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ABSTRACT A new transient Granger causality detection method is proposed based on a time-varying
parametric modeling framework, and is applied to the real EEG signals to reveal the causal information flow
during motor imagery (MI) tasks. The time-varying parametric modeling approach employs a nonlinear
autoregressive with external input model, whose parameters are approximated by a set of multi-wavelet
basis functions. A regularized orthogonal least squares (ROLS) algorithm is then used to produce a
parsimonious or sparse regression model and estimate the associated model parameters. The time-varying
Granger causality between nonstationary signals can be detected accurately by making use of both the good
approximation properties of multi-wavelets and the good generalization performance of the ROLS in the
presence of high-level noise. Two simulation examples are presented to demonstrate the effectiveness of
the proposed method for both linear and nonlinear causal detection respectively. The proposed method is
then applied to real EEG signals of MI tasks. It follows that transient causal information flow over the time
course between various sensorimotor related channels can be successfully revealed during the whole reaction
processes. Experimental results from these case studies confirm the applicability of the proposed scheme and
show its utility for the understanding of the associated neural mechanism and the potential significance for
developing MI tasks based brain-computer interface systems.

INDEX TERMS Granger causality, nonlinear time-varying systems, parametric estimation, multi-wavelets,
regularized orthogonal least squares (ROLS), EEG.

I. INTRODUCTION
The investigation of connectivities and dynamics of neu-
ronal assemblies during various brain states plays a key role
in understanding the underlying neurophysiological mech-
anisms of human brain. Recently, there is increasing inter-
est in exploring the influence that one part of the nervous
system exerts over another. One of the classical methods
for extracting such influence is to determine undirected
connectivity, including correlation, synchrony [1], phase
coherence [2], and mutual information [3]. However, iden-
tifying the directionality of the neural interaction is essential
for understanding brain behaviors. A powerful approach to

describe directed causal relations of brain regions is Granger
causality (GC) [4], [5], which has been proved to be useful
for detecting the induced neurophysiological variations in the
brain. GC has been widely used to assess causal connectivity
for various brain data types such as spike trains [6], local field
potentials (LFPs) [7], functional magnetic resonance imaging
(fMRI) [8], electroencephalography (EEG) and event-related
potentials (ERPs) [9]. Among these various neuroscience
data, the high time resolution of EEG signals makes GC be
applicable to provide informative causal relations, as the tech-
nique is largely dependent on calculating the correspondence
of neural signals over time [9].
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In conventional GC analysis, the observed time series are
fitted by using time-invariant autoregressive with external
input (TIVARX) models, where it is assumed that the under-
lying stochastic process is stationary [10]. However, due to
the inherent nonstationarity of biomedical signals, the tradi-
tional GC analysis approach may not be sufficiently efficient
to reveal the potential nonstationary properties in nature [11].
One popular approach to measure time-varying causality is
to introduce sliding windows, which makes nonstationary
signals be locally stationary. For example, Ding et al. [12]
applied short-time windows and autoregressive with external
input (ARX) model to study pairwise coherence and thereby
revealed task-relevant patterns of cortical interdependence
during the different cognitive task stages. The main limitation
of such approaches is that the performance heavily depends
on the choice of the window length in that the use of too
wide windows can lead to loss of the temporal resolution,
this is undesirable to real applications where the causal rela-
tionship changes rapidly over time, whereas using too narrow
windows reduces the statistical reliability. A more generally
applicable method may be the ARX based adaptive algorithm
for time-varying Granger causality (TVGC) analysis [13],
where the assumption that the signals are stationary can be
removed. Nevertheless, the slow convergence speed of the
recursive least-squares (RLS) may fail to track abrupt vari-
ations of the time-varying model parameters, and thus result
in delay or inaccurate estimation in the causality analysis.

These time-varying linear Granger causality (TVLGC)
analysis methods mentioned above can only approximate
the linear causal influence between signals. Additionally, the
fundamental parametric models and causal relationships of
signals may be studied by stochastic nonlinear multiple time-
delay systems [14]–[17]. Given that electrophysiological sig-
nals are nonlinear [18], it is essential to interpret the causal
relations using nonlinear analysis methods. Recently, several
nonlinear Granger causality (NGC) methods have been pro-
posed and applied to neurophysiological signal analysis. For
example, Gourévitch et al. [19] discussed the measures of
both linear and nonlinear Granger causality and their neu-
rophysiological applications. Their results showed that LGC
sometimes produces false causal relations, whereas the per-
formance of NGC extremely depends on the choice of model
parameters. Li et al. [20] have presented a time-varying non-
linear autoregressive with external inputs (TVNARX) mod-
elling framework for GC analysis in EEGs, and the classical
RLS algorithmwas used to estimate time-varying parameters.
Their results indicated that the transient potential causality
interactions can be detected from the epileptic EEG signals.
However, the main deficiency of their method is that it may
not be able to effectively detect rapid changing causalities due
to the limitation of the slow convergence of the conventional
adaptive methods. In [21], a linear and nonlinear causality
detection method based on an orthogonal least squares (OLS)
and TVNARX models (OLS-TVNARX) was proposed. The
advantage of the OLS-TVNARX method is that time-
varying causalities between signals can be detected without

constructing a complete full model. Similar to the lim-
itation of the short sliding windowing ARX modelling
approach [12], the OLS-TVNARXmethod chose to use some
fixed window length (i.e. window length = 300) for the GC
analysis of both the simulation and real EEG data, and did not
suggest a good choice of window size. Clearly, the analysis
performance depends on the choice of the window length.
Furthermore, although the classical OLS algorithm has been
proved to be an efficient method for determining parsimo-
nious model structures [22]–[24], its performance may be
affected in cases where signals are highly interrupted by
noise [25].

In this paper, a new TVNARX-based parametric mod-
elling method is proposed to detecting time-varying non-
linear Granger causality (TVNGC), where the fundamental
TVNARX models are identified by employing multi-wavelet
basis functions together with a robust regularized orthogo-
nal forward regression algorithm. The proposed framework
mainly includes three steps. Firstly, time-varying parame-
ters in the TVNARX models are approximated by using
a finite number of B-spline basis functions, which have
excellent approximation performance for tracking both the
overall global trend and transient local changes in nonsta-
tionary signals, simutaneously [26], [27]. Secondly, a sparse
model structure and associated expansion model parameters
are determined by a powerful regularized orthogonal least
squares (ROLS) algorithm [28]–[30], which has been proven
to be capable of constructing an effective parsimoniousmodel
that outperforms the traditional OLS method with improved
generalization properties. The ROLS algorithm used is more
useful than the conventional OLS algorithm even in the
presence of severe noise since it not only uses the parsimo-
nious principle of the OLS, but also combines the zero-order
regularization criterion which the redundant model terms
confused by the conventional OLS algorithm due to noise
become less significant under the regularized cost function
and can therefore be removed from the expansion model [28].
Time-varying nonlinear autoregressive (TVNAR) models of
both univariate and bivariate systems can be exactly identi-
fied by the proposed method. Finally, in order to accurately
measure time-varying transient causal interactions during the
evolution of time-varying processes, a recursive computation
is used to obtain the time-varying variances of the prediction
errors in the sparse TV nonlinear models, and the time-
varying NGC (TVNGC) can thus be calculated by the def-
inition of the Granger causality.

The performance of the proposed approach is illustrated
by using two simulation examples, and the simulation results
are compared with the state-of-the-art methods including
the classical RLS [13], short-windowing ARX [12] and
OLS-TVNARX methods. Different performance evaluation
criteria are used to measure the efficiency of the causality
results, and 1~10 fold cross validation method is also applied
to further verify the performance of the proposed frame-
work. The experiment results indicate the proposed GC test
scheme is more accurate and robust for detecting connectivity
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patterns in both linear and nonlinear cases even when the data
are highly contaminated by noise. Furthermore, the proposed
TVNGC scheme is applied to real EEG data during motor
imagery (MI) tasks, where significant nonlinear dynamics
and causal connectivities between signals relating to specific
MI tasks have been successfully detected. The precise reac-
tion time periods and accurate interaction strengths between
different brain regions can be clearly measured, which shows
the promising method for deciphering directed connectiv-
ity in EEG signals and further exploring cognitive mech-
anism and developing MI brain-computer interface (BCI)
systems.

An obvious advantage of the proposed method is that the
combination ofmulti-wavelet-based basis function expansion
with the ROLS algorithm is applied to produce the essential
sparse time-varying models with good generalization proper-
ties for the inherently nonstationary systems, even if rapidly
and even sharply time-varying processes can be still tracked
effectively, and transient causal information between nonsta-
tionary signals can thus be detected accurately by using the
time-varying variances of the estimation errors without the
assumption of stationarity and linear dependency imposed
on signals. Additionally, the proposed method can capture
the time-varying causalities well even when the systems are
contaminated with severe noise, which is more suitable for
directed interaction detection between real EEG signals. One
of the main contributions in this paper is that, for the first
time, the newly proposed time-varying system identification
scheme is introduced to the detection of transient causal influ-
ences between time-varying systems. It is promising that the
novel combination may be capable of inspiring the develop-
ment of more powerful algorithms for time-varying causality
detection. Furthermore, with the application to real MI EEG
signals, the clearly causal flows indicated can be applied for
understanding MI of related neurophysiological mechanism
and further evaluating the performance improvement of MI
based BCI systems.

The remainder of this paper is organized as follows.
In Section II, the methodology is illustrated in three sub-
sections: the explanation of time-varying Granger causality
in II-A, the TVNARX model identification method based on
multi-wavelet expansion in II-B, and the ROLS algorithm
in II-C, respectively. Two simulation examples are given to
show the effectiveness of the proposed method in Section III.
A case study for the causality detection from real MI EEG
signals is introduced in Section IV. Finally, the work is sum-
marized in Section V. Table 1 gives a summary of description
for the abbreviations used in this paper.

II. METHODOLOGY
A. GRANGER CAUSALITY
Let X = {x(t)} and Y = {y(t)} be two signals, with t =
1, 2 · · · ,N . According to the general definition of GC, if the
variance of the prediction error is decreased by the inclusion
of the past information of signal X for the prediction of Y , it is

TABLE 1. Description of the abbreviations used in this paper.

said that X causes Y in the Granger sense. The time-invariant
Granger causality from X to Y (TIVGCX→Y ) is defined by the
log ratio of the error variances from the time-invariant AR and
ARX models [20], [21]:

TIVGCX→Y = ln
var

(
y|y−

)
var

(
y|y−, x−

)
= ln

1
N−ny

N∑
t=1

e21 (t)

1
N−ny−nx

N∑
t=1

e22 (t)

(1)

where y−, x− denote the past information of Y , X respec-
tively, ny and nx are the model orders of Y and X which
denote the maximum number of the associated lagged obser-
vations. Besides, e1 (t) and e2 (t) are the model residu-
als of the time-invariant univariate AR model TIVAR(ny):

y (t) =
ny∑
i=1

B1iy (t − i) + e1 (t) and bivariate ARX model

TIVARX (ny, nx): y (t) =
nx∑
i=1

B2iy (t − i)+
ny∑
jy=1

D2jx
(
t − jy

)
+

e2 (t), where the former depends only on the past of Y and
the latter depends on the past of both Y and X . Eq. (1)
implies that Granger causality can never be negative if X
causes Y , vice versa for the causality from Y to X . To evaluate
the transient directed interactions between nonstationary sys-
tems, the definition of TVARX (time-varying ARX) -based
TVGC is necessary [20].
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1) TIME-VARYING LINEAR GRANGER CAUSALITY
The most commonly used models in time-varying causality
test are the linear time-varying autoregressive (TVAR) and
TVARX models as follows [31]:

x (t) =
nx∑
i=1

a1i (t) x (t − i)+ ε1 (t) (2)

y (t) =
ny∑
i=1

b1i (t) y (t − i)+ ε2 (t) (3)

and

x (t) =
nx∑
i=1

a2i (t) x (t − i)+
ny∑
jy=1

c2jy (t) y
(
t − jy

)
+ ε3 (t)

(4)

y (t) =
nx∑
i=1

b2i (t) y (t − i)+
ny∑
jy=1

d2jy (t) x
(
t − jy

)
+ ε4 (t)

(5)

Generally, the recursive variance computational formula is
given by [20]:

σ 2 (t + 1) = (1− c) σ 2 (t)+ c12 (t) (6)

where 1(t) is the time-varying model prediction error,
and 0 < c < 1 is the recursive parameter. Set 1(t)
as the prediction error ε1 (t), ε2 (t), ε3 (t), ε4 (t) in linear
models (2)-(5) respectively, then time-variant variances of
the associated errors can be yielded by: var

(
x|x−l

)
(t),

var
(
y|y−l

)
(t), var

(
x|x−l , y

−

l

)
(t), var

(
y|y−l , x

−

l

)
(t), where

y−l , x
−

l indicate the set of linear terms from y− and x−. Con-
sequently, the calculation of the time-varying linear Granger
causalities (TVLGC) are represented by:

LGCX→Y (t) = ln
var

(
y|y−l

)
(t)

var
(
y|y−l , x

−

l

)
(t)

(7)

LGCY→X (t) = ln
var

(
x|x−l

)
(t)

var
(
x|x−l , y

−

l

)
(t)

(8)

2) TIME-VARYING NONLINEAR GRANGER CAUSALITY
The absence of nonlinear terms in the linear TVAR and
TVARX models (2)-(5) makes the models insufficient to
detect nonlinear causal influences between nonstationary sig-
nals. However, there is wide evidence that the evolution
of neurophysiological states is a nonlinear process [18].
Nonlinear autoregressive moving average with exogenous
variable (NARMAX) models have been demonstrated to
be an effective approach that can well capture nonlinear
effects for various nonlinear, continuous-time and discrete-
time systems [26]. The univariate time-varying nonlinear
autoregressive (TVNAR) and multivariate TVNARX models
are therefore appropriate for detecting nonlinear TVGC. The
TVNAR(ny) and TVNARX (ny, nx) model are formulated by
[32] and [33]:

y (t) = f
(
y (t − 1) , · · · , y

(
t − ny

) )
+ ey (t) (9)

y (t) = f
(
y (t − 1) , · · · , y

(
t − ny

)
,

x (t − 1) , · · · , x (t − nx)
)
+ exy (t) (10)

where f is the unknown nonlinear function, the observation
noise ey (t) and exy (t) are assumed to be an independent zero
mean noise sequence. The generally used method to approx-
imate the unknown function f (·) is to employ a polynomial
expression [34], and (10) can thus be represented as:

y (t) =
M∑
n=1

n∑
p=0

R∑
r1,··· ,rp+q=1

gp,q
(
r1, · · · , rp+q, t

)
×

p∏
i=1

y (t − ri)
p+q∏
i=p+1

x (t − ri)+ exy (t) (11)

whereM is the degree of the nonlinearity, with p+q = n, ri =
1, 2, · · · ,R, 6R

r1,··· ,rp+q=1
≡ 6R

r1=1
· · ·6R

rp+q=1
. The vector

[g0,1 (1, t) , · · · , g0,1 (R, t) , g1,0 (1, t) , · · · , gp,q(R, · · · ,R, t)]T

are time-varying parameters to be estimated, where the upper
index ’T’ indicates the transpose of a vector or matrix. Then
the time-varying nonlinear Granger causality (TVNGC) from
X to Y can be expressed by [31]:

NGCX→Y (t) = ln
var

(
y|y−l , y

−
n
)
(t)

var
(
y|y−l , y

−
n , x
−

l , x
−
n , (yx)−n

)
(t)

(12)

where y−n and x−n are the set of nonlinear terms from
past information of Y and X respectively, (yx)−n denotes
the set of nonlinear terms coupled by past informa-
tion of Y and X . In addition, var

(
y|y−l , y

−
n
)
(t) and

var
(
y|y−l , y

−
n , x
−

l , x
−
n , (yx)

−
n
)
(t) are time-varying variances

of the prediction errors in TVNAR and TVNARX models by
Eq. (6), where1(t) is the associated model estimation error,
such as ey (t) in (9) for the TVNAR and exy (t) in (10) for the
TVNARXmodel, and the Y to X case is similar. Additionally,
it is necessary to assess the statistical significance of the
obtained causal influences between two signals. The thresh-
olds for statistical significance are constructed from surrogate
data via a permutation procedure under a null hypothesis
of no interaction at the significance level p < 10−6. This
procedure contains generating 1000 permuted time series,
where the permutation of the trial order can disrupt task-
related interdependencies.

B. MULTI-WAVELET-BASED TVNARX
MODEL IDENTIFICATION
According to wavelet theory, a square integrable scalar signal
f can be approximated by the multiresolution wavelet decom-
position as follows [35], [36]:

f (x)=
∞∑

k=−∞

αj0,kφj0,k (x)+
∞∑

j>j0−1

∞∑
k=−∞

βj,kψj,k (x) (13)

where φj0,k (x) = 2j0/2φ
(
2j0x − k

)
and ψj,k =

2j/2ψ
(
2jx − k

)
with j0, j, k ∈ Z (Z denotes the whole

integers) are the translated and dilated version of the scal-
ing function φ (x) and the mother wavelet ψ (x), αj0,k and
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βj,k are the wavelet decomposition coefficients. Further-
more, when the resolution scale level of the scale functions
φj0,k (x) = 2j0/2φ

(
2j0x − k

)
is sufficiently large, namely,

there exists an integer J , Eq. (13) can be reduced to f (x) =
∞∑

k=−∞
αJ ,kφJ ,k (x).

Previous studies [37], [38] show that the time-varying
parameters in (11) can be well approximated using a set
of multi-wavelet basis functions

{
πµ (t) : µ = 1, 2, · · · ,L

}
.

Specifically, the time-varying model (11) can be re-written
by:

y (t) =
M∑
n=1

n∑
p=0

R∑
r1,rp+q=1

L∑
µ=1

λp,q,µ
(
r1, · · · , rp+q

)
×

(
πµ (t)

p∏
i=1

y (t − ri)
p+q∏
i=p+1

x (t − ri)
)
+ exy (t)

= ϕT (t) θ + exy (t) (14)

where


ϕ (t) = [πµ (t)

p∏
i=1

y (t − ri)
p+q∏
i=p+1

x (t − ri)]T ,

θ = [λ0,1,µ (1) , · · · , λ0,1,µ (R) , λ1,0,µ (1) , · · · ,
λp,q,µ (R, · · · ,R)]T

(15)

λp,q,µ
(
r1, · · · , rp+q

)
are the multi-wavelet-based expan-

sion parameters, L is the maximum number of basis
function sequences, ϕ (t) and θ are the regression vec-
tor and parameter vector respectively. The TVNARX
model (11) can then be transformed into time invariant model,
as λp,q,µ

(
r1, · · · , rp+q

)
are now time-invariant.

Cardinal B-splines are an important class of basis functions
that can form multiresolution wavelet decompositions [39].
They are compactly supported and can be analytically for-
mulated in an explicit form, this unique property makes the
operation of the multiresolution decomposition (13) much
more convenient. From the recursive definition of cardinal
B-spline functions [40]:

Bm (x) =
x

m− 1
Bm−1 (x)+

m− x
m− 1

Bm−1 (x − 1) , m ≥ 2

(16)

where B1 (x) = 1 with x ∈ [0, 1), the mth order
B-spline Bm (x) is defined on [0,m]. Taking the cardinal
B-splines as the basis function, the φj,k (x) can be expressed
as φj,k (x) = 2j/2Bm

(
2jx − k

)
, where the dilation and trans-

lation indices j and k should satisfy 0 ≤ 2jx−k ≤ m. Assume
that the function f (x) to be estimated with decomposi-
tions (13) is defined within [0, 1], for any given dilation index
j, the translation index k are restricted to the collection 0m ={
k : − m ≤ k ≤ 2j − 1

}
. Generally a practical selection of

the orderm are 2, 3, 4, 5, and the detail discussion of B-splines
properties can be found in [41] and [42]. Additionally, j ≥ 3
is an appropriate choice for most applications using cardinal

B-splines. The higher the value of j, the more basis functions
are used and thus the resolution improves, but this will also
introduce more parameters and increase the computational
cost. Some determination criteria of the proper j are discussed
in detail in [25].

Hence time-varying coefficients gp,q
(
r1, · · · , rp+q, t

)
in

Eq. (11) can be estimated by using a combination of B-splines
basis functions from the families φmk (x) = 2j/2Bm

(
2jx − k

)
with k ∈ 0m, m = 2 ∼ 5, which can be expressed as follows:

gp,q
(
r1, r2 · · · , rp+q, t

)
=

∑
m

∑
k∈0m

λmp,q,k
(
r1, r2 · · · , rp+q

)
φmk

(
t
N

)
(17)

where N is the number of sample observations for t =
1, 2, · · · ,N . The decomposition (17) can easily be trans-
formed into the form of (14), where the union of the

families
{∑
m
φmk (t) : k ∈ 0m,m = 2 ∼ 5

}
replace the set{

πµ (t) : µ = 1, 2, · · · ,L
}
.

Although the regression terms are usually sparsely dis-
tributed in the associated space, the number of candidate
regression terms in the initial full regression Eq. (14) may
be very large, which makes the problem be ill-posed. In addi-
tion, with the parsimonious principle, the ill-posed problem
can be avoided and the model constructed can be achieved
the generalization performance. Recently, the OLS algorithm
has been proved to be an efficient method for constructing
parsimonious model structures. However, the parsimonious
structures alone may not be sufficient to eliminate overfitting
and guarantee good generalization performance if modeling
data are highly interrupted by noise [30]. Therefore, it is a
crucial procedure to construct a parsimonious or sparsemodel
structure with good generalization performance and approxi-
mate the associated parameters in basis function expansion
based time-varying system identification. The ROLS algo-
rithm used in this study to solve these problems will be
introduced in the following section.

C. REGULARIZED ORTHOGONAL FORWARD REGRESSION
The orthogonal least squares (OLS) type of algorithms
have proven very efficient to deal with model term
selection problems [22]–[24], [43]. However, the error cri-
terion used in the OLS algorithm is the total squared error,
which may lead to overfitting especially when observ-
able data are highly noisy [23], [44]. To solve this issue,
the ROLS algorithm [28]–[30] based on the zero-order reg-
ularization with the OLS algorithm is employed to con-
struct a more generalized procedure for constructing sparse
model structure. Collecting (14) for t = 1, 2, · · · ,N
together can get the associated compact matrix form Y =
82 + E , where Y = [y (1) , y (2) , . . . , y (N )]T , 8 =

[ϕ (1) , ϕ (2) , . . . , ϕ (N )]T is a N × H dimensional regres-
sion matrix, H is the number of all the candidate terms,
2 = [χ1, χ2, . . . , χH ]T is the parameter vector to
be estimated, and E =

[
exy (1) , exy (2) , . . . , exy (N )

]T ,
17830 VOLUME 6, 2018
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respectively. Assume the regression matrix 8 is of a full
column rank and the procedure of the associated orthogonal
transformation can be expressed by:

8 = [w1 · · ·wH ]︸ ︷︷ ︸
W


1 δ1,2 · · · δ1,H

0 1
. . .

...
...

. . .
. . . δH−1,H

0 · · · 0 1


︸ ︷︷ ︸

A

(18)

where W is an N × H matrix with orthogonal columns
satisfying wiiTwjj = 0 when ii 6= jj, A is an H × H unit
upper triangular matrix, so that the regressor matrix form can
be denoted as Y =

(
8A−1

)
(A2) + E = WP + E , where

P = [ρ1, ρ2, . . . , ρH ]T is an auxiliary parameter vector.
The key procedure to obtain high computational effi-

ciency and the accuracy of the ROLS scheme is the zero-
order regularized cost function defined as F = ETE +
τPTP [28], where τ ≥ 0 is the regularization parame-
ter, then the unknown parameters ρii can be estimated by
ρii = 〈Y ,wii〉 / (〈wii,wii〉 + τ) , ii = 1, 2, . . . ,H , where the
symbol 〈·, ·〉 denotes the inner product of two vectors. The
parameter vector2 can thus be determined by using A2 = P
with solved A and P, and the regularized error reduction ratio
(rerrii) introduced by wii can be derived as:

rerrii=
(〈wii,wii〉 + τ) ρ2i

〈Y ,Y 〉
=

〈Y ,wii〉2

〈Y ,Y 〉 (〈wii,wii〉 + τ)
(19)

Each selected procedure is chosen to decrease maximally the
regularized squared error F , namely the term gives the largest
rerrii at each iteration ii is chosen, and significant regressors
can be selected in a forward regression process. Choose an
error tolerance ζ : 0 < ζ < 1, and the selection will be

terminated at NT th step when 1−
NT∑
i=1

rerri < ζ is satisfied.

The determination of the optimal value of τ depends on
the intrinsic property of the underlying system and the selec-
tion of proper basis functions. Previous studies have proven
that the estimation performance of the multi-wavelets-based
model may be not sensitive to the precise value of τ [28].
An elegant method to determine the regularization parameter
is to apply a Bayesian interpretation to the ROLS algorithm
which results in the following iterative procedure for calcu-
lating τ [28]: η =

NT∑
ii=1

wiiTwii
wiiTwii+τ

τ =
η

N−η
ETE
PTP

(20)

Let τ0 be an initial value of τ , for example τ0 = 1, a satisfied
τ can be found after a few iterations. This new forward
selection algorithm is capable of constructing an accurate
parsimonious model structure with improved generalization
property and efficient operation performance as the similar
computational requirement of the OLS algorithm. Applying
the ROLS algorithm to Eq. (14), an optimal subset of signifi-
cant regressors can be selected and the model parameters can

be estimated effectively. The original time-varying parame-
ters gp,q

(
r1, r2 · · · , rp+q, t

)
in the TVNARX model (11) can

then be recovered by using those resultant estimates. Take the
Gram-Schmidt algorithm as the orthogonalization method,
the procedure for the detection of sparse model structure
through the ROLS scheme can be implemented in a stepwise
manner given below.
Input:

Output signal Y = [y (1) , y (2) , . . . , y (N )]T ;
Candidate terms 8 = {ϕh : h = 1, 2, . . . ,H};
Predesigned threshold 4 < 10−10.

Step 1. Set =1 = {1, 2, . . . ,H};
for h = 1 to H

wh = ϕh; ρh = 〈Y ,wh〉 / (〈wh,wh〉 + τ);
rerrh = (〈wh,wh〉 + τ) ρ2h/ 〈Y ,Y 〉;

end for
h̄1 = argmax

h∈=1
{rerrh};

w1
1 = wh̄1 ; ρ

1
1 =

〈
Y ,w1

1

〉
/
(〈
w1
1,w

1
1

〉
+ τ

)
;

Step υ. υ ≥ 2:
for υ = 2 to H
=υ = =υ−1\ {h̄υ−1};
for all h ∈ =υ

wh = ϕh −
υ−1∑̀
=1

(
ϕTh w

1
`/w

1
`

T
w1
`

)
w1
`;

rerrh = 〈Y ,wh〉2/ (〈Y ,Y 〉 (〈wh,wh〉 + τ));
end for

=υ = =υ\

{
arg
h∈=υ

(
wThwh < 4

)}
;

h̄υ = arg max
h∈=υ
{rerrh};

w1
υ = wh̄υ ; ρ

1
υ =

〈
Y ,w1

υ

〉
/
(〈
w1
υ ,w

1
υ

〉
+ τ

)
;

end for
Output:

Selected model terms 81
=

[
ϕh̄1 , ϕh̄2 , . . . , ϕh̄NT

]
.

As to the issue of the model order determination, a possible
solution is to minimize a criterion that balances the variance
accounted for by the model against the number of coefficients
to be estimated. In this work, the correct model order size is
determined by the Akaike information criterion (AIC) [45]:

AIC
(
ny
)
= ln

(
det

(
6ny

))
+

2nynvar 2

N
(21)

where 6ny is the variance of the model residuals calculated
from the associated nyth order model, and nvar is the number
of the variables.

In conclusion, the new proposed framework for time-
varying Granger causality detection can be summarized as
follows:

(1) Set up the linear or nonlinear univariate TVAR (such
as Eqs. (2)-(3) for linear case and (9) for nonlinear case) and
multivariate TVARX (such as Eqs. (4)-(5) for linear and (10)
for nonlinear case) models for the nonstationary procedures
in the observed input-output systems.

(2) For each model to be identified, expand all
the time-varying coefficients in the linear or nonlinear
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models by multiple B-spline basis functions, and construct
the Eq. (14).

(3) Select significant regressors from the expanded candi-
date terms by using ROLS algorithm described above.

(4) Determine the number of proper model orders for time-
varying models by AIC criterion (21).

(5) Approximate associated coefficients of the selected
model terms, and recovery the original time-varying param-
eters by Eq. (17), thus time-variant prediction errors for each
univariate and multivariate time-varying autoregressive mod-
els can be obtained.

(6) Calculate time-varying variances of the prediction
errors by Eq. (6), and achieve the measure of time-varying
Granger causalities based on the GC definition in Eq. (7) and
Eq. (12).

III. SIMULATION EXAMPLES
This section presents two simulation examples to illustrate
and verify the performance of the proposed TVGC detec-
tion method. The proposed method and three other methods
(i.e. RLS [13], short-windowing ARX [12] and OLS-
TVNARX [21]) are applied to the same simulation data, and
the results are compared.

A. TIME-VARYING LINEAR GRANGER CAUSALITY
For the TVLGC test, consider two TVARX (2, 2) models:

x (t) = a2,1 (t) x (t − 1)+ a2,2 (t) x (t − 2)

+ c2,1 (t) y (t − 1)+ c2,2 (t) y (t − 2)+ ξ1 (t)

y (t) = b2,1 (t) y (t − 1)+ b2,2 (t) y (t − 2)

+ d2,1 (t) x (t − 1)+ d2,2 (t) x (t − 2)+ ξ2 (t)

(22)

where

a2,1 (t) =

{
−0.6, 1 ≤ t < 400,
0.3, 400 ≤ t ≤ 1000,

a2,2 (t) = 0.1, 1 ≤ t ≤ 1000,

b2,1 (t) =

{
0.3, 1 ≤ t < 400,
−0.6, 400 ≤ t ≤ 1000,

b2,2 (t) = 0.1, 1 ≤ t ≤ 1000,

c2,1 (t) =


0, 1 ≤ t < 200,
0.6, 200 ≤ t ≤ 380,
0, 380 < t ≤ 1000,

c2,2 (t) =


0, 1 ≤ t < 200,
0.5, 200 ≤ t ≤ 380,
0, 380 < t ≤ 1000,

d2,1 (t) =

{
0, 1 ≤ t < 700,
0.6, 700 ≤ t ≤ 1000,

d2,2 (t) =

{
0, 1 ≤ t < 700,
0.5, 700 ≤ t ≤ 1000.

(23)

and ξ1, ξ2 areGaussianwhite noise processes with zeromeans
and variances:

var (ξ1) =

{
0.9, 1 ≤ t < 600,
2.0, 600 ≤ t ≤ 1000,

var (ξ2) =

{
2.0, 1 ≤ t < 600,
0.9, 600 ≤ t ≤ 1000.

(24)

It is known that causality relation between x and y is
given as follows: 1) from sample point 200 to sample point
380, the signal y causes the signal x; 2) starting with the
sample point 700, the signal x causes the signal y; 3) for
the first 199 sample points and the sample points between
381 and 699, there is no causal relation between x and y.
A second order TVAR model and a TVARX (2, 2) model
for the signal y are estimated to calculate the TVLGC from
x to y, and the same procedure is implemented for the case
from y to x. The two models defined by (22) are simulated
and total of 1000 data points are recorded. In order to verify
the effectiveness and robustness of the proposed method,
three different levels of white Gaussian noise (WGN), with
signal-to-noise ratio (SNR) being 20 dB, 10 dB, and 5 dB,
respectively , are added to the original simulation data.

The B-spline basis functions selected from {φmk : m =
3, 4, 5} with the scale index j = 3 are employed to approx-
imate the time-varying parameters. The ROLS algorithm is
then applied to select significant regressors from a large num-
ber of candidate terms and estimate the associated parame-
ters. Furthermore, the TVGCs are calculated by using both
(6) and (7). The TVGC results from the proposed method are
shown in Fig. 1 under three different noise levels, where the
bold font indicates the proposed method. For comparison,
the classical RLS algorithmwith a forgetting factor ρ = 0.98,
the ARX-based short sliding windowing algorithm and the
conventional OLS-TVARXmethod, are also used to measure
the TVGCs, and the associated results are given in Fig. 1.

For Fig.1, the classical RLS algorithm based approach
fails to faithfully track piece-wise changes in the directed
dependencies due to the slow convergence of the algorithm
even under less severe noise level (SNR = 20dB). For the
results of the TVGCs using the sliding window method, this
method may be insufficient to guarantee high time resolution
and track accuracy simultaneously because its efficiency is
heavily dependent on the choice of the sliding window size.
The OLS-TVARX method can detect abrupt time-varying
causalities while it is susceptible to background noises, and
fluctuations and estimation error can obviously be observed
in the detection plot especially when the data are severely
contaminated by noise, such as the case of SNR= 5 dB. Par-
ticluarly, the TVLGCs measured using the proposed method,
where the expected influence of y on x from sample point
200 to sample point 380 is confirmed by the positive values
of LGCy→x (t) (black solid lines), and the opposite influence
of x on y starting at the sample point 700 is identified by
the positive values of LGCx→y (t) (blue solid lines). The
values of the GC test for both LGCy→x (t) and LGCx→y (t)
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FIGURE 1. TVLGC detection results from simulation example A in (22)
using different methods under three noise cases. (a) SNR = 20dB,
(b) SNR = 10dB, (c) SNR = 5dB, where TVLGCs LGCY→X

(
t
)

and
LGCX→Y

(
t
)

are black and blue solid lines, and the dashed lines is the
associated time-invariant Granger causalities TIVGCY→X and TIVGCX→Y ,
respectively.

are nearly zero within the sample index intervals 1 ≤ t <
200 and 380 < t < 700, which indicates that there
is no causal interaction between two signals during these
sample index period. Furthermore, time-varying causalities

change slightly around the estimations of the associated time-
invariant Granger causality (TIVGC) (black and blue dashed
lines) within the stationary period 200 ≤ t ≤ 380 and 700 ≤
t ≤ 1000. In comparison with three conventional methods,
the proposed ROLS with B-splines approach can better track
the variations of the causalities and more accurately capture
different patterns of changes in the time-varying causality: the
constant value, smooth changes and abrupt changes, even in
the presence of different levels of noise.

In order to quantitatively evaluate the effectiveness of the
proposed method, the mean absolute error (MAE) and root
mean squared error (RMSE) of the TVGC estimates with
respect to the associated time-invariant values are calculated
for three SNR cases: 20 dB, 10 dB and 5 dB, respectively,
and the comparison results are shown in Table 2. It is obvi-
ous that the values of MAE and RMSE by the proposed
approach are the smallest ones among four methods for three
noise cases mentioned above. These results statistically con-
firm the superiority of the proposed multi-wavelets-based
ROLS method for detecting time-varying causality in the
presence of noise. The MAE and RMSE in this study are
defined as:

MAE =
1
N

N∑
k=1

|Ĝ (k)− G (k) | (25)

RMSE =

√√√√ 1
N

N∑
k=1

∥∥∥∥∥ Ĝ (k)− G (k)G (k)

∥∥∥∥∥
2

(26)

where Ĝ (k) represents the estimates of TVGC G (k), and N
is the length of data.

Additionally, the performance of the proposed scheme can
be further evaluated by the cross validation with different
folds. Specifically, the testing and training data subset are ran-
domly selected from the generated 1000 data points. TVAR
and TVARXmodels can be identified by four compared algo-
rithms on the training data, and the causality measurement
results from different approaches can be tested by the testing
data subset. The MAE of test results for 1~10 fold are given
in Fig.2. Estimation errors in Fig. 2 by the proposed ROLS
with multiple B-splines method are smaller than other three
causality prediction algorithms for all testing folds, indicating
excellent causal detection power of the proposed framework.
Particularly, it is worth noting that the superiority of the
proposed method is clearer when the noise level increases.
These results demonstrate that the proposed approach takes
the advantages of the good local approximation performance
of B-splines and the excellent generalization property of the
ROLS algorithm, and thus enables to track rapid variations in
time-varying causalities effectively, especially when data are
contaminated by severe noise.

B. TIME-VARYING NONLINEAR GRANGER CAUSALITY
To further test the performance of the proposed approach for
nonlinear causality detection, the following TVNARXmodel
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TABLE 2. A performance comparison of the causality test using four different methods with three SNR cases for example1 A.

FIGURE 2. MAE of fold index of cross validation using four compared methods under three noise cases for example A. (a) LGCY→X
(
t
)
,

(b) LGCX→Y
(
t
)
.

is used to generate simulation data:

y (t) = h1,1 (t) y (t − 1)+ h1,2 (t) x (t − 1)

+ h2,1 (t) y2 (t − 1)+ h2,2 (t) x2 (t − 1)+ e (t)

(27)

where x (t) is a random sequence uniformly distributed in
[−1, 1], e (t) is a Gaussian white noise sequence with zero
mean and variance 0.04. The time-varying parameters are
given below:

h1,1 (t) =

{
0, 1 ≤ t ≤ 400,
−0.5, 400 < t ≤ 1000,

h1,2 (t) =


0, 1 ≤ t ≤ 300,
−0.8, 300 < t ≤ 700,
−0.5, 700 < t ≤ 1000,

h2,2 (t) =


0, 1 ≤ t ≤ 300,
−0.5, 300 < t ≤ 700,
0, 700 < t ≤ 1000.

h2,1 (t) =

{
0, 1 ≤ t ≤ 400,
0.2, 400 < t ≤ 1000,

(28)

This means that the coefficient h1,2 (t) determines the
linear causal influence from x to y during the period of
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[301, 700], and the coefficient h2,2 (t) decides the nonlinear
causal influence from x to y during the same period. During
the period of [701, 1000], there is no nonlinear causal influ-
ence from x to y. As in Example 1, three different levels of
WGN, with SNR of 30 dB, 20 dB, and 10 dB, respectively,
are added to the original simulation data.

The TVNAR and TVNARX models, with a nonlinear
degree κ = 2, are constructed using the following four time-
varying parametric methods: 1) RLS with a forgetting factor
ρ = 0.97, 2) ARX with highly overlapped short sliding
windows, 3) OLS-TVNARX, and 4) the proposed ROLS
with multi-wavelets. The B-spline basis functions selected
from

{
φmk : m = 3, 4, 5, 6

}
, with the scale index j = 4,

are employed to approximate the time-varying parameters.
The associated TVNGC results using the above four methods
under three noise cases are shown in Fig. 3.

In Fig. 3, it is obvious that the TVNGC detection results
by the proposed method outperform the other three meth-
ods including the RLS, short-window ARX, OLS-TVNARX,
where the bold font indicates the proposed method.
Specifically, the RLS method from the first subgraph of
panels (a)-(c)) is unable to rapidly detect the abrupt changes
in nonlinear GC at the sample indices 300 and 700 under
these three noise conditions due to the deficiency of the slow
convergence. The second subgraph of panels (a)-(c) show
the results measured by short-windowing method, which
give lagged and inaccurate detection results for the nonlinear
causality in comparison with the proposed approach particu-
larly under severely noise case (SNR= 10 dB). From the third
subgraph of panels (a)-(c) calculated by OLS-TVNARX,
quite similar result as the proposed scheme is obtained for
the case of SNR = 30 dB, while with the level of WGN
increasing, the proposed approach performs better than the
OLS-TVNARX method especially when SNR = 10dB.
The MAE and RMSE of the estimated TVNGC by the four

methods are calculated using the associated time-invariant
causal index values as a reference, and the results are shown
in Table 3, where the statistic values confirm better tracking
ability of the proposed method for both linear and nonlinear
causal detection under all three noise conditions. Similar
to the previous linear example, the cross validation results
with 1~10 fold by the proposed multi-wavelets-based ROLS
method and other three compared approaches are presented
in Fig. 4. The smaller testing errors obtained have been
proved that the proposed scheme can achieve better causality
prediction efficiency than other threemethods especially with
a high level of noise, i.e., SNR = 10 dB. These results in
Figs. 3-4 and the statistical comparisons (Table 3) demon-
strate that the proposed method can be an effective tool for
analyzing GC of nonstationary signals even severely contam-
inated by noise such as real electrophysiological signals.

IV. APPLICATION TO MOTOR IMAGERY EEG SIGNALS
A. DATASET OVERVIEW
In this section, the proposed GC detection scheme is applied
to analyze time-varying directed interactions between motor

FIGURE 3. TVNGC detection results for model (27) using different
methods under three noise cases. (a) SNR = 30dB, (b) SNR = 20dB,
(c) SNR = 10dB, where TVNGCs are shown as blue solid lines, and the
black lines indicate the associated time-invariant Granger causalities
(TIVGCs), respectively.

imagery (MI) EEG signals. Here MI indicates the imagina-
tion of a particular motor action without any actual execu-
tion of limbs, which is showed promising effectiveness in
various research fields including neuroscience and
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FIGURE 4. MAE of fold index of cross validation for example B using four different methods under three noise cases.

TABLE 3. A performance comparison of the GC test for example B.

rehabilitation [46], [47]. Specifically, MI is the most
commonly used experimental paradigm in brain-computer
interface (BCI) system, which has a significant prac-
tical importance and provides a potential communi-
cation between the human brain and the computer
[48]–[50]. Recent investigations based on EEG report
the existence of the directional connectivity of motor-
related areas during MI tasks [51]–[53]. The EEG
dataset used in this study is available publicly from
PhysioNet [54], created by the BCI2000 instrumentation sys-
tem [55]. The EEG signals were recorded from 109 healthy
subjects during different MI tasks , consisting of 64-channel
data measured by the international 10-10 system [56], sam-
pled at 160 Hz. Specifically, three runs where the subjects
imagined movement of left hand and right hand are selected
in this study, and totally 21 trials with each duration of 4s are
included.

It has been proven that the neural activity related to the
hand movement imagery is almost exclusively contained
within channels C3, C4, and Cz [57]. Hence C3 and C4 chan-
nels are selected as an example for time-varying causality
study. Consider that the MI task is performed within the time
period 0~4s, EEG epochs of 6s duration, 1s before and 5s after
the stimulus are prepared for the GC analysis. In order to mit-
igate the effect of the nonstationarity embodied in the mean,
inter-trial variations, and the ensemble average, the point-
by-point is removed from each trial along with dividing
by the ensemble standard deviation [12]. The pre-processed
average event-related potentials (AERPs) of channels C3 and
C4 recorded from one subject during left and right hand MI

FIGURE 5. The AERPs of C3 and C4 during MI: (a) left hand; (b) right hand.

tasks are displayed in Fig. 5 (a) and (b).

B. TVNGC ANALYSIS OF MI EEG SIGNALS
Both TVNAR and TVNARXmodels with a nonlinear degree
κ = 2 are used to represent the potential causal relations
between channel C3 and C4 during left and right hand
imagery tasks. The initial TVNARX

(
ny, nx

)
model for EEG

signals is given below:

y (t) = $0 +

ny∑
i=1

$1 (i) y (t − i)+
nx∑
j=1

$2 (j) x (t − j)

+

ny∑
i1=1

ny∑
i2=1

$3 (i1, i2) y (t − i1) y (t − i2)

+

nx∑
j1=1

nx∑
j2=1

$4 (j1, j2) x (t − j1) x (t − j2)
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FIGURE 6. A typical example of the proper mode size determined by
Eq. (21) for one trial.

+

ny∑
i=1

nx∑
j=1

$5 (i, j) y (t − i) x (t − j) (29)

The third, fourth, fifth and sixth order B-splines with the
scale index j = 4 are employed to construct the TVNAR and
TVNARXmodels. For each trial, the optimal model order can
be determined by minimizing the AIC criterion in Eq. (21)
with the range of 1 ≤ ny ≤ 15 [13]. Fig. 6 shows a typical
example of the order selection process for one trial using (21),
and the optimal model order is equal to 5. Similarly, the opti-
mal model order of all trials can be calculated. For example,
the results of 21 trials sampled from channel C3 while one
subject performing left and right handMI activities are shown
in Fig. 7. Based on the constructed TVNAR and TVNARX
models by the proposed multi-wavelets-based ROLSmethod,
the TVNGCs between channels C3 and C4 in both directions
can be further evaluated by Eqs. (6) and (11).

Fig. 8(a) is the time-varying nonlinear causality results
between left hand MI EEG signals shown in Fig. 5(a), where
blue curve represents causality fromC3 to C4 and black curve
describes that from C4 to C3, and the dotted line denotes
the corresponding significance threshold. For the right hand
MI signals shown in Fig. 5(b), the causal relations between
them are given in Fig. 9(a), where the permutation thresh-
old is also represented as the black dotted line. In addition,
following the causal flow defined in [58], the time-varying
causal flows between channels C3 and C4 under different MI
tasks are also calculated for a better understanding of causal
connectivity from the aspect of graph theoretical analysis.
The associated topographical maps of the causal flows within
MI period 0-4s are presented in Fig. 8(b) and Fig. 9(b), which
give a spatiotemporal representation of the time-varying GC,
and thus make the changing process of the quantified causal-
ities to be visual and intuitive.

From Fig. 8, the strength of nonlinear interaction from
C4 to C3 (NGCC4→C3 (t)) is larger than that from C3 to
C4 (NGCC3→C4 (t)) during left hand imagery within the
period of 1.5~2.9s. Just as the topographical maps shown
in Fig. 8(b), when performing left hand imagery, Channel
C4 exerts strong influence on C3 over the time interval

FIGURE 7. The results of the optimal model order for 21 trials sampled
from channel C3 during MI: (a) left hand; (b) right hand.

FIGURE 8. (a) Time-varying nonlinear causalities between C3 and
C4 during left hand MI (blue curve: GC from C4 to C3, black curve: GC
from C3 to C4), and the significance threshold is represented by black
dotted line. (b) The associated topographical maps of causal flows.

[1.5s, 2.9s], and the associated causal flow is positive, hence
channel C4 can be treated as a causal source with respect
to C3. In contrast, the information flow from C3 to C4 is
negative and thus C3 is regarded as a causal sink [58]. On the
contrary of the case in Fig. 8, the values of NGCC3→C4 (t)
in Fig. 9 is significantly larger than NGCC4→C3 (t) for right
hand imagery over the time interval [1.0s, 3.2s], and the
associated topographical maps in Fig. 9(b) indicate that chan-
nel C3 is the causal source and channel C4 is the causal sink
in this time period under right hand MI task.
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FIGURE 9. (a) Time-varying nonlinear causalities between C3 and
C4 during right hand MI (blue curve: GC from C4 to C3, black curve: GC
from C3 to C4), and the significance threshold is represented by black
dotted line. (b) The associated topographical maps of causal flows.

Figs. 8-9 present that the transient changes of the nonlinear
GC between C3 and C4 under MI tasks can be clearly mea-
sured by employing the newly introduced TVNGC testing
method. Specifically, an obvious nonlinear causality from
C4 to C3 for the imagination of left hand and a strong nonlin-
ear directional connectivity from C3 to C4 during right hand
imagery are detected. These nonlinear results are consistent
with the recent studies reported in [51] and [52], and can bet-
ter reflect the neural connectivity variations between inherent
nonlinear EEG signals induced during MI tasks because of
the nonlinearity of the fundamental models used in the pro-
posed approach. Additionally, the precise time periods of the
interaction forMI can be well determined, such as [1.5s, 2.9s]
and [1.0s, 3.2s] for left and right hand MI, respectively, and
the instantaneous dynamical processes of causalities between
different brain regions over the whole MI tasks with 4s can be
clearly revealed, which demonstrates the applicability of the
high time resolution causal relations obtained by the proposed
framework.

V. CONCLUSION
A new TVNGC detection method has been proposed based
on a parametric modelling framework, where the associated
time-dependent parameters are approximated by a set of
multi-wavelet basis functions so that the initial time-varying
model can be re-formulated to a time-invariant linear-in-the-
parameters form. The ROLS algorithm is further applied to
reduce the linear-in-the-parameters model and the resultant
coefficients are then used to recover the original time-varying
parameters. Three case studies have been carried out to illus-
trate the performance of the proposed method, these include
two simulation examples with known causal relations and
an application to real EEG signals during MI tasks. The
simulation examples show that the proposed approach can
effectively detect time-varying linear and nonlinear causal
interactions, and its overall performance outperforms the
other three methods in the presence of high-level noise. For
real MI EEG signals, strong directional connectivities during
left and right hand imagery tasks have been observed, which
demonstrates that the proposed procedure is more powerful in
detecting fast-changing causalities between two nonstation-
ary biomedical signals.

Note that the proposed causal detection framework is
suitable for causality analysis between time-varying bivari-
ate systems, while the direct causal interaction among
three or more simultaneous time series and spectral causal
representation are not discussed in this early stage, which
may fail to reveal essential potential connectivities of the
whole brain EEG signals. In order to further improve the
applicability of the proposed method, the causal detection
framework will be further extended to multivariate cases and
spectrum representation evaluated by using multi-channel
EEG recordings. Another main limitation of the proposed
approach is its heavy computation load, which may be
much higher than existing adaptive detection methods, this is
mainly caused by the calculation and selection procedure of a
number of expansion terms considered for each basic model.
We intend to improve the efficiency of the time-varying GC
analysis to reduce the computation time by applying other
sparse representation algorithms like least absolute shrink-
age and selection operator (Lasso) or Orthogonal Matching
Pursuit (OMP). These results will be published in our future
work.
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