computation
resource price. (a)Communication resources price. (b)Computation
resources price. (a) The impact of communication resources price.
(a) The impact of computation resource price.

As shown in Fig. 7, the distributed JCORAO scheme and
CECA spend more time to complete the tasks of MTs than
LECA obviously. However, the total cost of LECA is the
largest compared with the other algorithms, which can be
seen obviously from Fig. 5. We can also see from Fig. 7 that
the running time of the distributed JCORAO scheme fluc-
tuates a little with the number of MTs. This is because the
running time is associated with the number of offloading
MTs K c which is not absolutely linear with the number
of MTs K . Moreover, we can conclude from Fig. 7 that the
running time of our scheme is less than CECA. Further-
more, the complexity of the distributed JCORAO scheme is
much less than the centralized JCORAO scheme as shown
in Table 2. Therefore, the distributed JCORAO scheme out-
performs other algorithms by making tradeoff between the
total cost and algorithm complexity.

At last, we compare energy consumption and offload-
ing latency with distributed computation offloading algo-
rithm (DCOA) proposed in [11] and energy-efficient dynamic
offloading and resource scheduling scheme (eDors) proposed
in [32]. The DCOA scheme only focuses on offloading
strategies in mobile cloud computing adopting a distributed
potential game and is not involved in dynamic resource allo-
cation. The eDors is a distributed algorithm consisting of
offloading selection, CPU cycle control and power control.
From Fig. 8, it can be seen that the energy consumption of
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FIGURE 7. Algorithm complexity comparison.

FIGURE 8. Comparison of energy consumption.

FIGURE 9. Comparison of offloading latency.

DCOA mounts up rapidly while eDors and proposed scheme
are relatively slow. When the size of input data is lower
than 4 Mbit, the distributed JCORAO scheme and DCOA
have approximate energy consumption but the energy con-
sumption of distributed JCORAO scheme is slightly lower
than DCOA. However, the difference becomes more obvious
later. In comparison with eDors scheme, our scheme always
spends less energy consumption evidently. We can observe
from Fig. 9 that our proposed scheme occupies the least task
completion time. In summary, proposed scheme can save
more energy and complete tasks with less time than the other
algorithms significantly.

VI. CONCLUSION
In this paper, an optimization problem is formulated
to acquire computation offloading strategy policy, uplink

subchannel allocation, uplink transmission power allocation
and computation resource scheduling at first. Then a dis-
tributed joint computation offloading and resource alloca-
tion optimization (JCORAO) scheme consisting of a poten-
tial game and CWRAA in HetNets with MEC is proposed.
A distributed potential game model based on the property of
FIP is established to obtain the strategy offloading policy.
The existence of NE is proved in the game. For the sub-
algorithm CWRAA, on one hand, we take OFDM subchan-
nel allocation and uplink power allocation into account in
HetNets. The solutions of subchannel allocation consist of
UZFR and FFR-HGC according to the interference between
MTs. On the other hand, the computation resource allocation
in MEC is studied. The JCORAO scheme eventually solved
the optimization problem by the mutual iteration of the two
sub-algorithms. Finally, the simulation results is revealed.
Compared with existing algorithms, the distributed JCORAO
scheme can reduce the energy consumption and task comple-
tion time significantly with lower complexity.
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