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ABSTRACT Performance in autonomous driven vehicles is susceptible of degradation when traversing
different terrains, thus needing motion controllers to be tuned for different terrain profiles. Such tuning stage
is a time consuming process for the programmer or operator, and it is often based on intuition or heuristic
approaches, and once tuned, the performance of the vehicle varies according to the terrain nature. In this
context, we provide a visual based approach to identify terrain variability and its transitions, while observing
and learning the performance of the vehicle using machine learning techniques. Based on the identified
terrain and the knowledge regarding the performance of the vehicle, our system self-tunes the motion
controller, in real time, to enhance its performance. In particular, the trajectory tracking errors are reduced,
the control input effort is decreased, and the effects of the wheel-terrain interaction are mitigated preserving
the system robustness. The tests were carried out by simulation and experimentation using a robotized
commercial platform. Finally, implementation details and results are included in this paper, showing an
enhancement in the motion performance up to 92.4% when the highest accuracy of the terrain classifier
was 84.3%.

INDEX TERMS Motion controller, computer vision, terrain identification.

I. INTRODUCTION
In industrial scenarios, the performance of motion con-
trollers in robotic vehicles is affected by the nature of the
terrain and its changes, being also susceptible to slippage
and skidding situations. The development of motion con-
trollers for wheeled mobile robots usually ensure optimal
(or acceptable) performance only under nominal condi-
tions (neglecting ground-wheel contact), where the kine-
matic/dynamic constraints imposed on pure rolling motion
of the vehicle are strongly satisfied [1]–[4]. Other solutions
attempt to avoid certain navigation surfaces by deviating the
vehicle from the trajectory to be tracked [5], or re-scheming
the reference route [6], [7]. However, in real-life robotic tasks,
such is the case of mining or agricultural applications, some
of these considerations are hardly met due to the complexity
in the vehicle dynamics, large variability of the terrain and
constrained workspaces [8]–[11].

Several solutions for the trajectory tracking problem in
ground robotic vehicles interpret the terra-mechanical effects

as disturbances [12], [13], causing con trol performance
degradation in the sense of decreasing the motion accuracy
as well as increasing the control input effort of the actua-
tors [14], [15]. In addition, Klancar and Krjanc [16] provide a
robust motion controller based onmodel, in which the control
policy against disturbances was obtained by minimizing a
cost function subject to speed and acceleration constraints,
with the aim of avoiding slipping. Similarly, in [17], predic-
tive controllers in cascade configuration provided capabilities
of controlling speed, yaw-rate and side-slip angle for low and
then extended to high vehicle’s speeds. In addition, an accept-
able performance of the robot and a significant reduction of
the effects of disturbances were achieved in [18]–[20], but
further improvements can be reached if not only relying on
the inherent robustness of the feedback loop.

Industrial tasks can be characterized by models of high
repeatability, thus forming systematic circumstances under
which original control strategies can be made more robust
against uncertainties. For instance, in [21]–[23], the control
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design allowed to improve the vehicle performance through
predicted control actions where additive bounded uncertain-
ties are estimated using recurrent learning processes, with
the aim of reducing real and analytical model discrepancies.
On the other hand, in [24], the controllers are provided with
adaptation capabilities through changing models in order to
compensate repetitive variations in a family of linear systems.

The behaviour of a motion controller may be conditioned
by the vehicle’s model and its operation conditions. A fixed
control structure –or constant control parameters– does not
properly solve the tracking problem without an impact on the
vehicle’s performance [25], [26]. In this context, the use of
adaptive control techniques seems to be appropriate to re-
adjust motion controllers subject to the multiple variables
and conditions, as reported by [27]–[29]. For example, [30]
employs an adaptive steering control strategy to compen-
sate undue heading oscillations –caused by overload and
terrain conditions– by means of time-varying proportional
controllers to enhance the tracking accuracy of an automated
farm tractor. In [31], it is shown that motion controllers can
guarantee acceptable performance if an appropriate set of
gains is scheduled to avoid large longitudinal and lateral
tracking errors regardless of the vehicle’s model.

As long as more details are considered in the vehicle
model dynamics, the complexity of the control system might
increase and a further model analysis would be necessary.
Such as in the case shown in [32], where a speed control sys-
tem for large-scale vehicles is described by a high non-linear
model and decomposed in local linear models in order to
switch the controller among different operating regimes. The
robust control scheme based on gain scheduling is designed
to track a full speed range and responds to disturbances
characterized by terrain slopes and rolling resistance. On the
other hand, [33] proposes a motion controller for speed reg-
ulation through an adaptive throttle and break control system
with variable model parameters. Smooth changes in the con-
trol parameters experiences non-abrupt manoeuvring unless
external disturbances make the vehicle deviates from its ref-
erence. In [34], a disturbance rejection algorithm detects slip
occurrence with a vision system in order to re-orienting an
autonomous excavator to a desired position. In this scenario,
if certain terrain characteristics are identified to determine
the type of navigation surface (e.g., texture and variability),
it becomes possible to improve the performance of themotion
controller by changing the controller’s parameters.

One of the issues still to be solved lies in the reliability of
autonomous navigation systems for ground robotic vehicles
subject to terrain constraints, where the robot’s resources may
be compromised due to effects of the wheel-terrain interac-
tion. A suited compensation of these effects would allow to
a more accurate trajectory tracking system with a reduced
energy requirement, which is crucial in the industrial field.
If one considers different navigation surfaces under which
the vehicle travels, the performance of the motion controller
could be adjusted to those terrain conditions by means of
variable controller parameters.

The main contribution of this paper lies in finding the most
suitable set of gains for trajectory tracking controllers using
probabilistic approaches. Such approaches allow to self-tune
the system and thus to improve performance through the
automatic change of gains depending on the type of terrain
on which a vehicle navigates. The search for the most suitable
set of gains is based on the minimization of a combined cost
criteria concerning trajectory tracking errors, control input
effort of the controllers and eventual terra-mechanical effects.
The set of gains are obtained per terrain type during initial
navigation scenarios, and then tested when terrain transitions
appear. The type of navigation surface is detected using a
low cost time of flight (ToF) camera which provides infra-
red (IR), depth and color information. These data sources
are employed to detect five types of common field terrains,
namely: grass, silty, stony, plowed and pavement.

Then, we test and assess available probabilistic approaches
generally employed in the machine learning field, but here
used to estimate the best set of gains for the trajectory tracking
controllers. We cover the problem from two probabilistic
points of view: implementing an Expectation Maximization
approach to find the tuning parameters, and using a Gaus-
sian Mean Shifting approach. The two methods differ in the
handling of data: the first considers a probabilistic distribu-
tion for all estimates of the controller parameters, i.e., the
controller parameters are treated as random variables with
uniform probability distribution; the second approach iden-
tifies the behaviour of the controller parameters after several
iterations to formulate the best estimate, i.e., the controller
parameters are also treated as random variables but evaluated
in a mobile range. Moreover, the automatic tuning of the
controller parameters is based on two key points: (i) visual
identification of terrain characteristics, i.e., variability and
texture; (ii) dynamic variation of the controller parameters
using an occurrence matrix and stability criterion.

The presented approach is implemented and tested on
three motion controllers chosen from the scientific litera-
ture: [35]–[37], although others can be used instead. Thus,
for each detected terrain type, our method is able to select the
optimal set of gains which allow to improve the efficiency of
the motion controllers in terms of the pre-defined assessment
metrics. Design considerations included in the paper are fol-
lowed by numerical simulations and results from extensive
experimental trials on real agricultural environments using a
robotised ground vehicle.

The paper is organized as follows: Section II includes
a brief description of the system and its methodology.
Section III explains the algorithm of terrain type classifica-
tion. Section IV shows the implemented trajectory tracking
controllers, metrics used to evaluate the performance of these
controllers and a detailed description about the methodology
of controller parameters selection. Section V shows simula-
tion results. Section VI describes the initial considerations
to carry out the trials, and it discusses the achieved results.
The paper ends in Section VII with the conclusions of our
work.
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FIGURE 1. Layout of the robotic system architecture.

II. SYSTEM OVERVIEW
The scheme of the proposed solution is depicted in Fig. 3.
The system is composed by an unmanned ground vehicle and
a remote control point (both systems are connected through a
wireless link), thus the solution has two processing units: an
on-board computer capable of driving the positioning system,
the control system and the terrain surface detection (standard
PC with an Intel Core i5-5200U, 2.2GHz processor and 2GB
RAM of memory), whereas the second unit (external) is used
to switch two operation modes: manual and automatic (mini
PC with Intel Atom N550 , 1.5GHz processor and 2GB RAM
of memory). The manual mode consists in driving the vehicle
towards a close initial position of the reference trajectory,
whereas the automatic mode enables the vehicle to navigate
autonomously along the trajectory. In addition, a switching
function allows to recover the vehicle from automatic to
manual mode for repeated operation manoeuvres.

The robot is adapted and equipped with a set of sensors
at the Advance Center of Electrical and Electronic Engineer-
ing (AC3E), specifically, in the Industrial and Autonomous
Robotics Research Group, from Federico Santa María Tech-
nical University, Chile. The system includes positioning
sensors such as GPS with an incorporated IMU from fac-
tory (from Vector Navigation VN-2000), which is mounted
aligning with the longitudinal axis of the robot. Also,
a LiDAR sensor (from Hokuyo UTM-30LX) was mounted
in front of the vehicle to acquire range information, and
inner encoders to strength the localization system. Odometry
localization information constitutes the main responsible of
positioning the robotised vehicle. Regarding to the surface
detection system, it relies on IR, color and depth infor-
mation acquired from a Kinect for Windows V2

TM
(from

Microsoft Corporation, USA) device. According to data pro-
vided by the manufacturer, the color camera has a resolution
of 1920 × 1080 pixels. The IR camera (used also to estimate
depth) has a resolution of 512 × 424 pixels with a field of
view of 70.6 × 60 degrees and a lateral and longitudinal
view range of 1 meter. The sensor was mounted on the robot

pointing forward and down, with a pitch inclination of
−36 degrees, as shown in Fig. 3. This configuration allows
to obtain a view of the terrain in a range of 0.15 to 0.9 meters
in front of the robot chassis avoiding direct sun light. Addi-
tionally, the system is supplied with a 12v battery bank and a
power inverter connected to the Kinect sensor.

III. TERRAIN SURFACE DETECTION
To recognize the type of navigation surface where the vehi-
cle traversed, we employed a supervised learning technique
based on a number of exemplar frames for each surface class.
In order to provide variety, these frames were acquired under
different illumination conditions: with sunlight, partially and
fully shadowed. Our detection system is capable of recog-
nizing grass, silty, stony, plowed and pavement. Examples of
training images used in this work are shown in Fig. 2.

The implemented methodology was first evaluated off-
line, and then incorporated to the control system. For the
testing process, data was acquired from several trials in an
agricultural field that contained the five classes under study.
Later, each class was labelled using our algorithms, and the
overall accuracy was calculated. To achieve this aim, each
frame was handily labelled to provide the ground truth of
the experiments. Once validated, the detection system was
capable of providing the identified labels corresponding to
the detected soil surface in such a way the control system
switches its gains under request for each sample time. It is
noteworthy that data acquisition and processing was imple-
mented in C++ and Matlab (MathWorks, USA), in a shared
memory framework. The detecting stage can be divided in
three steps: raw data pre-processing, feature extraction, and
classification as described below.

A. RAW DATA PRE-PROCESSING
Incoming data from Kinect V2 needed normalization,
de-noising and fitting procedures to apply the feature extrac-
tion and classification, addressed as follows:
• The sensor was not placed parallel to the ground, obtain-
ing a rotated depth measurement. This distortion was
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FIGURE 2. Examples of terrain classes detected in this work. From top to
bottom: grass, silty, stony, plowed and pavement. The first and second
columns show RGB and false color IR images. The third column depicts
the point cloud used to obtain depth information.

FIGURE 3. Graphical description of the kinematic model used in this
work.

first corrected by using the orientation of the IMU sen-
sor. In addition, depth measurements of flat surfaces
from the Kinect kept a slightly distortion (caused by
the modulation process in the measurement), which was
characterized and subsequently removed following the
guidelines presented in [38].

• Color and IR cameras have different resolution and
field of view. Thus, RGB, IR, and depth images were
registered using the intrinsic parameters of the cameras
and the focal distance among them. This step allowed to
obtain a coloured point cloud of the terrain.

• Some points of the IR and depth images were noisy mea-
surements, specially when working under direct sun-
light. In this scenario, pixels beyond a threshold were
removed and replaced with an average intensity value of
their neighbours.

B. FEATURE EXTRACTION
The terrain classification relies on characterizing the tex-
ture of the acquired IR images using the approach proposed
by [39]. This technique consists on convolving the imagewith
a filter bank (constituted of N filters), in order to produce
a series of filter responses (i.e., an N -dimensional vector
for each pixel). Subsequently, c exemplar filter responses
(i.e., textons) for each class are obtained using a standard
clustering algorithm. Once all training images have been
processed, these textons are grouped in order to obtain a
texton dictionary (TD), which is used to create the learning
models. Following, each pixel filter response is labelled with
the index of the closest texton in the dictionary, which allows
to create a frequency histogram for each training image.
Finally, these histograms correspond to the features used to
train the classifier. In order to assign a label `, these features
are also obtained for the test images, and used as inputs to the
supervised classifier previously trained.

In this work, we used a MR8 filter bank, which consists
of a set of 38 filters including: a Gaussian, a Laplace of
Gaussian, an edge and bar filters. The last two at 3 scales and
6 orientations per scale. However, only 8 filter responses are
obtained by keeping the maximum value of the edge and bar
filters across the orientations (i.e., an 8 dimensional vector
per pixel). According to [40], this operation allows to obtain
rotational invariance. In order to create the TD, we used
the well known supervising technique K -means ( [41]), with
c = 15 clusters per class, obtaining a total of 75 textons
in the dictionary. Later, the histograms were obtained using
the Euclidean distance as metric to measure the closeness
between each element of the TD and a pixel filter response.
The histograms were normalized in order to compare images
of different sizes, if necessary.

C. CLASSIFICATION
TheK -nearest neighbour algorithm was implemented for this
stage. It works by comparing the test histogram xtest with the
models xmodel and assigning to the test histogram the label of
theNn nearest neighbours. Hence, we compared the similarity
of histograms by using the Chi-squared statistic [42], defined
in Eq. 1.

χ2
= 0.5

M∑
m=1

[xmodel(m)− xtest (m)]2

xmodel(m)+ xtest (m)
(1)

where xmodel and xtest are the model and testing histograms,
respectively; M is the length of the TD (i.e., the number of
bins of the histograms), and m represents a single bin. The
value of the Nn parameter of the classifier used in this work
is five, which provided the best detection performance in
preliminary tests.
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Additionally, because of low reliability in color informa-
tion for the presence of variable lighting conditions, this
feature was only used as complementary cue for this clas-
sifier. Depth information was used in the same sense, since
it allowed to characterize only one class. In the training
process, the distinctive green and standard deviation of grass
and plowed soil, respectively, were used to characterize these
classes and to stablish thresholds for these two parameters.
Later, in the classification stage, the result of the χ2 met-
ric was penalized when such predefined thresholds were
exceeded. This heuristic method was used to increase the
classification accuracy.

IV. MOTION STRATEGIES
The motion model associated with the robotic vehicle kine-
matics corresponds to the unicycle configuration, shown in
Eqs. 2 and 3 and defined as follows:xt+1yt+1

θt+1

 =
xtyt
θt

+ 1tR
2

(Wr,t +Wl,t
)
cos (θt)(

Wr,t +Wl,t
)
sin (θt)

2
(
Wr,t −Wl,t

)
/d

 (2)

Wr,t =
2Vt +WtL

2R
, Wl,t =

2Vt −WtL
2R

(3)

where the robot control commands are the traction veloc-
ity Vt and rotational velocity Wt . Each pair of side wheels
are commanded by the right and left rotational velocities
Wr,t and Wl,t , respectively. R is the effective wheel radius
(distance from the wheel axle to the contact point of the
surface), L is the distance between the front and rear wheel
axle, and d is the azimuth length among wheels. The motion
controllers implemented in this brief, which are compat-
ible with the robotic vehicle kinematics, are based on a
closed-loop control system where a reference trajectory �
is previously defined, and the vehicle’s pose [xt yt θt ]T is
estimated at each sample time1t by the localization system.
Although our methodology can be applied to several other
motion controllers, we selected three controllers reported in
the literature to validate our hypothesis: (i) the first controller
is based on algebraic approaches, [35] (C1); (ii) the sec-
ond controller uses performance criteria, [36] (C2); (iii) the
third controller employs Lyapunov formalisms, [37] (C3).
Table 1 describes the formulation of the controllers. These
controllers are framed in a fixed control structure with a
set of gains as tuning parameters. The set of gains K =
[kx ky kθ ]T of the first motion controller is bounded in a
close interval where it is ensured the stability of the controller
(i.e., kx , ky, kθ ∈ [0 1]), whereas the second and third
controller only require positive controller parameters. These
controllers use the incremental position and the trajectory
tracking errors (i.e., [1x 1y] and [1xe1ye] for C1 andC2-C3
respectively) in order to obtain the control inputs. The cri-
teria presented here selects the best set of gains K̂ based on
assessment metrics in which a combined cost function is min-
imized subject to kinematic constrains. More details about
implementation and description issues for these controllers
can be found in [35]–[37], whereas the selection methods of

TABLE 1. Trajectory tracking controllers.

the best set of gains and performance metrics are described
following.

A. ASSESSMENT METRICS
To evaluate the performance of the trajectory tracking con-
trollers under different gain settings and to obtain such gains,
we used the metrics suggested in [43]. Briefly:
• The first metric is the cumulative tracking error (C�x,y)
which represents the total squared errors between the
given trajectory waypoints #� and the vehicle’s position
[xt yt ]T . This metric also describes a degree of accuracy
in tracking the reference trajectory � = [xref ,t yref ,t ]T ,
as shown in Eq. 4.

• The secondmetric corresponds to the cumulative control
effort (C�V ,W ). It is associated with the amount of kine-
matic energy employed by the robot while following a
pre-defined trajectory, this can be seen in Eq. 5.

C�x,y = ρ
#�∑
t=0

(xref ,t − xt )2 + (yref ,t − yt )2 (4)

C�V ,W = γ
#�∑
t=0

V 2
t + η

#�∑
t=0

W 2
t (5)

where the parameters ρ, γ and η are positive values
to provide priority in each cost function and to give a
consistent sum among the two metrics.

• Finally, the cumulative total cost assesses the perfor-
mance of trajectory tracking controllers, defined as the
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sum of the metrics above mentioned, see Eq. 6.

C�Tot = C�x,y + C
�
V ,W (6)

The wheel-terrain effects can be associated with the slip ratio
s (with s = (vx,t − ωr,tR)/vx,t , vx,t 6= 0), which provides
an idea of how much speed has decreased due to traction
loss in each wheel. Also, during cornering or lateral shifting
manoeuvres, side motion effects can be identified by the side
slip angle β (with tanβt = vy,t/vx,t , vx,t 6= 0). After the
estimation of these slip parameters, one can use them as
motion constraints within the minimization of the cumulative
total cost to obtain the best set of gains K̂ as shown in Eq. 7.

minimize
K∈Rn

C�Tot

subject to smin ≤ sot ≤ s
max ,

βmin ≤ βot ≤ β
max ,

0 ≤ vx,t ≤ sot v
max
x + ωr,tR,

0 ≤ vy,t ≤ vmaxx tanβot +λωr,tR. (7)

where n corresponds to the dimension of K, vx,t and vy,t are
the components of the linear vehicle speed. sot and βot are
the slip ratio and side slip angle within safety ranges so that
the vehicle does not slip, i.e., [smin, smax] and [βmin, βmax].
In addition, ωr,t is the angular wheel speed, λ is the relation-
ship width-length of the vehicle.

B. DETERMINING CONTROLLER PARAMETERS
The self-tuning methodology relies on the purpose of obtain-
ing dynamically the best set of gains K̂ in a bounded range
where the stability of the closed-loop system is not affected.
Two steps are carried out before implementing the automatic
selection of the controller parameters. The first consists on
generating set of gains that minimize the cost function previ-
ously defined in the Section IV-A, named hereafter as Monte
Carlo Seeds E . The second step concerns clustering the total
set of gains in order to select the best controller parameter for
each navigation surface since certain set of gains are more
suitable for one terrain type than others. This step is carried
out by using two approaches: Expectation-Maximization and
GaussianMean Shifting, as clustering and learning strategies.
The best set of gains obtained after the last two steps are
applied to the controllers depending on the navigation sur-
face, and the switching rate of the gains are identified in such
a way that the motion controller stability is not compromised,
as will be shown in SectionIV-C.

1) MONTE CARLO SEED GENERATION
An E number of set of gains K are generated pseudo-
randomly in a bounded range where the stability of the
controller is ensured at each time step. For our proposal,
the boundaries are defined as presented in Section IV and the
selection criterion is depicted in Algorithm 1. Briefly:
• Lines of code (1)-(3) show the initial conditions to gen-
erate the Monte Carlo seeds E . The number of seeds can
be assumed as a design criterion, which are generated

Algorithm 1 Generation of Monte Carlo Seeds
1: Let E be the maximum number of Monte Carlo seeds.
2: LetK0 be the initial set of gains of the trajectory tracking

controllers in 5, where 5 is the domain of K. K0 is
uniformly distributed between Kmin and Kmax.

3: Let C0
V ,W and C0

x,y be the maximum control effort and
error cost, originally initialized at very high values. Thus,
obtain C0

Tot .
4: Let [xt yt ]T be the robot’s current position and

[xref ,t+1 yref ,t+1]T ∈ � the desired position at time
instant t + 1.

5: Let vt = [vx,t vy,t ]T and ωr,t be the measurements
of the vehicle linear speed and angular wheel speed,
respectively.

6: if Speed constraints are fulfilled according to Eq.7 then
7: for j = 1 to E do
8: Generate random parametersKj followingGaussian

distributions within the stable range of the con-
trollers.

9: Calculate the total error cost C j
Tot according to Kj,

[xt yt ]T , [xref ,t+1 yref ,t+1]T and [Vt Wt ]T using the
trajectory tracking controllers shown in Table 1.

10: if C j
Tot < C j−1

Tot ∧ (Vt < Vmax
∧Wt < Wmax ) then

11: Save C j
Tot

12: Save Kj
new with Kj

new = Kj

13: end if
14: end for
15: end if

during the robot’s motion at each time step. As a result,
a number of effective seeds ε are obtained after the
selection of the best set of gains until the vehicle reaches
the total number of waypoints #�. Note that in line
of code (2), each parameter of the controller is con-
sidered as a random variable following a Gaussian dis-
tribution. In addition, reference trajectory, positioning
variables and velocities are considered to be evaluated
if the motion constraints are fulfilled according to the
proposed slip criteria, see lines of code (4)-(5).

• The for-loop, lines of code (7)-(14), is the core of the
algorithm. As can be seen in lines of code (8)-(13),
the Monte Carlo method selects the set of gains Knew
that provide the lowest tracking error and a reduction
of the control input effort while the vehicle experiments
a minor slip effect. At this point, it is worth mentioning
that thismethod also generates the set of gains that do not
allow saturation in the actuators, see line of code (10).

The set of gains Knew found by the Monte Carlo algorithm
are used as a training set to create clusters, where the most
representative cluster constitutes the region where the best
set of gains can be obtained. The criteria to identify such
clusters are based on well known unsupervised learning tech-
niques: Expectation Maximization (EM) and Gaussian Mean
Shifting (GMS). Each probabilistic approach gives an
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estimation of the best set of gains K̂ with its correspond-
ing covariance matrix 6. Following, the EM and GMS
approaches are explained in detail in the context of our work.

2) EXPECTATION-MAXIMIZATION APPROACH (EM)
This method assumes that each set of gains follows a prob-
abilistic distribution to group the training set in a certain
number of clusters, providing an estimation of the optimum
set of gains K̂ and a covariance matrix 6 (see [44] and the
references therein). This method is based on a maximum a
posteriori approach whose formulation can be seen in Eq. 8.

K̂ = argmax
K∈Rn

{
log

ε∏
i=1

p(K(i)
|α,6, µ)

}
(8)

where K(i) is the ith set of gains in the training set. This
method accepts several probability distributions, but here the
normal distribution N (µ,6) is considered since it is known
beforehand by the proposedMonte Carlomethod. In addition,
the dimension of the Monte Carlo seeds is n and α is a
latent membership variable associated with each distribution
p(K(i)

|α,6, µ). The procedure to find K̂ and 6 is shown in
Algorithm 2. Briefly;

• In lines of code (1)-(5), the initial parameters of the algo-
rithm are set. Among these parameters, the number of
clusters c and Monte Carlo seeds are chosen as a design
criterion. The latent variables α are initially selected
with small values, which represent the latent probability
of belonging to a given cluster.

• Expectation: Lines of code (6)-(10) show the procedure
to determinate a matrix of weightsϒ used to modify the
estimation of the set of gains per iteration.

• Maximization: The optimization problem from Eq. (8)
is solved in lines of code (12)-(16) updating a mean
µ and the covariance matrix 6 for each cluster. The
algorithm stops when the associated log-likelihood con-
verges according to a given threshold, see lines of
code (17)-(23).

The estimated set of gains K̂j obtained in Algorithm 2
represents the centroids from each cluster, and the covariance
matrices 6j provides an idea of the regions that enclose such
gains. Finally, each set of gain from the training set has a
correspondence to each cluster.

3) GAUSSIAN MEAN SHIFTING APPROACH (GMS)
Although this method can use different probability distribu-
tion kernels, we considered that the training set follows a
Gaussian distribution following Section IV-B1. Additionally,
these gains are weighted with the distribution κ and evaluated
with a vector of mean-shift f (K) with the aim of introducing
a type of dissociation among the set of gains and the cluster’s
centroids µ(i) when clustering, see Eqs. 9-10. This method
assumes a mobile-window around each gain in the training
set, and thus it is shifted in the direction of the gradient where
the concentration density of the set of gains in each cluster is

Algorithm 2 Expectation-Maximization Approach
([44]–[46])
1: Let c be the number of clusters.
2: Let ε be the number of samples –Monte Carlo seeds.
3: Initialize a matrix of weights ϒ and 6 ∈ Sn++.
4: Select c initial µjs ∈ Rn from any set of gains obtained

from the training set.
5: Let αj ∈ Rn be the vector of independent and identically

distributed latent variables, where j = 1, ..., c.
6: for j = 1 to c do
7: for i = 1 to ε do
8: Calculate the weights ϒ i

j as the quotient between
the Gaussian distribution: N (K(i), µj,6j) and
the sum of weighted Gaussian distributions∑c

j=1 αjN (K(i), µj,6j).
9: end for

10: end for
11: for j = 1 to c do
12: for i = 1 to ε do
13: Calculate the latent vector αj as the weights ϒ i

j
normalized for ε.

14: Calculate the estimation of the set of gains µj
weighting them with ϒ i

j.
15: Update the covariance matrix 6j with∑ε

i=1ϒ
(i)
j (K(i)

− µj)(K(i)
− µj)

T
.

16: end for
17: if log l(K(i)

j , α,6, µ) converges ∀i = 1, ..., ε and
j = 1, ..., c then

18: Assign the final means as: K̂j = µj, ∀j = 1, ..., c.
19: Save the covariance matrix 6j, ∀j = 1, ..., c.
20: Break.
21: else
22: Continue with the process.
23: end if
24: end for

the highest. In addition, the gradient of the distribution pro-
vides a vector of shifting weight m(K) which points towards
the best estimation K̂ within the most probable cluster, see
Eqs. (11)-(12).

κ(D) = exp
(
−
1
2
D
)

(9)

f (K) =

∑ε
i=1 πj|2π6i|

−1/2κ ′(D(K , µ(i)
;6i))6

−1
i µ(i)∑ε

i=1 πj|2π6i|
−1/2κ ′(D(K , µ(i);6i))6

−1
i

(10)

m(K) =
πjκ
′(D(K, µ(i)

;6i))∑ε
i′=1 πi′κ

′(D(K, µ(i);6i))
(11)

K =
ε∑
i=1

m(K)µ(i) (12)

where κ is the kernel associated with the probability dis-
tribution, f (K) is the function which maps the shifted set
of gains K, m(K) is the vector of shifting weight. π is the
weight or mixing proportion of the point j, the argument
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Algorithm 3 Gaussian Mean Shifting Approach [48]
1: Initialize a matrix Q ∈ Sn++.
2: Initialize a matrix 6i ∈ Sn++.
3: Select a set of gains in the training set as a centroid µ(i).
4: Select randomly a set of gainsK among the training set.
5: for i = 1 to ε do
6: repeat
7: Calculate the Mahalanobis distance D(·) between

the set of gains K in the training set and cluster’s
centroids µ(i).

8: Calculate the vector of mean-shift f (K).
9: Calculate the vector of shifting weight m(K).

10: Calculate K with Eq 12.
11: Calculate 8 ∈ Sn++ with 8 = ∇f (K).
12: Calculate the evolution of the covariance matrix

6i+1 = 86i8+Q.
13: until K′s update < ε (threshold)
14: Save K̂ as K̂ = Ki, and 6 = 6i.
15: end for
16: Verify the connected components based on a minimum

distance. For instance, the Mahalanobis distance.

D represents the Mahalanobis distance whose advantage
relies on considering the correlation among set of gains,
i.e., D(K, µ(i)

;6) = (K− µ(i))
T
6−1i (K− µ(i)). The proce-

dure to obtain the best set of gains K̂ is shown in Algorithm 3.
Briefly;
• The heading –lines of code (1)-(4)– resembles to the
previous algorithm, but this case considers a process
covariance matrix Q. The initial set of gains and an
auxiliary centroid µ(i) are selected from the training set.

• The core of the algorithm relies on lines of code (5)-(15).
For each point in the training set, the set of gains are
evaluated by a level of membership in a given cluster
with the distance D, whereas the means shift with the
vector m(K), see lines of code (7)-(9). The temporary
estimation K is updated with the vector m(K) until it
converges. The covariance matrix 6 is updated as in the
estimation process of the optimal set of gains; however,
this matrix is weighted with the gradient of the distribu-
tion f (K). The resulting set of gains are compared with
the previous estimations of K through the distance D in
order to check if the estimation process has converged,
see line of code (13). The estimations K̂ and 6 are then
saved–line of code (14).

• Finally, the process is repeated according to the number
of Monte Carlo samples ε, and a last step verifies the
connected components of the estimations in order to
identify if any estimation is repeated, as shown in line
of code (16). More detailed information regarding to this
method can be found in [47] and [48].

C. REAL-TIME CHANGE OF THE SET OF GAINS
Before the training process, the robotic platform follows
pre-defined trajectories with the three trajectory tracking

FIGURE 4. Trajectory tracking responses when switching the control
parameters between their minimum and maximum values. The color bar
represents the range of tests for the different switching times, being red
the switching time closer to the instability and blue the safety switching
time. As can bee seen, the error starts to grow unbounded while
switching faster.

controllers previously described, while a number of Monte
Carlo seeds are collected for each terrain type according to
Section IV-B1. The training procedure is performed over five
types of terrain surfaces: grass, muddy terrain, stonny terrain,
plowed soil and pavement. Each training stage is carried out
attempting not to match the reference trajectory with transi-
tions among the different types of terrains (i.e., remaining a
single type of terrain) in order to obtain the best set of gains
K̂ for each terrain type and motion controller. The best set of
gains are selected as a result of the highest performance of the
motion controllers according to Section IV-A. Additionally,
as the vehicle traverses, information from the Kinect sensor
(IR, color and depth) is also acquired under the different
environmental constrains (e.g. different terrain types, lit and
shady scenarios) to obtain the model histograms xmodel of the
different terrain types as described in Section III.
Once the best set of gains K̂ and the histograms xmodel

are estimated after the training process, the parameters of
the trajectory tracking controllers are switched among the
best set of gains when a new transition of terrain appears
according to the terrain surface detection system. Therefore,
the best set of gains are applied when estimations of terrain
transitions occur. These estimations are based on the velocity
of the robot and distance between the focal axis of the Kinect
and geometry center of the robot. In addition, we considered
that if the control parameters change as fast as a terrain
transition is detected or when a false detection is triggered,
the stability of the controller may be compromised. For this
reason, we studied the minimum and maximum frequency
in which the set of gains can change without affecting the
stability of the controllers.

The minimum switching time (or maximum switching fre-
quency) is a concerning point for each controller. Since our
research focus relies on providing a new methodology to find
the best set of gains for motion controllers, the later would
require a particular theoretical analysis to define the allow-
able frequency boundaries to switch the gains and guarantee
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FIGURE 5. Simulation results. Figure 5a shows the simulation environment for tracking trajectories.
In Fig. 5b, the effective seeds are shown in color dots, where the red dots represent the gains with the total
cost lower than the depicted in blue. The level curves for each plane represent the area where the
probability to find the lowest cost is maximum. In Fig. 5d, a gain projection in the plane kx − ky shows the
distribution of the gains according to each cluster (three clusters) and selection method (i.e., EM and GMS).
The best set of gains are the centroids of the distributions with the the lowest standard deviation.
Figures 5c and 5e-5f show tracking errors and speeds when using constant parameters and changing gains
for each methodology. The shaded areas represent the identified terrain surface, while their transitions
appears in the flanks of vertical dotted lines.

stability on each controller, which is not the aim of our work.
However, we prepared an empirical trial to study the stability
of the proposed controllers under changes in K, as explained
below:
• We defined the bounded gain values that ensure the
controller stability, described as Kmin and Kmax.

• The sampling time of the robot and theminimum switch-
ing time were equally set to 1t .

• We planned an∞-shaped trajectory kinematically com-
patible with all implemented controllers.

• For each motion controller, we performed the following
test:

(a) We set the switching time 1switch = δ × 1t (with
δ = 1 initially), and changed between Kmin and
Kmax at each switching time while tracking the given
trajectory.

(b) We evaluated the trajectory tracking errors and the
control effort. If the errors grew unbounded, thus the
system was unstable for such 1switch.

(c) We repeated the experiment increasing δ = δ+1, until
we found that the tracking errors remained bounded
during the throughout trajectory, and therefore the
controller was stable to such minimum switching
time 1min

switch.
With the aim of finding the minimum switching time in

which the set of gains are able to be changedwithout affecting
the system stability, we considered switching all the set of
gains simultaneously between its minimum and maximum
admissible values, at different switching times. The anal-
ysis was carried out by simulation, tracking one hundred
curly trajectories (i.e.,∞-shaped trajectories) for eachmotion
controller, and the switching frequency was increased pro-
portionally with the sampling time. After we performed
the stability tests, the minimum switching time 1min

switch that
ensures stability in the closed-loop systemwas 800ms, 700ms
and 500ms for the controllers C1, C2, and C3, respectively.
Thus, we selected the highest switching time (800ms) to
change the best set of gains via either simulation or field test.
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FIGURE 6. Field tests. Each column represents one of the four trials in field. Figures 6a- 6d shows terrain transitions
and trajectories used in each experimentation. Figures 6e-6h show an example of the identified terrain types in each
trial. The labels ` numbered from one to five represent grass, silty terrain, stony terrain, plowed soil and pavement,
respectively. In solid red line we show the corresponding terrain type. Figures 6i-6l show the best set of gains
applied to the controller obtained as a function of the terrain transitions. Figures 6m-6t show the control input
commands when using constant and tuned set of gains for each controller and trial.

Figures 4 shows several responses obtained to test the stability
in the controller C3.

Once obtained the minimum switching time in which the
set of gains can be applied without compromising the stability
of the controllers, the gains are tuned in such a way that time
constraints are not violated. To do so, a time delay τ is intro-
duced in the dynamic change of the control parameters under
which the best set of gains K̂ = [k̂x k̂y k̂θ ] corresponding
to the new terrain condition are reached within the identified
time limit.

V. SIMULATION RESULTS
Before testing in field, simulations trials were carried out
using the controller C2 with the best set of gains obtained
from the two proposed methodologies (EM and GMS). The
simulations were performed using a robotic vehicle subject to
terrain constraints in the V-Rep simulation framework linked
with Matlab. The given trajectory was approximately 62.5 m
long, the distance between any two consecutive waypoints

within the trajectory was 0.07 m and the sampling time of
the controller was set to 0.1 s. The trajectory shape has
squared corners as suggested by [49]. Part of the trajectory
sections were matched with the three different terrain types to
incorporate a more realistic simulation (i.e., high friction, low
friction and default surface according to the V-Rep software).
In addition, after tracking the given trajectory, the number
of effective Monte Carlo seeds to be employed in EM and
GMS was determined to be ε = 3125, whereas the total
number of waypoints were #� = 625. The control param-
eters were bounded within the stable interval [Kmin Kmax],
and the set of gains changed according to the minimum
and maximum switching time defined in the stability test.
Figure 5 shows the simulation environment, clusters of the
set of gains, trajectory tracking errors and vehicle speeds.
As can bee seen in Figs. 5c and 5e, the longitudinal and lateral
tracking errors are smaller when using either two method-
ologies than the responses obtained with constant control
parameters. In particular, this can be seen when the vehicle
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FIGURE 7. Results obtained in the experimental test. From top to bottom, each row shows the
results obtained for each trial. The first column represents the trajectory tracking results for
each controller using the set of tuned gains in contrast to the manual tuning with the lowest
total cost, whereas the second column shows the cumulative total costs acquired with the
manual setting of the control parameters (dotted lines) and with the proposed approach
(solid lines). The accuracy of the classifier is represented by bar plots inside the total cost plots,
and their colors are associated with each controller. The red dotted lines represent the lowest
cost obtained when using constant set of gains. Note that the accuracy showed in the bar plots
is only associated with the performance obtained using K variable.

has to turn or experiences terrain transitions on the road
(i.e., shaded areas). Due to the fact that similar simula-
tion results were obtained for both probabilistic approaches,
we only considered the set of gains obtained in the EM
approach in the field experimentations.

VI. FIELD RESULTS
To validate our hypothesis, we performed three experimental
tests. The first case studies the response of our methodol-
ogy to different trajectories and terrains due to wheel-terrain
interaction using the visual terrain identification; the second
case deals with the level of reaction of the set of gains

according to different speed profiles; and the third case
verifies the consistence of the methodology in systematic
tests.

A. FIRST TEST
Before evaluating our approach, some implementation issues
regarding the terrain detection method and motion controllers
required additional consideration. Briefly;
• To avoid spurious readings in case of the IR camera
get saturated, depth and IR measurements beyond a
threshold of 95% and 80% of their maximum values are
set to be zero, respectively.
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FIGURE 8. Long range test environment. The center of the picture shows a satelital image of the agricultural
environment where the experiments were carried out –Vineyard of Casa Blanca, Chile. The side images show
snapshots of the vehicle in-situ when traversed the pointed places. The trajectory of approximately 900m-long
traversed two types of surfaces: grass and plowed terrain, as shown respectively in the green and yellow solid
lines of the reconstruction of the travelled trajectory by the robot within a Cartesian coordinate reference
system.

• The maximum traction velocity of the robot is set to
Vmax = 0.5 m/s, and the maximum rotational velocity
is Wmax = 140◦ rad/s.

• The initial pose of the vehicle is initially aligned to the
reference trajectory and always set to [x0 y0 θ0]T =
[0 0 0]T .

• The reference trajectory � is planned according to the
experimentation field before the vehicle starts to navi-
gate, in such a way that some sections match the pre-
identified terrain types. Two shapes are considered in
this work: squared and S-shaped trajectories. The num-
ber of waypoints #� is relative to the trajectory’s length.
Hence, the trajectory contains uniformly spaced way-
points in a distance step of 250 mm.

To identify the advantages of the methodology, we consid-
ered two scenarios in this test. The first consists in tracking
the reference trajectory with a manual setting of the set of
gains regardless of the terrain type (i.e., preserving constant
the control parameters while navigating). The parameters K
for the manual setting are heuristically obtained according to
previous trials and evaluated for an acceptable performance
with respect to the cumulative total cost as mentioned in
Section IV-A. Only the responses of the controllers with
manual tuning and lowest cumulative total costs are shown
for comparison purposes. The second scenario considers
the three proposed motion controllers tuned with the time-
varying control gains according to the different navigation
surfaces, as described in Section IV-B. In both scenarios,
the test is performed under the same terrain conditions, where
clear transitions among surface types were intentionally met
to assess the capabilities of our method. Also, we considered
four trials, where the reference trajectories traversed four
types of terrain transitions: pavement–grass, muddy terrain–
stony surface, pavement–muddy terrain, and grass–plowed
soil. Some of these transitions included more than a pair of
terrain types due to the non-uniformity of the terrain, then all

the model histograms (xmodel) obtained in the training process
were enabled to be compared within the classifier. Some
snap-shots of the testing environment, identified surface tran-
sitions, control commands, and trajectory tracking results
along with the cumulative total cost and accuracy of image-
texture classifier are shown in Figs. 6-7. An example of
how the best set of gains changes according to the identified
surface is also shown in Figs. 6e-6l. As can be seen, although
some false identificationswere triggered by the image-texture
classifier, the control parameters were automatically adjusted
smoothly in order to preserve the system stability until the
terrain change is consistent. In Figs. 6m-6t, the experiments
also show that the algorithm, as formulated, was capable of
delivering suited control input commands for any of the three
controllers when using our methodology compared with the
control inputs with constant set of gains and low cumulative
total cost. At this point, it is worth mentioning that the aim of
this work is not to compare responses among controllers, but
analyse how they are enhanced with our methodology.

Following, in the trajectory tracking results of Fig.7,
the black dotted lines represent the reference trajectory. The
red solid lines are the tracked trajectories with the manual
setting of K corresponding to the controller with the lowest
cumulative total cost, whereas the another tracked trajecto-
ries are when using our approach under the three motion
controllers: C1, C2 and C3. Although a certain level of
improvement in the trajectory tracking errors can be seen by
inspection for all tests (the robot is closer to the reference
–see first column of Fig. 7), deeper comparisons and analy-
sis are required between the terrain detection and controller
performance. To do so, the cumulative total costs and the
accuracy of the classifier for each trial and controller are
shown in the second column of Fig. 7. As can be seen,
most of the lowest cumulative total costs for each motion
controller are achieved when tuning the control parameters
as a function of the terrain type. In fact, the best performance
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FIGURE 9. Field results for four different trials. The first and second trial correspond to the responses at full
vehicle speed with constant and variable set of gains –dotted black and solid blue lines respectively, whereas
the third and fourth trial for medium speed with unchanged and switched gains –magenta dotted and green
solid lines respectively. Figures 9a- 9f show the longitudinal and lateral tracking errors vs. traversed distance,
where the total trajectory distance is composed by the three sections of 300m long. Figures 9g-9i show the
linear vehicle speed and Figs. 9j-9l show the angular speed. The shaded vertical lines represent points where
the set of gains changed according to the identified terrain type.

of the controllers arises when the image-texture classifier
shows the highest accuracy. On the other hand, the lowest
controller performance is obtained when the most inaccurate
detection of the terrain surface occurs, although it is higher
than that obtained when using constant parameters for all
trials. For instance, the cumulative total costs for the first
trial were C�Tot = 968.2, C�Tot = 700.8 and C�Tot = 1103.1
for the controllers C1, C2, and C3 respectively when using
our methodology, whereas for constant tuning the total cost
reached up to C�Tot = 6168.2, C�Tot = 3564.8 and C�Tot =
3100.1. Further, the accuracy of the terrain detection when

using each controller was: 92.4%, 90.1% and 87.6%. Thus,
the total cost saved by our methodology with respect to the
manual setting reached up to 84.3%, 80.3% and 64.4% for
each controller. The total cost obtained in the remaining trials
result similar, thus achieving the aim of this work.

B. SECOND TEST
In this second experiment, we tested the ability of our
approach to change the set of gains while maintaining stabil-
ity within the full range speeds. To do so, two vehicle speed
profiles are considered: medium and full speed –0.35m/s and
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FIGURE 10. Field results for the first test in five turns (i.e., T1-T5), and comparing the automatic
tuning of the set of gains with manual setting. Figs. 10b-10d show tracking errors for each
repeated trajectory. Figs. 10f-10e show the vehicle speeds for each turn. The coloured boxes show
the mean values, whereas the red dotted points represent the measurements of the
corresponding variables. Figs. 10a-10c show the slip ratio and side slip angle respectively. The
green dotted lines represent the slip constraints.

0.7m/s respectively. A longer range experiment with respect
to the first test is carried out in an agricultural environment,
where two terrain types appear in the course of the trials:
grass and plowed terrain, see Fig. 8. The robot autonomously
tracked a trajectory of approximately 900 m of total length
by using our approach and constant control parameters for
comparison purposes. The trajectory was initially planned
in such a way that the vehicle navigates along eight alleys
between the furrows of a vineyard plantation, without collid-
ing or going through furrows of the environment. In addition,
for this test, we considered the motion controller C2 with the
best set of gains K̂ for each terrain type as well as the initial
conditions obtained in the first test.

Figure 9 shows the longitudinal, lateral tracking errors
(ex,t , ey,t ), and vehicle speeds (vt , ωt ) for each tracked tra-
jectory section of 300 m long. For the medium speed profile,
the lateral and longitudinal tracking errors showed smaller
values when using our approach than those obtained with
constant control parameters. Although a small difference
between these errors can be seen due to a relative low vehi-
cle speed, almost zero lateral and longitudinal errors can
be achieved by the controller under our methodology even
in the presence of the effects of the terrain transitions and
slip. In addition, a major performance improvement of the

controller can be seen after each terrain transition appears,
resulting in a scenario of more reliable control parameter
setting for motion controllers under restricted spaces of nav-
igability and different types of terrain. Furthermore, a sim-
ilar behaviour of the controller can be seen in the case of
full vehicle speed in the sense of reducing tracking errors
when using our approach, but the errors were increased with
respect to those obtained in medium speeds due to different
kinematic constraints and slip conditions. Moreover, the best
set of gains K̂ consistently varies with the terrain changes
and within the maximum switching time 1min

switch either for
the medium or maximum speed profiles, in such a way that
the trajectory tracking errors (ex,t , ey,t ) remain bounded as
well as the vehicle speeds (vt , ωt ), preserving the stability
of the motion controller despite the presence of disturbances
coming from frequent terrain transitions.

C. THIRD TEST
In this test, the vehicle tracks a five turn square trajectory
(as suggested by [49]) with the motion controller C3. A trial
with constant set of gains is also performed with the aim
of comparing recurrent consistency of the methodology for
each turn, i.e., same terrain transitions. In this test, the vehicle
navigates through two types of surface: pavement and stony
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terrain, in which the transitions occur midway. In order to
verify the robustness of the controllers, the best set of gains
were obtained in such a way that the slip ratio for each wheel
was set to sot ∈ ±20% and side slip angleβot ∈ ±4(deg). Also,
the control input commands were constrained by software to
Vmax = 0.7m/s and Wmax = 1rad/s, whereas the vehicle
speed profile was set to 0.6 m/s.

The trajectory tracking errors, speeds and slip variables can
be seen in Fig. 10. As shown in the statistical representation
of Figs. 10b and 10d, for each turn, the trajectory tracking
errors (i.e., longitudinal and lateral errors) show reduced
values with respect to the manual setting, and these errors
reach close to zero repetitively even under the presence of
considerable slip conditions. Large errors appear when the
vehicle turns close to each corner and increase because of
the presence of relevant slip ratio/side slip angle (see [49]).
These terra-mechanical effects are partially mitigated with
the appropriate selection of the set of gains and satisfactory
constraint fulfilment. In Fig. 10f, the means of longitudi-
nal speeds show consistent values for each turn reaching
the vehicle speed profile previously stated. Similar results
can be seen in Fig. 10e for the angular speed. Additionally,
the slip constrains are satisfied by inspection according to
Figs.10a and 10c. The longitudinal slip is reduced throughout
all test, particularly where a new terrain transition appears.
However, during cornering and lateral shifting manoeuvres
the slip phenomena remains a relevant percentage of slip ratio
and side slip angle. To sum up, the performance of the motion
controller with the automatic tuning of the set of gains is
improved without further intervention in the controller during
the recurrent test.

VII. CONCLUSIONS
A methodology to enhance the performance of trajectory
tracking controllers based on real-time visual terrain classi-
fication has been presented in this brief. The aim of this work
was focused on a proper selection of control parameters using
an image-texture classifier, using intensity, color and depth
information from a Kinect V2, although other sensors could
be included to refine the characterization of the terrain pro-
filing. For our proposal, three trajectory tracking controllers
previously published were chosen in order to implement and
test our approach. Several tests were carried out in simula-
tion, and the hypothesis validation was carried out through
field experimentations under different shaped trajectories.
The trials were performed considering typical agricultural
terrains: grass, pavement, stony, muddy terrain and plowed
soils. For assessing the performance of the motion con-
trollers, metrics related to tracking errors and cumulative
control effort were considered in this brief. The aim of our
method was accomplished showing that the performance of
the trajectory tracking controllers was improved up to 92.4%
considering that the highest accuracy of the classifier was
around 84.3%. The latter has direct impact on the energy and
resource management of a machinery, thus leading the future
research of the authors.
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