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ABSTRACT Video copy-move forgery detection is one of the hot topics in multimedia forensics to protect
digital videos from malicious use. Several approaches have been presented through analyzing the side
effect caused by copy–move operation. However, based on multiple similarity calculations or unstable
image features, a few can well balance the detection efficiency, robustness, and applicability. In this paper,
we propose a novel approach to detect frame copy–move forgeries in consideration of the three requirements.
A coarse-to-fine detection strategy based on optical flow (OF) and stable parameters is designed. Specifically,
coarse detection analyzes OF sum consistency to find suspected tampered points. Fine detection is then
conducted for precise location of forgery, including duplicated frame pairs matching based on OF correlation
and validation checks to further reduce the false detections. Experimental evaluation on three public video
data sets shows that the proposed approach is effective and efficient in detecting both unsmooth manipulation
and common smooth forgery and also with high robustness to regular attacks, including additive noise,
filtering, and compression.

INDEX TERMS Copy-move forgery, optical flow, coarse–to-fine detection, video passive forensics.

I. INTRODUCTION
The high speed development and spread of image and video
processing software, such as Photoshop, Adobe Premiere and
Final Cut Pro, makes it easier to tamper with digital visual
media without leaving obvious traces. However, malicious
tampering may cause serious legal and social problems. For
example, tampered images or videos may be used to provide
false evidence in court, or mislead the public about the truth
in news reports. Meanwhile, the vast and growing quantity of
multimedia information makes it difficult to detect tampering
using only human intuition. As a result, from 2001, automated
methods for digital visual media forensics have become as
routine as the application of physical forensic analysis [1].

Generally, digital forensic techniques can be classified
into active approaches and passive or blind approaches. Two
typical active forensic technologies are watermarking [2]
and digital signatures [3], [4], both of which embed specific
validation data in visual media during their production; but
these methods require specialized hardware, limiting their
application. The passive or blind forensic approaches verify
the genuineness by exploring intrinsic features in the media

left by acquisition devices ormanipulation acts, without using
any pre-embedded signals. It is a new research field emerging
in the last decade, and has been a promising tool in the
authentication field of digital visual media [5].

However, most of the passive forensic approaches were
devoted to the analysis of still images [6]. In recent years,
researchers have increasingly focused on video forensics,
not only because the amount of video data is increasing
at an explosive speed, but also because video tampering
is becoming more and more easy, to which a wide range
of possible alterations can be applied, such as frame dele-
tion [5], [7], frame insertion [8]–[10], and video compres-
sion [11], [12]. Among them, copy-move forgery to extend
or hide specific objects in the same video is one of the
common methods. It is fairly easy to operate, but difficult to
distinguish since the moved objects or frames are from the
same videos. Based on different operational domains, video
copy-move forgeries can be classified into regional forgery
and frame cloning. Regional copy-move tampering changes
only parts of the frame images, which is similar to image
copy-move, and can be detected by relatively mature image
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forensic techniques [1], [13]–[15]. The second type, frame
copy-move, occurs in the time domain. It is performed by
copying successive video frames and pasting them to another
non-overlapping position, aiming to conceal objects, clone
regions, or extend the time of some specific activities to forge
the event records.

In frame copy-move forgery, cloning and pasting suc-
cessive frames in the same video improves the impercep-
tibility and calculation difficulty, making it ineffective to
detect the changes of color, shooting parameters, illumina-
tion condition, etc. [1], but it leads to abnormal points in
the parameter distribution, and creates a high level of cor-
relation between the original and duplicated frames. Based
on this idea, different approaches have been developed to
detect frame copy-move forgeries, which can be divided
into two categories: image feature based and video feature
based. Algorithms of the first category extract and explore
image features of each frame to detect correlation, includ-
ing gray values [16], [17], image texture [18], [19], color
modes [20], and noise features [21], [22]. In the second
category, they exploit the unique features in videos, such
as motion features [23]–[25], video compression and coding
features (including size, bitrate, and frame type) [26], [27]
to analyze the side effect caused by copy-move operation.
Although various detection solutions towards video copy-
move forgery have been proposed, current schemes are faced
with the following challenges:
• High computation complexity. Pixel based or directly
correlation based approaches generally suffer from high
computational burden. It will be quite time consuming to
analyze a large number of frames in videos with a bulk
of data far greater than that of still images.

• Unstable detection performance. Methods based on
image features, including texture, color modes, noise,
and pixel gray values, are vulnerable to regular
attacks or post-processing on videos, like secondary
compression and additive noise. Few of the existing
detection approaches take the detection robustness into
account, and generally set fixed sensitive parameters for
detection.

• Limited applicability. Some methods have restrictions
to the detected videos in terms of video formats, number
of tampered frames, tampering ways (only for unsmooth
manipulation) or shooting ways (only with static cam-
era), which limit the practical applicability in video
forensics.

These challenges imply that a practical frame copy-
move forgery detection scheme is in high demand, which
should satisfy three basic requirements: low computation
complexity, high accuracy with good robustness, and strong
applicability. In this paper, we try to take the above three
requirements into consideration, and propose a new method
to detect copy-move forgery. Our main contributions are as
follows.
• To address the complexity of processing videos, we pro-
pose a coarse-to-fine approach based on the unique

FIGURE 1. Illustration of frame copy-move forgery.

video motion features, Optical Flow (OF), to detect
frame copy-move forgery. Coarse detection based on
OF sum consistency aims to quickly find candidate
tampered points, but it will lead to some false alarms.
The detail features, OF, of candidate frames are then
compared by OF correlation to match duplicated frame
pairs, and false alarms can be further reduced by vali-
dation checks. The calculation efficiency is superior to
most existing methods while guaranteeing the detection
accuracy.

• The algorithm maintains high detection accuracy even
under common attacks. Based on robust motion fea-
tures, we also design adaptive or stable parameters to
improve the robustness, and verify it by detecting tam-
pered videos with regular attacks or secondary tamper-
ing, including additive noise, filtering, and compression.

• The proposed method achieves strong feasibility and
applicability. It can deal with both unsmooth manipu-
lation and common smooth forgery, and has no restric-
tion to video formats and shooting ways (whether with
static or moving cameras). Experimental results on three
public video databases with different kinds of videos
validate its strong applicability.

The rest of the paper is organized as follows. In Section II,
we briefly introduce the related work for frame copy-move
detection. Section III describes the preliminaries in this work.
Our approach and experiments are presented in Sections IV
and V, respectively. Finally, the discussions are provided in
Section VI, followed by conclusions in Section VI.

II. RELATED WORK
Existing approaches for frame copy-move forgery detection
have been presented through analyzing the side effect caused
by copy-move operation, namely, the high feature correlation
between the original and duplicated frames caused by either
frame insertion or replacement, as shown in Fig. 1. Based
on the extracted feature type, it can be divided into two
categories: image feature based and video feature based.
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A. IMAGE FEATURE BASED METHODS
This category of algorithms explores image features of
each frame to detect frame correlation, such as pixel gray
values, image texture, color modes, and noise features.
Wang and Farid [16] earlier proposed a method based on
temporal and spatial correlation matrices of pixels in gray
images to detect duplication, finding that a high corre-
lation indicates an instance of frame duplication forgery.
In [17], the consistency of correlation coefficients of gray
values after normalization and quantization was calculated
to identify inter-frame forgeries. Liu and Huang [18] pre-
sented a dual positioning algorithm of video inter-frame
forgery detection by analysing Zernike opponent chromatic-
ity moments (ZOCMs) and coarseness (one attribute of
Tamura texture features). Because the correlation calcula-
tion is based on low-order ZOCMs, it has high calculation
efficiency. Liao and Huang [19] also used Tamura texture
features for tamper detection. Three components: direction-
ality, contrast and roughness were extracted and compared
to detect video copy-move forgery. In [20], the authors
designed a coarse-to-fine approach based on histogram dif-
ference of two adjacent frames in the RGB color space to
detect video duplication forgery in the temporal domain.
Inspired by the reliability of sensor pattern noise in iden-
tifying camera sources, Hsu and Hung et al. [21] explored
the correlation of noise residue to detect video forgeries
and achieved promising detection accuracy for fine-quality
videos. Kobayashi et al. [22] also proposed an approach to
detect suspected regions in videos by using the noise char-
acteristics of the acquisition device.

However, these methods are usually vulnerable to
regular attacks or post-processing on videos, like sec-
ondary compression and additive noise. For example, the
performance of methods based on singular value decom-
position (SVD) [10], gray value [17], and histogram dif-
ference [20] will suffer from noise or filtering, whereas
noise-based approaches [21], [22] drops dramatically when
the video is compressed by conventional codecs, such as
MPEG-2 or H.264.

B. VIDEO FEATURE BASED METHODS
This kind of algorithms generally achieves higher robust-
ness by exploiting the unique features in videos, such as
motion features, video compression and coding features
(including size, bitrate, and frame type). Chao et al. [9] and
Chao [23] calculated Optical Flow (OF) consistency to
detect video inter-frame forgery. They used a rough detec-
tion method and binary searching scheme to achieve good
performance. Kingra et al. [24] analyzed gradients of pre-
diction residual and OF for the detection of frame-based
tampering in MPEG-2 and H.264 encoded videos. It can deal
with frame insertion, removal or duplication, but the per-
formance is not satisfactory, especially for videos with high
illumination. Another forensic technique proposed in [25]
used Motion Vector Pyramid (MVP) consistency to detect

inter-frame forgery for static-background videos. In terms
of video compression and coding features, Subramanyam
and Emmanuel [26] made use of compression properties of
MPEG-2 video codec to select the frames in a GOP, and
combined histograms of oriented gradients (HOG) features to
detect video forgery. Intrinsic effects of double compression
on quantization errors of video coding were explored and
traced in [27] to detect frame insertion or deletion and double
compressionwith different GOP structures and lengths. How-
ever, these methods only analyzed the situation of MPEG-x
videos specifically, and mainly focused on static-background
videos or videos with no significant motion.

C. SUMMARY
To sum up, pixel based or directly correlation based
approaches generally suffer from high computational bur-
den, such as [16], [20], [22], [23], and [28] with multiple
calculations or comparisons of correlation matrices, whereas
methods based on video compression and coding features are
limited in applicability. Besides, few of the two categories
of approaches take the detection robustness into account,
and generally set fixed sensitive parameters for detection.
Therefore, in this paper, we try to make a tradeoff among
the detection efficiency, robustness, and applicability, and
propose a coarse-to-fine approach based on video OF features
and stable parameters to address frame copy-move forgery in
video forensics.

III. PRELIMINARIES
This section briefly describes the OF in video sequences, and
explores the influence of frame copy-move forgery on OF
correlation and OF sum consistency.

A. OF IN VIDEOS
OF is the distribution of apparent movement velocities of
brightness patterns in videos [29], which can give important
information about the image spatial arrangement and change
rate of objects. Because of its highly descriptive motion infor-
mation, it has been widely employed in multimedia process-
ing and computer vision field including image segmentation,
target tracking, face coding, mosaic construction, etc.

Differential methods are the most widely used tech-
niques for OF computation in image sequences. Among
them, the Lucas-Kanade Optical Flow, proposed by
Lucas and Kanade [30], is a local least square calculation
to compute OF sparsely for each blob. Because of the
rapid computation, simple application, and robustness under
noise [31], OF vectors extracted by Lucas-Kanade algorithm
have been widely studied and used. Fig. 2 gives an example
of a video sequence and shows the motion change vectors of
the corresponding pixel between adjacent frames in Lucas-
Kanade OF fields. The OF describes the details of movement
changes in each frame and reflects the difference or similarity
of frames in video sequences.

Since video copy-move forgeries across the temporal
domain always aim to conceal the motion records or change
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FIGURE 2. Ilustration of motion changes in the OF field.

the time of some specific activities, videos recording mov-
ing objects are much easier to tamper. Therefore, in videos
with copy-move forgery, OFs of adjacent frames can
be extracted to record the detailed difference of frame
images; high similarity of OFs between original and dupli-
cated frames created by copy-move operation permits
detection.

B. OF CORRELATION
To describe the OF similarity between frame images, the cor-
relation coefficient is taken as a measure. For two adja-
cent frames i and i + 1, the Lucas Kanade OF vector OFi
is decomposed into two figures: OXi in X direction and
OYi in Y direction. In a video with N frames, N-1 OF
vectors will be extracted and the correlation coefficients
between every two OFs can be calculated with the following
equation.

cor(i, j)

=

wid∑
m=1

hei∑
n=1

(OXi(m, n)− OXi)(OXj(m, n)−OXj)√
wid∑
m=1

hei∑
n=1

(OXi(m, n)− OXi)2 ·
wid∑
m=1

hei∑
n=1

(OXj(m, n)−OXj)2

(1)

where X can be replaced with Y ; OXi and OXj are the
respective means of OXi and OYi. wid and hei are the
numbers of pixels in each row and each column of the OF
figures, which are the same with the video frames. cor(i,j)
is the element in the correlation coefficient matrix ranging
from −1 to 1. A higher value indicates a higher similar-
ity between OXi and OYi, therefore, meaning the adjacent
frames i and i + 1 have higher similarity with j and j + 1,
respectively.

To demonstrate how copy-move forgery affects the OF cor-
relation, an example originated from a raw YUV sequence is
given in Fig. 3 and Fig. 4. The correlation coefficient matrices
of bothOX andOY in video sequences are shown after remov-
ing the diagonal elements. In Fig. 3(a) and (b), the correlation
coefficients between every two OFs are small in an original
video because the OF records the motion change details of
each corresponding pixel between two adjacent frames; dif-
ferent OFs have a relatively low correlation. But copy-move

FIGURE 3. OF correlation coefficient matrices of an original video.
(a). OX correlation coefficient matrix. (b). OY correlation coefficient
matrix.

FIGURE 4. OF correlation coefficient matrices of a copy-move tampered
video. (a). OX correlation coefficient matrix. (b). OY correlation coefficient
matrix. (c). OX correlation coefficient matrix after video compression.
(d). OY correlation coefficient matrix after video compression.

forgery will result in high correlation between original frame
OFs and duplicated frame OFs in videos. From Fig. 4(a), (b),
we can see that in a copy-move tampered video sequence,
the correlation coefficients between the original frame OFs
and the duplicated frame OFs are up to 1, significantly higher
than the normal values. Moreover, post-processing on videos
may be performed along with copy-move forgery, making the
tampering difficult to detect, such as adding noise, filtering,
and secondary loss compression. As shown in Fig. 4 (c), (d),
although the video sequence is subjected to H.264 compres-
sion, high correlation between the original frame OFs and the
duplicated frameOFs is still apparent, which can be identified
by setting a smaller threshold.

Because of the robustness of OFs, even though additional
operation introduces differences between initially identical
frame sequences, the motion features will change little.
Accordingly, the high OF correlation between original and
duplicated frames still exists and can provide evidence for
copy-move forgery detection.
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C. OF SUM CONSISTENCY
Since the calculation of OF correlation is point by point
in frames, the computational cost is high and will increase
rapidly as the image size and video length increase. There-
fore, the consistency of OFs, as a global feature, is helpful
to locate suspected tampered positions, and reduce multiple
calculations or comparisons of correlation matrices in forgery
detection.

We analyze the OF sum consistency to identify candidate
tampered points. In a video with N frames, for the ith frame,
the absolute values of OXi and OYi in each pixel (m,n) are
added with (2) as the OF sum, then the sum sequence com-
posed of N − 1 values is obtained.

sum_OFi =
wid∑
m=1

hei∑
n=1

(|OXi(m, n)| + |OYi(m, n)|),

i = 1, 2, . . . ,N − 1 (2)

Based on how frame copy-move forgery affects the OF
sum consistency, we classify it into two major types. The first
type is to directly clone some frames to a different position
in videos. The manipulation will generally result in sudden
motion spikes in the OF sum sequence, such as inevitably
unsmooth insertion because of motion in videos, or manip-
ulation on non-key frames that may aim to change or extend
the time of some key frames to obfuscate the event records.
Because of the continuity and regularity of the motion in
videos, the OF sum sequence will be relatively consistent,
meaning no obvious spikes in the sequence. But this type of
copy-move forgery will destroy the consistency due to frame
replacement or insertion, and bring larger difference between
adjacent frames, therefore, leading to anomalies in the OF
sum sequence. Fig. 5 (a) shows an example of the OF sum
sequence of a copy-move tampered video. There are some
small fluctuations in the sequence caused by movement of
objects, but these OF sums fluctuate slightly or gradually
and have minor differences from the neighbouring OF sum
values. However, spikes are manifest at the start and end
points of the duplicated frames because a copy-move forgery
destroys the consistency of the OF sums. These abnormal
spikes can be detected to locate the tampered positions.

Another type is the careful manipulation which smoothly
integrates the duplicated frames into videos to avoid the
abnormal motion spikes. The easiest way is to insert frames
in reverse order behind the tampered position, which is diffi-
cult to be detected by human eyes. For example, as shown
in Fig. 5(b), frames 100 to 119 are inserted in reverse
order behind frame 120, and then, frames 101 to 120 are
inserted in proper order behind the inserted part. There-
fore, the OF sum sequence is smooth at both the start point
(the 120th frame) and end point (the 160th frame) of the
duplicated frames, making it difficult to detect copy-move
forgery based on abnormal spikes. However, there are obvi-
ous local symmetries because of the reverse insertion, where
the symmetric centres (actually the start or end points of the
duplicated frames) can be detected to locate the tampered

FIGURE 5. OF sum sequence of tampered videos. (a). Tampered video
sequence with spikes. (b). Tampered video sequence with symmetries.

FIGURE 6. Examples of video frames. (a1). Hand movement. (a2). Sitting
person. (a3). Moving ball. (a4). Side-to-side motion. (a5). Remote
monitoring. (a6). Moving camera. (b1). Moving car. (b2) Walking person.

positions. Note that inserting frames in reverse order is gen-
erally effective in videos with less or no direction attributes
(see Fig. 6(a1-a6) as examples), but not feasible for videos
with moving cars or persons (as shown in Fig. 6(b1-b2)),
which can be easily detected by human observation.

D. SUMMARY
In summary, due to the highly detailed description of motion
information, OFs of adjacent frames can reflect the difference
or similarity of two pairs of frames. The high OF corre-
lation between original and duplicated frames created by
copy-move operation forms the basis for detection, but direct
correlation calculation will lead to high computation cost.
The OF sum consistency in video sequences can help to
locate suspected tampered positions first and reduce multiple
calculations of correlation matrices. Based on the OF and
its features in video sequences, a coarse-to-fine detection
scheme will be proposed to detect and locate frame copy-
move forgery for video forensics.

IV. PROPOSED DETECTION SCHEME
In this section, we demonstrate the details of the pro-
posed coarse-to-fine detection scheme for frame copy-move
forgery. We first introduce the overall framework of the
method. Then we describe the coarse detection based on
OF sum consistency to locate suspicious tampered points.
Finally, fine detection composed of duplicated frame pair
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FIGURE 7. The detection process of the proposed scheme.

matching and false detections reduction is presented in
detail.

A. PROPOSED DETECTION SCHEME
OFs and their high and stable correlation in copy-move tam-
pered videos offer basis for effective detection. For calcula-
tion cost reasons, the consistency of OFs is analyzed first to
locate suspected tampered positions. This process will help
to reduce multiple calculations and comparisons of correla-
tion matrices, but may lead to more false detections. Fine
detection based on OF correlation is then proposed to match
the duplicated frame pairs, and reduction of false detections
based on validation checks will be conducted further for
precision. If necessary, the duplicated sequence can be dif-
ferentiated and deleted to realize video recovery. The whole
detection process is shown in Fig. 7.

B. COARSE DETECTION
Temporal consistency is ubiquitous in original videos, where
temporally adjacent video shots usually share similar visual
and semantic content [32], leading to the similarity of features
extracted from adjacent video shots. Therefore, we define
the OF sum consistency as a high similarity in OF sums of
adjacent video frames. Copy-move forgery will affect the
consistency due to frame replacement or insertion, because
larger difference of OFs at the start and end points of the
duplicated frame sequencewill lead to anomalies (i.e., sudden
spikes and local symmetries) in OF sum sequences, providing
a quantitative measurement for video analysis and forgery
detection. Therefore, coarse detection based on the OF sum
consistency helps to extract abnormal points as suspected
tampered positions, avoiding multiple calculations in cor-
relation analysis. The algorithm of abnormities detection is
proposed as follows.

For a video sequence with N frames, we firstly extract
all individual frames and compute the Lucas Kanade OF of
every two adjacent frames i and i+ 1 (i = 1, 2, . . . ,N − 1),
obtaining OXi matrices in X direction and OYi in Y direction.
Then we compute the OF sums with (2) and get the OF sum
sequences composed of N-1 values. For the ith frame, we next
determine whether it is a suspected tampered position that
leads to a sudden spike or local symmetry. The mean value of
OF sums of its adjacent 2T frames is calculated with (3) to

detect whether it is a sudden motion spike.

sum_OFi =
1
2T

T∑
k=1

(sum_OFi−k + sum_OFi+k ) (3)

where T is the window size for determining the number of
adjacent frames. The rate of change βi is defined to describe
the fluctuation extent of the ith frame and is measured by (4).

βi = sum_OFi/sum_OFi (4)

If βi is larger than a threshold THR_F, meaning an abnor-
mal spike in sum_OFi is manifest, then the ith frame and its
adjacent frames, (i − 1)th, (i + 1)th frames, are identified as
suspected tampered positions.

Meanwhile, we determine whether the ith frame is a local
symmetric centre in the OF sum sequence to detect the copy-
move forgery of continuous reverse and forward insertion.
If the OF sum around the ith frame satisfies

sum_OFi+k ≈ sum_OFi−k−1, k = 0, 1, . . . ,T (5)

It indicates that the frames before and after the local sym-
metric centre have the approximate equivalent OF sums, and
maybe the duplicated frame pairs. Therefore, the ith frame
is identified as suspected tampered positions. The suspected
tampered position detection process is summarized in Algo-
rithm 1.

Algorithm 1 Suspected Tampered Position Detection
Input: sum_OFi (1 ≤ i ≤ N − 1), window size T , spike
threshold THR_F
Output: Suspected tampered positions: sudden spike set
S, local symmetric centre L
1: S = Ø, L = Ø
2: for i = 1; i < N ; i++ do
3: calculate sum_OFi according to Eq. (3)
4: calculate βi according to Eq. (4)
5: if βi > THR_F then
6: add i, i+ 1, i− 1 into S
7: end if
8: if 7

10 <
sum_OFi+k
sum_OFi−k−1

< 10
7 (k = 0, 1, . . . ,T ) then

9: add i into L
10: end if
11: end for

In copy-move forgeries, the suspected tampered positions
may be the start or end points of the duplicated frame
sequences. After the coarse detection, fine detection can find
duplicated frame pairs only around the tampered positions,
improving detection efficiency with little computation in the
OF correlation computing.

C. FINE DETECTION
Coarse detection based on rough OF sum features helps to
locate suspected tampered positions, but whether the anoma-
lies are caused by copy-move forgery needs fine detection
based on more detailed features to identify. In this section,
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two steps of fine detection are proposed, including duplicated
frame pairs matching based on OF correlation and reduction
of false alarms based on video inherent features.

1) DUPLICATED FRAME PAIR MATCHING
OF correlation calculation is used to match the duplicated
frame pairs after coarse detection. We extract OFs around
each suspected tampered point, and calculate their correla-
tion coefficients either with all the other OFs (for sudden
spikes) or with the OFs of the adjacent frames (for local
symmetric centres). Note that OX and OY have the same
size with the video frame image, meaning the calculation
of the OF correlation coefficients will be heavy. It is nec-
essary to sub-sample the input OFs to reduce the number
of pixels involved in the computation. Meanwhile, as shown
in Fig. 3 and Fig. 4, the correlation coefficient matrices forOX
andOY in the video sequences are nearly the same. Therefore,
we only calculate the OF correlation coefficients of OX to
reduce the computation load. The computing efficiency will
be improved, but it will have little influence on the OF
correlation coefficients distribution.

We first sub-sample the input OFs to reduce the number of
pixels involved in the computation. A factor d2 (scale every
axes by d) is introduced to sub-sample the full-size OFmatrix
OX, obtainingOX’. Then, the process of duplicated frame pair
matching is shown in Algorithm 2.

Algorithm 2 Duplicated Frame Pair Matching

Input: OF sequence OX
′

i (1 ≤ i ≤ N ), sudden spike set S,
local symmetric centre L, threshold THR_C1, THR_C2
Output: Duplicated frame pair set D
1: D = Ø
2: for each frame number i ∈ S do
3: for j = 1; j < N ; j++ do
4: calculate cor(i, j) according to Eq. (1)
5: end for
6: obtain the maximum correlation coefficient

cor(i, j)max , i 6= j
7: if cor(i, j)max ≥ THR_C1then
8: add (i, j), (i+ 1, j+1) into D
9: end if
10: end for
11: for each frame number i ∈ L do
12: k = 0
13: while cor(i+ k, i − k − 1) ≥ THR_C2 &

cor(i+ k + 1, i − k − 2) ≥ THR_C2
do

14: k = k + 2
15: end while
16: add (i – k –1, i+ k + 1) into D
17: end for

Algorithm 2 runs as follows. First, for each suspected
tampered frame number i that is detected as a sudden spike,
it calculates the OF correlation coefficients cor(i, j) (j =

1, 2, . . . ,N − 1) to find the maximum correlation coefficient
cor(i, j)max . The threshold THR_C1, which is always signifi-
cantly larger than the average value of all the OF correlation
coefficients cor(i, j), is used to determine whether the related
frame pairs (i, j), (i+ 1, j+ 1) of cor(i, j)max have high corre-
lation coefficients. Then, for each suspected tampered frame
number i that is detected as a local symmetric centre, it calcu-
lates the OF correlation coefficients of the frame pairs before
and after i frame. Note that the while loop will be repeated
for at most nt times, where nt is the number of copy-moved
frames. The threshold THR_C2 is used to get the successive
frames with high correlation coefficients. The final outputs
(with either two points from abnormal spikes or three points
from symmetric centres) of the algorithm are the candidate
start or end points of tampered frame sequences.

2) REDUCTION OF FALSE DETECTIONS
It is worth noting that fine detection for copy-move forgeries
depends on the coarse detection results with abnormal points
in OF sum sequences. However, tampering is not the only
factor accounting for the outliers in coarse detection phrase.
Other factors may also produce spikes or local symmetric
centres, leading to false detections. For example, some spikes
may come from the weaker OF sum consistency in videos
with quickly moving content, while local symmetry may be
derived from continuous static scenes or smooth movement
in videos. In fine detection based on correlation analysis,
adjacent frames with high similarity will also lead to false
alarms. Besides, additional operations may be performed
after copy-move forgery to cause interference and cover up
the abnormities.

Therefore, validation checks based on the inherent
features of videos will be introduced to reduce the inter-
ference frames as further fine detection. We define three
inherent features of videos in copy-move forgery detection as
follows.
Similarity. Adjacent frames or frames in a short time inter-

val have high similarity because of video consistency.
Similarity leads to high correlation between original adja-

cent frames and may cause false detections in matching
duplicated frame pairs. However, it can be distinguished by
detecting the frame number differences between the sus-
pected duplicated frame pairs. A small difference means the
two frames are close to each other, and the high correlation is
caused by video similarity instead of copy-move operation.
Continuity. Videos with continuous multi-frames carry

more information, and will be more likely to be tampered
than discontinuous or short-length frames with scarce actual
meaning.

Continuity ensures that the tampered frames are a succes-
sive sequence. That is, for a suspected frame pair (i, j), if both
(i−1, j−1) and (i+1, j+1) frame pairs have low correlation,
(i, j) should be removed as a false detection; if both (i − 1,
j−1) and (i+1, j+1) frame pairs have high correlation, (i, j)
should also be removed because it is not the end or start point
of the tampered frame sequence.
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Regularity.The detected duplicated video sequence has the
same length with its original sequence, meaning both the
intervals of the start points and the end points are equal.

Regularity means that the two detected sequences with
high correlation (i.e., the duplicated frame sequence and its
original sequence) should have the same length, and ensures
the integrity of the detection results.

Making use of these features in videos for fine detection
after OF correlation calculation, false alarms will be effec-
tively reduced. The main process is present in Algorithm 3.
After that, the tampered video can be recovered by removing
the duplicated frames.

Algorithm 3 False Detections Reduction
Input: Candidate duplicated frame pair set D, threshold
THR_C2, minimum number of tampered framesW = 10
Output: Duplicated and original frame sequences
1: for each frame pair (i, j) ∈ D do
2: if (|j− i|<W )||(cor(i− 1, j− 1), cor(i+1, j+ 1) <

THR_C2)||(cor(i− 1, j− 1), cor(i+ 1, j+ 1) >
THR_C2) do

3: delete (i, j) from D
4: end if
5: end for
6: choose (ip, jp), (iq, jq) ∈ D, ip < iq, and |ip − jp =
|iq − jq|, output {ip, ip+1, . . . , iq, iq+1} as duplicated
frames, {jp, jp+1, . . . , jq, jq+1} as original frames

7: for each frame pair (k, i, j) ∈ D do
8: if |k − j| < 2W do
9: delete (k , i, j) from D
10: else output {i+ 1, . . . , j− 1, j} as duplicated

frames, {k, k+1, . . . , i −1} as original frames

11: end if
12:end for

V. EVALUATION
We conduct a series of experiments to evaluate the perfor-
mance of the proposed detection scheme in this section. The
experimental data and evaluation standards are introduced
first. Then the involved parameters are determined with a
subset of tampered video sequences. Finally, we present
the experimental results and comparison analysis with four
existing classical algorithms in terms of detection accuracy,
robustness, efficiency, and applicability.

A. EXPERIMENTAL DATA AND EVALUATION STANDARDS
As there are no large-scale video datasets available for
copy-move forgery detection [33], most of which are for
regional copy-move forgery, we simulated the frame copy-
move forgery by randomly selecting a sequence of frames in
the experiment for general detection as [16]–[20], [23]–[28],
and [34] did. The original test data composed of 115 videos
come from three public video databases: 1) 55 stan-
dard YUV sequences downloaded from the video trace

TABLE 1. Details of the video datasets.

library (http://media.xiph.org/video/derf/), denoted as VTL;
2) 36 videos in the AVI or MOV format downloaded from
SULFA (Surrey University Library for Forensic Analysis,
http://sulfa.cs.surrey.ac.uk/videos.php), denoted as SULFA;
3) 24 videos in the y4m format from Derf’s Test Video Col-
lection (http://media.xiph.org/video/derf/), denoted as DERF.
Among them, 70 sequences were taken from stationary cam-
eras and 45 were taken from moving cameras, both including
videos with slow or fast movements.

Video copy-move tampering was realized in two ways.
We simulated the first type, Type I, in 50 sequences by
selecting a random location in each original video sequence,
and duplicating a number of successive frames to another
non-overlapping position. For the second type of copy-
move forgery, Type II, we selected a random location and
made continuous reverse and forward insertion of the frame
sequence after the position in each of another 50 videos.
The remaining 15 video sequences are original without copy-
move forgery. Table 1 shows the details of the video datasets.
Then, the tampering process was repeated three times,
each time selecting different number of frames, namely,
10, 20, and 40 respectively, to be duplicated to a new
location. Finally, the video dataset with 3 groups, totally
315 tampered videos, was formed; it will be available from
http://202.114.114.212/whu/yuv_download.html.

To analyze the performance of the proposed scheme,
the recall rate R and precision rate P were used to evaluate
the results, as defined in (6), (7).

R =
Nc

Nc + Nm
(6)

P =
Nc

Nc + Nf
(7)

where Nc is the number of correct detection, Nm repre-
sents the number of missed detections, and Nf denotes the
number of false positives. A high R means a low missing
detection rate, and a high P indicates a low false detection
rate.

The computing environment was a windows 7 system with
an Intel i3 processor, and the programming language was
C/C++ in Microsoft Visual Studio 2005.

B. PARAMETER DETERMINATION
After generating the tampered video set, we used a subset (as
shown in Table 2) to determine optimum parameters to get
the proper R and P, including two variable factors (the win-
dow size T and sub-sampling factor d), and three thresholds
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TABLE 2. Sequence numbers of the subset for parameter determination.

FIGURE 8. Examples of videos to determine THR_C.

(the fluctuation threshold THR_F, the correlation thresholds
THR_C1 and THR_C2).
We first describe the process to select the threshold

THR_C1, which is used to determine whether the maximum
correlation coefficient cormax of each suspected tampered
spike (see Algorithm 2) is large enough to be detected as
duplicated frame pairs. Considering that the value of cormax
is related to the video content, we studied the relationship
between cormax and cor of each Type I tampered video to
determine THR_C1. We set both the window size T and sub-
sampling factor d to 2, the threshold THR_F to 1.5, and
THR_C2 to 0.2. The result on 60 Type I tampered video
sequences is shown in Fig. 8. It can be seen that the cor
values are generally smaller than 0.2. Taking into account
the cormax− values, which represent the maximum values
removing the tampered frame value, we set THR_C1 as an
adaptive threshold, as follows.

THR_C1 =

{
0.3, cor < 0.2
2× cor, cor ≥ 0.2

(8)

A smaller cor means the suspected frame has low OF
correlation with other frames (because the slow or local
motion of video content leads to small values of OF, espe-
cially in most surveillance videos, see Fig. 9(a2) and (b2) as
an example). Then a smaller threshold will be set to locate its
duplicated frame with the maximum correlation coefficient.
Inversely, from Fig. 9(c2), we can see that the video captured
by amoving camera trends to have a higher cor , and therefore
needs a larger threshold to find duplicated frame pairs. The
robustness of the relationship between cormax and cor was
also tested on videos with additive Gaussian white noise, fil-
tering, or secondaryH.264 compression as secondary forgery.

TABLE 3. Detection time (s/frame) of different window size T.

TABLE 4. Detection time (s/frame) of different sub-sampling factor d.

As shown in Fig. 9(a3-a5), (b3-b5), (c3-c5), the results still
satisfy (8) because of the robustness of OF features.

Then, the window size T was determined. The detection
process and results under different T values are illustrated
in Fig. 10(a1), (a2) and Table 3. We can see that a larger
window size T gets a relatively higher P but a lower R and
longer computation time, while a smaller window size takes
shorter computing time but is more likely to result in false
detection. Because a smaller T helps to locate more abnormal
values as spikes or local symmetric centres, it therefore results
in a higher recall rate R but a lower precision rate P. For
a rational R, P and computation time, 2 was selected as the
value of window size T .
To determine THR_F, we varied it from 1.1 to 3.1 with

a 0.4 step and got the detection results as shown
in Fig. 10(b1), (b2). With the increase of THR_F, the average
precision rate P of three datasets rises, but the recall rate R
declines because some sudden spikes caused by copy-move
forgery are not obvious enough to be detected. For both higher
R and P, THR_F was set at 1.5.

The detection result for selecting the sub-sampling factor
d in OF correlation calculation was illustrated in Fig. 10(c1),
(c2) and Table 4. A larger d contributes to a shorter computing
time but sub-sampling the OF will reduce the difference and
lead to more false detection. Therefore, for a relatively high
R, P and short computation time, d was selected as 2.
The last step was to determine THR_C2 for finding

duplicated frame pairs around suspicious symmetric centres.
As shown in Fig. 10(d1), (d2), when THR_C2 increases,
both the average precision rate P and recall rate R can reach
1 for the Type II copy-move forgery. For parameter stability
reasons, THR_C2 was set to be a smaller value 0.2.

To summarize, the experiment results show the effects
of different parameters on the detection performance. These
parameters are then tested to evaluate the robustness and
efficiency of the proposed method in the remaining video
subset.

C. ACCURACY AND ROBUSTNESS
In order to evaluate the accuracy and robustness of the algo-
rithm, some common attacks were simulated as secondary
forgery after copy-move forgery, including additive Gaussian
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6p7.8

FIGURE 9. Examples of videos to determine THR_C1.

FIGURE 10. Detection results of different parameters.

white noise, filtering, and secondary H.264 compression.
The detection performance of the proposed approach has
been tested on the remaining tampered videos with differ-
ent types and different tampered numbers. Table 5 shows
the average results of the algorithm on three databases
with no attack, with additive Gaussian white noise using
different PSNRs, filtering with different 3×3 filters, and

secondary H.264 compression using different bit rates,
respectively.

The experimental results show that under different inten-
sity of Gaussian noise or filtering, the precision rateP remains
above 0.950 owing to the fine detection, while the recall rate
R was above 0.920 except the cases that 10 dB or 20 dB
noise was added, which reduced R to 0.904 and 0.917
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TABLE 5. Detection results of the proposed method.

respectively. This is because more noise in poor-quality
images will introduce more differences between initially
identical frame sequences, leading to a higher omission ratio.
Similarly, when the bit rate of H.264 compression declines,
especially to 1Mbps and 0.5 Mbps, the poorer quality of
videos has a great influence on the OF correlation, and results
in a lower R. But in most cases, the proposed algorithm
achieved both high precision rate and recall rate for frame
duplication detection.

Next, we compare the performance of the proposedmethod
with four existing algorithms in terms of detection accu-
racy and robustness. We re-implemented the competing algo-
rithms according to the algorithm description in their papers
and used the same way to simulate frame copy-move forgery.
To show the influence of datasets on detection performance,
we tested on different datasets, i.e., VTL, SULFR, and DERF,
to compare the detection results, as shown in Fig. 11.

By vertical comparison from the trend of each curve
in Fig. 11, we can see that the detection performance of
OF-based methods (the proposed and [9]) is stable because
of the robustness of OF. The Zernike moment based method
in [18] converted each frame from the three-dimensional
RGB space into two-dimensional opponent chromaticity
space, eliminated some noise of images, and also achieved
relatively good robustness. The robustness of the methods
in [10] and [16] is mainly influenced by filtering process
because filtering on poor-quality video frames will have a
larger influence on the correlation of pixel-based methods,
therefore leading to more false or missing detection.

The horizontal comparison indicates that the proposed
method achieved a higher R and P owing to the characteristics
of OF and the coarse-to-fine strategy. Note that although
the fixed and sensitive threshold parameters (to detect out-
liers or high correlation) in [9], [10], and [18] have been
adjusted to detect robustness in the experiments, these meth-
ods cannot deal with the type of copy-move forgery with
smooth insertion, which was not included in the detection
results. The method in [18] performs poorly in detection due
to its limitation in dealing with videos with fast movements
of the tampered area, while [9] was affected by its rough
calculation on spikes detection. The method proposed by

TABLE 6. Comparison results in efficiency and applicability.

Yang et al. [10] performed better based on SVD (singular
value decomposition) feature and double-checking, and [16]
benefited from its similarity analysis of both temporal and
spatial correlation matrices. Moreover, through comparison
of Fig. 11(a1-a2) and (b1-b2), we can see that the perfor-
mance on dataset SULFR is poorer. The reason is that it
includes more surveillance videos with large range of static
scene, leading to less obvious characteristics of tampering.

D. EFFICIENCY AND APPLICABILITY
Table 6 summarizes the performance of the four com-
parison methods and the proposed algorithm in terms of
detection efficiency and applicability. The method [18] has
the shortest computation time (1.095 µs/pixel) due to its
coarse-to-fine scheme and lower-dimensional ZOCMs fea-
tures for similarity calculation. The proposed method also
benefited from the coarse-to-fine strategy and required about
1.623 microseconds for each pixel, much less than that
of [9], [10] and [16]. At the same time, it achieved better
applicability, higher detection accuracy and stronger robust-
ness than other approaches.

VI. DISCUSSIONS
Based on the experimental results, we discuss the parameter
robustness and limitation of the proposed method in this
section.

We attribute the robustness of the method not only to
the robustness of OF features, but also to the stability of
parameters. Two variable factors, namely, the window size T
and sub-sampling factor d , mainly for improving calculation
efficiency, are related to the resolution or length of video
sequences. Both fixed at 2, they could generally apply to
most video sequences. The thresholds, THR_F, THR_C1 and
THR_C2, making more contribution to the robustness, are
also stable for different videos. The main reasons are as
follows. 1) The fluctuation threshold THR_F is a ratio, used
to determine whether the fluctuation extent can be detected
as spikes caused by tampering. In this paper, we describe the
fluctuation extent by (4): βi = sum_OFi/sum_OFi. It can be
seen that for videos with faster motion, both the sum_OFi and
sum_OFi will be larger, while for videos with slower motion,
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FIGURE 11. Comparison results in accuracy and robustness. (a1). P on dataset VTL. (a2). R on dataset VTL. (b1). P on dataset SULFR and DERF.

they both will be smaller. Therefore, the ratio is relatively sta-
ble. 2) For THR_C1, we set it as an adaptive threshold, which
is dependent on the video content to determine whether the
maximum correlation coefficient of each suspected tampered
frame is large enough to be detected as duplicated frame pairs.
3) THR_C2 is used to find duplicated frame pairs around
suspicious symmetric centres. It is an empirical value. As
the correlation coefficient of two frames in the original video
tends to be very small due to OF’s highly detailed description
of motion; therefore, it can be set as a smaller value for
parameter stability reasons (see Fig. 10(d1), (d2)).

However, one limitation of the proposed method is that the
recall rate of detection is sensitive to the coarse detection.
It may miss some copy-move forgeries which do not have an
influence on OF sum consistency, such as tampered videos
with a largely static scene and other types of carefully pre-
pared manipulation. Reducing the threshold THR_F helps to
detect these cases (according to Fig. 10(b2)), but the advan-
tage of high calculation efficiency of coarse detection will be
reduced.

According to the idea of taking different detection algo-
rithms as a forensics tool set (FTS) to provide reliable and
sufficient evidence [35], the proposed method will serve as a
promising tool with high efficiency and robustness for com-
prehensive detection of frame copy-move forgery in combi-
nation with other forensic tools.

VII. CONCLUSION
A practical frame copy-move forgery detection scheme
should achieve low computation complexity, high accuracy
with good robustness, and strong applicability. In this paper,
we present a coarse-to-fine approach based on video OF
features and stable parameters to make a tradeoff among the
three requirements in frame copy-move forgery detection.
We validated the method on different kinds of videos with
two common types of copy-move tampering, i.e. one with
unsmooth forgery and one with smooth manipulation. Exper-
imental results show that the proposed detection approach
achieves high accuracy under different common attacks with
low computation complexity and strong applicability.

Our future research will focus on improving its abil-
ity to deal with tampered videos with largely static scene
and more careful manipulation. For tampered videos with a

largely static scene, we will research on how to describe the
extent of video movement to adaptively adjust the parame-
ters and detection process. For carefully prepared copy-move
forgery or regional copy-move forgery in videos, we will try
to combine different video features and techniques to enrich
the method. To create a more convincing and large-scale
video forgery dataset is also a goal of future work.
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