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ABSTRACT In synthetic aperture radar (SAR) applications, high-resolution images and effective estimation
processes are vital for the reconstruction of any targets. This can be achieved by using multicarrier
waveforms such as orthogonal frequency division multiplexing (OFDM) with the help of appropriate signal
processing algorithms. However, the quality of the reconstructed image degrades in low signal-to-noise ratio
(SNR) environments during SAR data acquisition. In this paper, an integrated multiple signal classification
(MUSIC) assisted least square estimation (LSE) algorithm (MUSIC-LSE) is proposed to enhance the quality
of the reconstructed SAR image in a low-SNR environment. Simulation results measured and evaluated the
quality of the reconstructed image using three performance indicators of root-mean-square-error, main lobe
width and cumulative side lobe levels. These indicators are also used to investigate the effect of OFDM
subcarrier selection on the reconstructed image for a different number of subcarriers. Experimental validation
of the approach is carried out using two steel pipes to image and detect the curvature of the steel pipes. The
results show that the proposed MUSIC-LSE approach produces better-reconstructed images compared with
the existing linear frequency modulated (LFM) chirp and OFDM-LSE approaches in low-SNR (−10 dB)
environments and enables the radar to distinguish and detect the curvature of the pipes even below the radar
range and cross-range resolution.

INDEX TERMS Image reconstruction, LSE, MUSIC, orthogonal frequency division multiplexing (OFDM),
signal-to-noise ratio (SNR), synthetic aperture radar (SAR).

I. INTRODUCTION
In remote sensing based applications, synthetic aperture
radar (SAR) is one of the techniques used to provide high-
resolution radar images of the terrestrial surface of the
Earth. This is achieved by mounting the radar sensor on a
moving platform such as aircraft, unmanned aerial vehicle
(UAV) or ground moving object. The main advantages of
SAR over optical imaging is that it is independent of weather
conditions, providing consistent images of an environment
irrespective of whether it is day or night [1]. As development
and progression of the Earth observatory systems evolve
for military and civilian applications, accurate and high-
resolution radar images are required. The signal processing of
different SAR systems and their image reconstruction algo-
rithms illustrate different strengths and limitations in han-

dling radar cross section (RCS) scintillations and combating
target fading [2]. In terms of the SAR signal waveform, linear
frequency modulated (LFM) chirp is a well-studied wave-
form and uses the classical approach of range-Doppler (RD)
performed in the frequency domain to process the structure of
the collected signal [3]. In [4], an improved RD imaging algo-
rithm was proposed for a frequency modulated continuous
waveform (FMCW) SAR to minimize the range and cross-
range ambiguity associated with FMCW waveforms. Whilst
in [5], LFM SAR was used as an alternative to time-domain
methods by controlling the phase approximation errors of
the reconstructed target. The concept of multicarrier orthogo-
nal frequency division multiplexing (OFDM) was first intro-
duced in SAR by Garmatyuk due to the desire to enhance
image quality and to fully utilize the radar system bandwidth,

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

22827

https://orcid.org/0000-0002-1076-216X


M. D. Buhari et al.: Multicarrier SAR Image Reconstruction Using Integrated MUSIC-LSE Algorithm

which directly controls the resolution in range [6]. It also
provides a SAR signal design for non-LFM waveforms to
achieve adaptability with a low probability of intercept and
to exploit the frequency diversity of target returns. In [7],
an adaptive OFDM SAR was proposed for a single point
target and the method was validated via numerical simu-
lation. Reference [8] proposed a cyclic prefix (CP) based
OFDM SAR imaging technique for inter-range cell interfer-
ence (IRCI) and achieved, in the ideal case scenario, zero side
lobes for range reconstruction in a noise-free environment.
They also showed that the OFDM subcarriers must be at least
twice the number of range cells in a given SAR swath.

In addition to SAR signal waveforms, different signal
processing algorithms have been applied for SAR image
reconstruction to provide high-resolution images such as
wavenumber domain (ω−κ), back projection, range-doppler
and beam formation algorithms [9], [10]. Most of these clas-
sical SAR algorithms assume that the targets are made up
of a set of isotropic scatterers which are not suitable for
man-made targets [11]. In [ [12], an improved phase retrieval
(PR) algorithm was proposed to improve radar image quality
by adding a filter to the conventional PR algorithm. This
reduced the influence of background noise on the recon-
structed targets at a signal-to-noise ratio (SNR) of 20 dB.
Whilst in [13], sparsity-driven SAR imaging for a ground
target through the combination of time-frequency analysis
and parametric Bayesian learning were studied. In [14],
a novel high-resolution range profile (HRRP) using a sparse
frequency-stepped chirp signal (FSCS) was proposed. The
approach showed that even with an incomplete number of
subpulses of FSCS, the HRRP can still reconstruct the target
successfully. Recent studies in [15] and [16], proposed least
square estimation (LSE) to estimate the OFDM SAR phase
history (Doppler shift) and match filtered it with a reference
function to reconstruct the target. This improves the quality
of the reconstructed image as LSE gives a better estimate of
the target position.

Despite the aforementioned developments in SAR,
the quality of the reconstructed image degrades in a dense
environment with low SNR (−10 dB) whichmakes it difficult
for the radar to distinguish multiple targets within the recon-
structed image. This is because, for the case of multicarrier
OFDM, as the number of subcarriers increases (which leads
to a high rate of data acquisition), signal fading due to
multipath and cross interference occurs and this is a serious
challenge at low SNR, resulting in performance degrada-
tion [17]. There is also a need to investigate the behaviour of
the reconstructed OFDM SAR image for a different number
of subcarriers to determine the optimal number of subcarri-
ers to use for a given OFDM SAR system. Attempts were
made to solve these problems by estimating the received
signal direction of arrival (DoA) using algorithms such as
multiple signal classification (MUSIC), root-MUSIC and
estimation of signal parameters via rotational invariance
technique (ESPRIT) [18], [19]. Although both ESPRIT and
root-MUSIC give a better performance compared to MUSIC,

MUSIC is utilised in this study for the following reasons.
In relation to ESPRIT, ESPRIT requires twice as many
sensors as MUSIC and considering that the approach will be
applied in SAR image reconstruction; it makes the practical
implementation of the system more expensive compared to
MUSIC. With regards to root-MUSIC, the latter is only
applicable to a uniform spaced linear array and hence cannot
be used with a non-uniformly spaced array system [20].
In radar applications, MUSIC algorithms have been used in
works including clutter cancellation in passive radar [21] and
range-azimuth target location in FMCW radar systems [22].
Reference [23] proposed an improved compressive sensing
(CS) approach for high-resolution radar imaging to overcome
the high degree of noise and clutter associated with the radar
image in low SNR systems. These authors combined coherent
projections and weighing using CS optimisation for Inverse
SAR image formation for low SNR systems ranging from 2 to
8 dB. In [24], an angular super-resolution scanning radar was
proposed based on virtual arraymapping. The virtual uniform
linear array (ULA) was estimated and the target distributions
recovered using the MUSIC algorithm. The method was
validated via numerical simulation. However, the authors
assumed a noiseless model that cannot resolve or give high-
resolution images below an SNR of 10 dB. Recently, [25]
combined a range-cell-focusing algorithm with the MUSIC
algorithm for SAR target imaging. MUSIC was applied to
the SAR raw data in a time domain after which range-cell
focusing was applied. This approach improves the quality of
the image at a low SNR of up to 5 dB. In [26], we proposed
an integrated MUSIC assisted LSE algorithm (MUSIC-LSE)
in the framework of multicarrier OFDM SAR imaging for
multiple target detection. The necessary conditions for the
radar to distinguish the targets were outlined based on a
simulation study.

In this paper, the work in [16] is extended to address the
problem of SAR image degradation at low SNR (−10 dB)
by investigating the effect of OFDM subcarrier selection on
the reconstructed SAR image when using a different number
of subcarriers. An experimental study is then carried out
to validate the initial simulation work in the previous pre-
liminary study by Buhari et al. [16]. Steel pipes are used
as point targets to image and detect the curvature of the
pipes.The results obtained are compared with the LFM SAR
and OFDM LSE methods. As direct spatial smoothing is
not allowed in MUSIC SAR based systems with a single
snapshot since the MUSIC algorithm requires multiple snap-
shots [27], an improved MUSIC algorithm is utilised for
the signal DoA estimation. It is also pertinent to note that
MUSIC cannot be directly used as a standalone algorithm in
SAR imaging because it does not respond proportionally to
the target backscattering power and therefore, the reflectivity
information cannot be easily recovered [24], [28]. However,
it can be integrated with other SAR algorithms to improve
performance. Our approach uses an improved MUSIC algo-
rithm for signal DoA estimation and LSE algorithm for phase
history estimation. The algorithms are later integrated to
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reconstruct the SAR image and this enhances the resolution
of the image.

The remaining part of the paper is organized as
follows: Section II describes the SAR system design, signal
model, algorithm development and image reconstruction.
In Section III, the results and discussion are presented
based on simulation and experimental validation of the
approach. The conclusion and future work are presented in
Section IV.

II. SAR SYSTEM DESIGN, SIGNAL MODEL AND IMAGE
RECONSTRUCTION
This section outlines the SAR system geometry, signal model
and algorithm development used for the OFDM SAR image
reconstruction. A strip map geometry is chosen based on
which the OFDM transmit/receive signal model is developed.
The proposed MUSIC-LSE algorithm is then formulated
to process the received signal and finally reconstructed the
image at low SNR.

A. GEOMETRY AND SIGNAL MODEL OF OFDM
SAR SYSTEM
Different operational modes exist for the SAR system geom-
etry depending on the targeted application. They include the
strip map mode, where the radar moves back and forth within
the platform, the spotlight mode, in which the illuminating
radar beam is steered continually as the platform moves,
and scan mode, where the antenna beam sweeps periodically
thereby covering the targeted area [29]. Other approaches
include the terrain observation by progressive scans (TOPS)
mode used for wide swath coverage and achieved by peri-
odically switching the antenna beam from one sub-swath
to another [30]. Two or more operation modes can also be
combined to form a hybrid mode operation. In this work,
a strip map SAR geometry, shown in Fig. 1, adopted from
our previous work in [15] and [16] is used. The radar is
mounted on a moving platform and moves from position
−L to +L. At a given position m, the distance between the
SAR platform located at (um, 0) and the target positioned
at (u0, y0) is defined by Rm (called the range). The radial
velocity of the SAR platform is denoted Vm. The center of

FIGURE 1. SAR system geometry [16].

the target area is defined by (uc, yc) which corresponds to
a broadside target model. As the radar transmits the signals
towards the target, the received signal may be in a line of
sight or non-line of sight and it thus requires an optimized
solution to estimate the location of the target. The phase
history can be used to reconstruct the target position. For
the signal model, a baseband OFDM signal is used. The
target goal is to generate a baseband OFDM waveform for
N subcarriers centred at k*f1(k = 1, 2, . . . ,N ); f1 = fs/2N
and fs is the OFDM transmitter sampling frequency from the
digital to analog converter (DAC). This makes the signal real
and discrete, comprising 2N + 1 samples of the transmitted
signal [15]. Using the DAC, the discrete transmitted signal is
converted to a continuous time-domain signal st (t) and for a
given SAR position m, this is given by [25]

stm(t) =
1
M

M∑
k=1

S(k) · ej
2π fs(k−1)

M t , for 0 ≤ t ≤
N
fs

(1)

whereM = 2N + 1, S(k) are real-valued elements of the fre-
quency domain vector Ŝ which are the frequency points from
the DFT arranged in a zero-positive-negative order defined by

Ŝ = [0 S(1), . . . , S(N ) S(N ) S(N − 1), . . . , S(1)] (2)

The reflected signal from the target at the mth SAR position,
srm(t) is given by [26]

srm(t) = αmstm

(
t −

2Rm
c− Vm

)
(3)

where αm is the reflectivity coefficient of the target. The
received signal is then sampled with (N +1) discrete samples
to obtain [25]

srm(n) =
αm

M

M∑
k=1

S(k).e
j 2π (k−1)M

(
n−1+τ fs−

2Rm
c−Vm

fs
)

n = 1, · · · ,N + 1 (4)

where τ is the initial sampling time delay.
In a real-life scenario, the received signal is the time lag of

the transmitted signal with noise in the form of additive white
Gaussian noise (AWGN). To analyse the received signal,
the sampled received signal is converted to the frequency
domain using DFT, thereby recovering the original number
of subcarriers N . The DFT of the received signal at a given
SAR position m is given by (details of which can be found
in [7], [15], [25])

Srm =
αm

M
ϒ8 (5)

where

8 =


e
−j
π
(

2Rm
c−Vm

fs − 1
)

M
...

e
−j
2Nπ

(
2Rm
c−Vm

fs − 1
)

M


(6)
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ϒ =


(
Qp,qS(q+ 1)

)
1,1 · · ·

(
Qp,qS(q+ 1)

)
1,2N

...
. . .

...(
Qp,qS(q+ 1)

)
N ,1 · · ·

(
Qp,qS(q+ 1)

)
N ,2N


(7)

And

Qp,q =



1
2

[
M − jtan

(
π (p+q)
2M

)]
, for p = q

1
2

[
M + j 1

tan
(
−
π (p−q)
2M

)
]
, for p+ q = M

−
j
2

[
tan

(
−
π (p−q)
2M

)
+ tan

(
π (p+q)
2M

)]
,

for p+ q = even, p 6= q

j
2

[
1

tan
(
−π (p−q)

2M

) + 1
tan
(
π (p+q)
2M

)
]
,

for p+ q = odd, p+ q 6= M

(8)

Adding an iid AWGN noise to the received signal, we get

Ŝrm = Srm +NN = αmϒ8+NN (9)

where Srm = MSrm, Srm is defined in (5) and NN is AWGN
noise, N ∼ (0, σ 2

ω).
Using the system geometry and the signal model, the target

can be reconstructed, as described in the next subsection.

B. SAR IMAGE RECONSTRUCTION USING INTEGRATED
MUSIC-LSE ALGORITHM
In this section, the OFDM SAR image reconstruction pro-
cedure is outlined, as shown in Fig. 2, and it is based on
an integrated MUSIC-LSE algorithm. The algorithm inte-
gration offers a robust processing approach which gives a
high-resolution image in a dense environment with low SNR
(−10 dB). The block diagram started from baseband OFDM
signal generation which is converted to the time domain
through a DAC. The OFDM signal is used as the transmitted
signal and the reflected signal (in time) from the target is
sampled and converted to the frequency domain using DFT.
This received signal in frequency space is then used to form
the range profile reconstruction (RPR) and the cross-range
profile reconstruction (CPR). For the RPR, the received sig-
nal is a matched filter with a reference transmitted signal.

FIGURE 2. Procedure for the OFDM SAR target reconstruction process.

We later apply RMC to correct the migration associated with
the range while in the case of the CPR, the received signal is
used in both the MUSIC and the LSE algorithm. MUSIC is
used to estimate the DoA of the multiple return signals while
LSE is used for phase history estimation. The output of the
MUSIC (Ak ) and the LSE (αm and β̂ ) are matched filtered
with a reference transmitted signal to form the CPR. Finally,
the SAR image is generated by taking the product of the
RPR with the corresponding CPR. The target reconstruction
performance is tested in high and low SNR.

1) MUSIC ALGORITHM
In the DoA estimation algorithm, MUSIC is the most popular
subspace algorithm used to estimate the signal DoA at the
receiver. This is done by decomposing the covariance matrix
of the received signal into two subspaces, namely the signal
subspace and noise subspace which are orthogonal to each
other. The estimation is performed using either of these sub-
spaces under the assumption that the noise in each channel
is uncorrelated and hence the covariance matrix is a square
matrix with the variance as a diagonal matrix [31]. Given M
array elements separated by a distance d , a signal DoA θ ,
and assuming the received signal to be complex valued in
the form ej2π f0t , the received signal at position 1 is given by
sr1(t) = ej2π f0t = sr (t). At position 2, the received signal is
sr2(t) = sr (t − τ ) = sr1(t)e−jφ , where φ = 2πd sin θ/λ0;
λ0 is the wavelength. Following the same principle, the total
received signal can be expressed using

ŝrm(t) =
m∑
i=1

α(φi−1)sr (t)+ ni(t) (10)

where α(φi−1) = [1 e−jφ . . . e−j(m−1)φ]T is the steering
vector corresponding to the DoA of the signal at position i,
sr (t) is the incident wave and ni(t) = [n1(t) n2(t) . . . nm(t)]T

is the noise subspace.
In the frequency domain, the total received signal can be

expressed as

Ŝrm(k) =
m∑
i=1

A(ki−1)Sr (k)+ Ni(k), k = 1, . . . K (11)

where Ŝrm(k) is the received data vector, Ni(k) is the
noise vector, and A(ki−1) is the steering vector given by
A(ki−1) = [a(1)0 a(2)1 . . . a(K )m−1]T with a(ki−1) =
[1 e−j2π f2φ1 . . . e−j2π fKφm−1 ]T , K is the number of snapshots
and m is the number of spatial samples.

In the sameway, theM-array principle can be used for SAR
configuration by moving the SAR antenna from position 1 to
m to create an array-like structure. Hence, to apply MUSIC,
the eigenstructure and decomposition of the sample covari-
ance matrix of the return signal are explored. Using (3) as a
signal model and considering (10), the SAR received signal
is given by

ŝrm(t) =
m∑
i=1

αiα(φi−1)st (t − τi)+ ni(t) (12)
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For the received signal model shown in (9), the received
signal using MUSIC in (12) is given by

Ŝrm = AkSr +NN = Akαmϒ8+NN (13)

The covariance matrix can be expressed as

RŜrmŜrm = E
{
ŜrmŜHrm

}
= E

{
(AkSrm +NN )(AkSrm +NN )H

}
RŜrmŜrm = AkRstmstmAk

H
+ σ 2

N IN (14)

whereE is the expected value,H is the the conjugate response
called the Hermitian, Rstmstm is the transmitted signal correla-
tion matrix, σ 2

N is the variance of the AWGN vectorNN , Ak is
the steering vector given by A(ki) = [a1 a2 . . . aK ] and IN
is an identity matrix.

From (14), it can be seen that the MUSIC algorithm
depends on the signal covariance matrix Rstmstm which
is non-singular, the steering vector Ak which is linearly
independent and the noise covariance matrix given by
σ 2
N IN . The covariance matrix can be estimated from (14)

using

R̂ŜrmŜrm =
1
K

K∑
k=1

Ŝrm(k)Ŝrm(k)H (15)

where K is the number of samples of the received signal.
Using (15), in order to develop the covariance matrix,

multiple samples of the received signals are needed to satisfy
the requirements of the MUSIC algorithm. However, for our
system, a single snapshot is used, whichmakes the covariance
matrix singular and correlated and therefore theMUSIC algo-
rithm fails. As direct spatial smoothing is not allowed and in
order to effectively use MUSIC in our model, an improved
spatial smoothing method is needed before applying MUSIC
to (14), detail of which can be found in [26]. This is achieved
by defining new window elements vi such that the initial
elements v1 and v2 are less than the signal dimensions. The
initial window element dimension v1 is used as the reference
and later the v1 ∗ v2 received signal matrix array is vec-
torised using vec(v1 ∗ v2). The improved covariance matrix
becomes

R̂ŜrmŜrm =
1
2K

K∑
k=1

(
QR̂ŜrmŜrm (k)

HQ+ R̂ŜrmŜrm (k)
)

(16)

where Q is an anti-diagonal matrix.
Equation (16) ensures that, by using the improved spatial

smoothing, there is a guarantee that the covariance matrix is
a diagonal matrix and uncorrelated. Therefore, the MUSIC
algorithm can be applied using the signal and the noise sub-
space defined in (14). The improvedMUSIC spatial spectrum
is given by (17) [25]. The MUSIC algorithm procedure is
described in Algorithm 1.

PMUSIC =
1

‖AHk NNNH
N Ak‖

=
AHk Ak

AHk NNNH
N Ak

(17)

Algorithm 1 Multiple Signal Classification (MUSIC)

Input: Received signal in frequency space, Ŝr for all values
of m.
1: Using Ŝrm, form the covariance matrix RŜrmŜr using (14).
2: Decompose RŜrmŜrm into signal subspace AkRstmstmAk

H

and noise subspace NN IN .
3: Estimate R̂ŜrmŜrm using improved spatial smoothing. This

makes the R̂ŜrmŜrm uncorrelated and non-singular.
4: Recompute R̂ŜrmŜrm using (16).
5: Form the matrix of the steering vector Ak and this esti-

mates the signal DoA.
6: Compute PMUSIC using (17).
Output: Steering vector Ak and PMUSIC .

2) LSE ALGORITHM
LSE is one of the popular methods used in parameter esti-
mation between an observed value and its true or expected
value. It is achieved by estimating the square of the difference
between the two values using the L2-normminimisation tech-
nique [31]. In this paper, LSE is used to estimate the phase
history using the received signal in (9). Using the data model,
the L2-norm is formulated to estimate the residual between
the received sample and the data model β using [25]

R(β, Ŝrm) =
∥∥∥Ŝrm − αmϒ8∥∥∥2 (18)

Through the minimisation of (18), an estimate of β can
be obtained for a known value of αm. However, in real life,
the value of αm is unknown and needs to be determined by
solving equation (18) (details of the derivation can be found
in [7]).
Expanding (18) yields

R(β, Ŝrm) =
(
ŜHrm − (αmϒ8)H

) (
Ŝrm − αmϒ8

)
(19)

The value for αm can then be found by taking the partial
derivative of (19) and equating the result to zero to get

αm =
|ŜHrmϒ8|

8HϒHϒ8
(20)

The phase history estimate for the case of an unknown
value of αm becomes [25]

β̂ = argmax
β

∥∥∥∥∥ ŜHrmϒ8|ϒ8|

∥∥∥∥∥ (21)

Equation (21) gives an estimate of the phase history which
can be used for the image reconstruction process in the cross-
range domain. The LSE algorithm is described in algorithm 2.

3) SAR IMAGE RECONSTRUCTION
The standard procedure in SAR imaging is to combine RPR
and CPR to form the image. The CPR can be formed by
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Algorithm 2 Least Square Estimation (LSE)

Input: Received signal in frequency space, Ŝr for all values
of m.
1: Form the L2norm to using R(β, Ŝrm).
2: Using (20), find an estimate for αm.
3: Compute an estimate of the phase history β using (21).

This estimates the Doppler shift at each given SAR posi-
tion m.

Output: Target reflectivity αm and phase history β.

matched filtering the phase of the single complex sinusoid
at a given SAR position m with a reference function given by

RCPR(um) =
(
e−j2π(Km−τ)

fs
M

)
⊗

(
e−j2π

β̂m
M

)
(22)

where⊗ is the cross-correlation operator and Km is the round
trip delay between the target and the radar.

The RPR at a given cross-range position um is derived
by matched filtering the reflected signal with a reference
transmitted signal in frequency space given by [25]

RRPR(t) = F−1(Sref ⊗ Ŝr ) (23)

where F−1 is the inverse Fourier transform, Sref is the ref-
erence transmitted signal in the frequency domain which is
zero padded to achieve the desired length of K samples and
Sr is the received signal from (9) upsample to the entire length
of K .
Moreover, because of the fact that the radar moves along

the cross-range position, the RPR in (23) suffers from range
ambiguity which results in range migration (RM). This can
be solved by using the cross-range information to account for
the migration through a process known as range migration
correction (RMC), details of which can be found in our pre-
vious work [1], [7]. The RMC in [1] is utilised and theRRPR(t)
in (23) is updatedwith the frequency compensation term. This
is later converted to the range domain using t = 2y/c. To form
the 2D SAR image, the product of each RPR is taken with the
corresponding CPR to obtain [25]

ISAR = RRPR(ym) · RCPR(um) (24)

III. RESULTS AND DISCUSSION
In this section, the results obtained based on the method
described in Section II are presented and analysed.
We start with the image reconstruction using the integrated
MUSIC-LSE algorithm to enhance the quality of the image
at low SNR. Simulation results evaluate the quality of the
reconstructed image using three performance indicators of
root mean square error (RMSE), cumulative side lobe levels
and main lobe width. Finally, the behaviour of the recon-
structed SAR image is investigated by varying the OFDM
subcarriers for optimal design. Three sets of results are
used for comparison, namely the LFM-based results, OFDM
LSE-based results (later termed LS for simplicity) and the

OFDM MUSIC-LSE (later termed LS-MU) results. Experi-
mental validation is carried out using two steel pipes as targets
to image and detect the pipe curvatures.

A. SIMULATION RESULTS FOR MULTICARRIER SAR
SYSTEM
The parameters used for the simulation are set to the fol-
lowing values (typical of normal conventional S-BAND and
X-BAND SAR): Number of subcarriers N = 4, 8 and 16;
Target center yc = 1 m; Bandwidth BW = 4 GHz; Moving
length L = 1 m; pulse repetition frequency, fPRF = 35 Hz;
sampling frequency, fs = 1 GHz; radial speed of the SAR,
V SAR
u = 35 m/s; step size used 1u = 301.

1) OFDM SUBCARRIER SELECTION
For different number of subcarriers used in the target recon-
struction, there is a need to know the associated effects. To do
this, different target positions were tried both for a single
and for multiple targets using N = 8 and the results are
shown in Fig. 3. For the detection of the target, the cross-
range information can suffice. Fig. 3 shows that both of the
methods used successfully detected the target position. The
LS-MU gives a better side lobe level compared to the LS case.
This is because, for the LS-MU, the signal DoAwas estimated
before applying the LS estimation. In a low SNR condition,
the side lobes interfere with the main lobe, resulting in target
degradation. Therefore, there is a need to investigate the target
reconstruction accuracy and the best choice for the number of
subcarriers N by varying the SNR from low to high. This can
be done using the RMSE to measure the error between the
estimated target position ûm0 and the actual target location u0
for all the SAR positions m, the cumulative side-lobe level ρs
found by taking the ratio of the areas under the simulated and

FIGURE 3. Normalised CPR reconstruction for target(s) (a) LS at u0 = 0 m.
(b) LS at u01 = 0 m, u02 = 0.5 m. (c) LS-MU at u0 = 0 m. (d) LS-MU at
u01 = 0 m, u02 = 0.5 m.
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FIGURE 4. Performance of the CPR (a-c) and error bar plots (d-f) (a) RMSE. (b) Cumulative side lobe level (c) Main lobe width. (d) Error
bar plot for N = 4. (e) Error bar plot for N = 8. (f) Error bar plot for N = 16.

the ideal CPR and the main lobe width (the 3 dB beam width
of the CPR main lobe) to measure the quality of cross-range
resolution. Using these performance indicators, the quality
of the reconstructed target (CPR) is measured and evaluated.
The subcarriers are assumed to be ON (ones) and the results
are comparedwith an LFM signal at a frequency of f0 = fs/17
corresponding to the fundamental frequency of the reference
function for the case of N = 8 given by fs/(2N + 1)). The
results are shown in Fig. 4.

From Fig. 4, it can be observed that the RMSE decreases
as the number of subcarriers increases. The LS and LS-MU
perform better than the LFM case for both cases of N . This
is expected because, as the value of N increases, more data
are available for the estimation process which improves the
reconstruction accuracy. From Fig. 4(a), two regions of inter-
est were observed namely low and medium SNR regions. The
low SNR region is the region between 10 dB to 2 dB and
because of the noise and interference in this region, higher
values of N give the worst result in the case of LS estimation.
This means that choosing a lower value of N is the optimal
choice. However, this is not the case for LS-MU as it still
performs well and this is attributed to the contribution of the
improved MUSIC.

In the medium SNR, the RMSE results of N = 16 perform
better (fewer errors) than the cases of N = 4 and N = 8 for
both LS and LS-MU cases whilst still giving a lower error
estimate than the case of LFM. At an SNR of 2 dB, all the
three methods give the same level of performance which is
expected because, in this condition, only one carrier is enough

to estimate the target position. In terms of the errors made,
error bars shown in Fig. 4(d-f) were used to compare the
estimation accuracy for LS and LS-MU, which comparison
showed that a lower error is made in LS-MU compared to
the LS case. However, there is a trade-off between increasing
the number of subcarriers and the main lobe width of the
CPR, as observed in Fig. 4(c). This is because, as the number
of subcarriers increases, the main lobe of the CPR becomes
wider for the LS case. This can be explained by looking at the
fundamental frequency fs/M which decreases as N increases.
As a result, the main lobe becomes wider and this explains
why N = 8 gives a better result for the main lobe width
compared to N = 16. However, this is not noticeable in the
LS-MU case because of the sharp peak of the main lobe of
the LS-MU.

The computational cost and reconstruction accuracy of
the approach is influenced by the SNR requirements in low
(−10 dB) and medium (2 dB) SNR regions, as illustrated
in Table 1. It can be seen that, as the number of subcarriers
increases, the error estimation in the reconstruction of the
target position reduces, as observed from the values of the
RMSE and CSL. This is because the higher the number of
subcarriers, the more data are available for the estimation.
However, looking at the main lobe width, as the number of
subcarriers increases, the main lobe becomes wider. Thus,
it can be said that the higher the number of subcarriers,
the better the quality of the reconstructed target at the cost
of having a wider main lobe. In terms of computational cost,
LFM is less complex compared to OFDM SAR, as observed
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TABLE 1. Comparison between different methods in low and high SNR regions.

by the time taken to reconstruct the target. This is because
OFDM fully utilises the bandwidth (which is a limited
resource in radar) by using more subcarriers, thereby giving
more data for the estimation and this enhances the accuracy
of the reconstructed target. Due to increase in computational
time as a result of fully utilising the whole of the bandwidth,
compressive sensing can be used to reduce the computational
time. This point is highlighted as part of our future work.

2) SAR IMAGE RECONSTRUCTION
After investigating the selection of the optimal number of
subcarriers, the SAR image is reconstructed using the method
described in subsection (II, B, 3) and a low SNR of −10 dB
is chosen to show the capability of the LS-MU in comparison
to the LS case. The number of subcarriers used is N = 128.
Two targets are used to observe the necessary conditions for
the radar to distinguish the targets. These conditions are given
by [25] {

dR ≥ 1R = c
2B

dC ≥ δx =
La
2

(25)

where B is the bandwidth, c is the speed of light and La is the
antenna aperture size.

The bandwidth used for the simulation is 4 GHz. This
translates to a range resolution of1R = 0.375 m. For La = 2
m, the cross-range resolution is given by δx = La/2 =
30/2 = 1 cm. Two cases were considered for the target
reconstruction. The first case is when the distance between
the two targets in the range and cross-range is less than
the radar range and cross-range resolution. The targets are
located at (u01 = 0 m, and u02 = 0.1 m) both at a range
position of y0 = 1 m (for simplicity). The results are shown
in Fig. 5 (a-d). It can be seen that, whereas the LS case imaged
the two targets together as one large target, the LS-MU case
separated the two targets with some ghost targets around the
main target. This happens because we are operating at below
the radar range and cross-range resolutions. However, with
improvement in the SAR signal processing, it is possible for
the radar to distinguish the targets even below the radar range
and cross-range resolutions. The second case occurs when
both the two conditions are met. The targets are located at
(u01 = 0 m, and u02 = 0.5 m) and the results are shown
in Fig. 5 (e-h). It can be seen that both methods successfully
separated the targets, however, the LS-MU has a higher image
resolution compared to the LS case [7].

B. SAR EXPERIMENTAL VALIDATION
To validate the simulation results shown in section III(A),
the experimental set-up in Fig. 6 is used. This consists of
a vector network analyser (VNA) that is connected to two
pairs of horn antennae via RF cables at one end and to a
workstation PC via a general purpose interface bus (GBIP) at
the other end. The horn antennae are mounted on a movable
platform (rail 2 m long). An ustepper controller board is used
to control the antenna movement along the rail. The antennae
acquire SAR phase history data of the target scene at evenly
spaced increments across the platform and this is achieved by
recording the S21 scattering parameters. Port 1 of the VNA
is used as the transmitter and port 2 as the receiver. The
reflected signal (using S21 parameter) is recorded on the VNA
and the result obtained is analysed in MATLAB. The design
parameters are shown in Table 2. Steel metal pipe samples
with diameter d = 100 mm and length l = 600 mm are
used as point targets. The targeted goal is to image and detect
the curvature of the pipe sample as point target. The distance
between the two metal pipes is defined by the radar range
resolution. These samples were used to show the capability of
the LS-MU approach in detecting curvatures in pipes. It can
also be extended in detecting defects in the pipes by imaging
the whole of the pipe.

TABLE 2. SAR Experimental Parameters.

Based on the experimental set-up and as with the sim-
ulation results, single and multiple targets scenarios were
considered. For the single target scenario, the target was
placed at (u01 = 0m, y01 = 0.95m) and the results are shown
in Fig. 7. Fig. 7(a) shows the raw SAR image data captured
after the rail scan. It can be seen that because of themovement
of the radar, a range migration has occurred in the raw data.
This can be corrected using the cross-range information to
account for the migration through a process known as RMC,
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FIGURE 5. Target reconstruction for dR < 1R and dC < δx (a-d) and dR ≥ 1R and dC ≥ δx (e-h). (a) CPR for LS case. (b) CPR for LS-MU case. (c) SAR image
for LS case. (d) SAR image for LS-MU case. (e) CPR for LS case. (f) CPR for LS-MU case. (g) SAR image for LS case. (h) SAR image for LS-MU.

FIGURE 6. Overall experimental SAR design set-up. (a) Schematic of the SAR experimental set-up. (b) Target scene inside the anechoic
chamber.

FIGURE 7. Experimental SAR image reconstruction. (a) SAR raw image. (b) SAR raw image after RMC. (c) Reconstructed SAR image (LS). (d)
Reconstructed SAR image (LS-MU).

details of which can be found in our previous work [1]. The
result is shown in Fig. 7(b). The reconstructed SAR image
of the pipe is shown in Fig. 7(c-d). It can be seen that the

image from LS-MU gives a better image compared to the LS
image. Also, the reconstructed image shows that the LS-MU
approach detects the position and the curvature of the pipe
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FIGURE 8. Multiple pipes image reconstruction process for dR < 1R and dC < δx (a-d) and dR ≥ 1R and dC ≥ δx (e-h). (a) CPR for LS case. (b) CPR for
LS-MU case. (c) SAR image for LS case. (d) SAR image for LS-MU case. (e) CPR for LS case. (f) CPR for LS-MU case. (g) SAR image for LS case. (h) SAR image
for LS-MU.

whereas the LS approach only detects the position of the pipe
without the curvature shown. For multiple targets, two targets
are used to test the two conditions for the radar to distinguish
the two targets. Case I is when none of the conditions are
met and the targets are placed at (u01 = 0 m, y01 = 0.9 m)
and (u02 = 0.1 m, y02 = 0.9 m). Case II is when either of
the two conditions is satisfied and the targets are located at
(u01 = 0 m, y01 = 0.9 m) and (u02 = 0.38 m, y02 = 0.9 m).
The results are shown in Figure 8. In both the two cases, the
LS-MU gives a better image and still resolve the two metal
pipes even below the radar range resolution compared to the
LS image. This shows the capability of the technique.

To further evaluate the quality of the reconstructed images
and the estimation accuracy of the two methods, the SNR and
contrast-to-noise ratio (CNR) were computed for the SAR
images shown in Fig. 7 and 8 respectively. The SNR of the
image is calculated using [32]

SNR = 20log10

∣∣∣∣µROIσROI

∣∣∣∣ (26)

where µROI is the mean and σROI is the standard deviation of
the image region of interest. The CNR measures the contrast
of the image and is given by

CNR = 20log10
2(µROI − µB)2

σ 2
ROI + σ

2
B

(27)

where µB and σB are the mean and the standard deviation of
the background image.

Using the two evaluation parameters, the images from the
two approaches were fairly compared and the SNR and CNR
values are presented in Table 3. From the table, it can be
observed that LSE-MU gives higher SNR and higher CNR

TABLE 3. SNR and CNR values for the reconstructed pipe images.

compared to LS method. Hence we can conclude that esti-
mating the signal DoA of the SAR received signal and later
applying the LSE algorithm improves the detection as well as
the imaging capability of the SAR significantly.

IV. CONCLUSION
This paper proposed an integrated MUSIC-assisted LSE
(MUSIC-LSE) algorithm for multicarrier SAR image recon-
struction which gives high-resolution images in low SNR
environments. An improved MUSIC algorithm was used for
signal DoA estimation and the LSE algorithm for phase
history estimation. Three performance indicators, namely
RMSE,main lobewidth and cumulative side lobe levels, were
used to measure and evaluate the strength of the approach
through simulation studies. These indicators were also used
to investigate the effect of OFDM subcarrier selection on
the reconstructed SAR image and it was observed that,
as the number of subcarriers increases, the accuracy of
the reconstructed target improves at the cost of having a
wider main lobe. Experimental validation of the MUSIC-
LSE approach was carried out using two steel pipes to image
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and detect the curvature of the pipes as point targets.The
results obtained show that the MUSIC-LSE approach gives
a higher-resolution image in high and low SNR (−10 dB)
SNR environments compared to the LFM and OFDM-LSE
cases. This is a significant improvement compared to other
methods that achieved 5 dB and 2 dB. In addition, the SNR
and the CNR values of the MUSIC-LSE reconstructed pipe
images are higher compared to the LSE reconstructed images.
The MUSIC-LSE approach also shows that it is possible for
a radar to distinguish the two steel pipes even below the radar
range and cross-range resolutions.

In future, further experimental validation, including using
dedicated samples can be investigated on not only detect-
ing the pipes curvature but also the structural health status
e.g. corrosion and crack condition using better reconstructed
images and their near-far field characteristics [33].
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