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ABSTRACT The FastSLAM algorithm has become an effective way to solve the simultaneous localization
and mapping (SLAM) problem. However, measured in terms of the number of particles required to build an
accurate map, currently, its accuracy cannot be easily enhanced because of particle degeneracy. In view
of these problems, in this paper, we present a fast algorithm of SLAM based on the ball particle filter
(Ball-PF), which originates from the modification of the box particle filter (Box-PF). First, the transform
relationship between Box-PF and Ball-PF are studied in depth so as to show the advantages of Ball-PF with
respect to solving the interval constraints satisfaction problem and prevent from breaking down effectively.
Then, a new fast algorithm of SLAM is designed with Ball-PF, in which the firefly algorithm is used to
maintain the diversity of the ball particles to increase the consistency of the pose estimation effectually.
Furthermore, the map matching technique is used to compute the weight of the ball particles and learn the
grid maps incrementally. The simulation and experimental results demonstrate the performance superiority
of the proposed algorithm.

INDEX TERMS SLAM, mobile robot, box particle filter, firefly algorithm, FastSLAM, ball particle filter.

I. INTRODUCTION
Autonomous navigation is one of the essential technolo-
gies for mobile robots and plays an important role in the
implementation of their intelligence. However, simultaneous
localization and mapping (SLAM) is the key to achieve truly
autonomous navigation, in which both simultaneous localiza-
tion and map building are mutually dependent on each other
result in some difficulties and complexities for an accurate
solution, particularly in the high-dimensional space.

The earliest probability-based method using extended
Kalman filters (EKFs) for solving SLAM was proposed
by Smith and Cheeseman [1]. With further development,
Paskin [2] presented a low-complexity solution to the SLAM
problem by using thin junction trees. To solve the problem
of computation and storage, Thrun et al. [3] proposed a
type of SLAM algorithm based on sparse extended infor-
mation filtering. Then, Murphy and his colleagues proposed
an effective method to solve the SLAM problem by using
the Rao-Blackwellized particle filter (RBPF) and named it
FastSLAM [4], [5]. Subsequently, the FastSLAM algorithm

is improved by Montemerlo et al. [6]. Two applications of
FastSLAM—for learning accurate grid maps—are described
by Hahnel et al. [7] and Eliazar and Parr [8].

The main problem of FastSLAM is that building a pre-
cise map requires a large number of particles. Addition-
ally, the resampling step is problematic as it can eliminate
good state hypotheses. To overcome these problems, many
approaches have been proposed. One is to use laser scan
matching [9], which provides a better proposal distribu-
tion. Giorgio et al. [10] proposed an improved grid-based
FastSLAM algorithm using adaptive proposals and selective
resampling techniques to reduce the number of particles.
An integration technique, combining a genetic algo-
rithm (GA) and particle swarm optimization (PSO) within
FastSLAM, was presented in [11]. Nevertheless, these prob-
abilistic approaches have a common drawback: consistency
problems. Studies [12], [13] have shown that the RBPF
SLAM can obtain accurate positional estimates, but only in a
short time to meet the consistency requirements. This draw-
back can be overcome using interval analysis (IA) methods
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rather than probabilistic ones [14]. Indeed, IA guarantees by
its design that the IA calculations and methods do not suffer
from biased measurements. Thus, IA provides definite and
consistent results. Such advantages have been highlighted in
localization applications [15], [16] and have opened interest-
ing perspectives for SLAM problems [17]–[19].

A particle filter (PF) strategy for mobile robot localiza-
tion involving interval data was introduced in [20] and was
proposed as box particle filtering (Box-PF). Resulting from
the synergy between PF and IA, Box-PF is an approach that
has recently emerged and is aimed at solving a general class
of nonlinear filtering problems. The key idea is to replace
a particle with a multidimensional interval or box of non-
zero volume in the state space. This approach is particularly
appealing in practical situations involving imprecise stochas-
tic measurements that result in very broad posterior densities.
Most recently, various applications [21]–[25] have shown
that an accurate and reliable performance of several thousand
particles can be achieved by just a few dozen boxes.

The constraints satisfaction problem (CSP) is a major
problem in Box-PF. It can be solved using a constraint prop-
agation (CP) algorithm, which combines consistency tech-
niques and systematic search methods for each box to make
them consistent with measurements. An alternative and real-
time interval method based on a CP algorithm has been
successfully applied to robotics applications. See [26]–[28],
for example. The main advantage of CP over Bayesian algo-
rithms is that it guarantees that the position of the vehicle
is contained within a box [12]. Furthermore, inspired by
the attraction and movement behavior of fireflies, the firefly
algorithm (FA) was introduced in [29]. In [30] and [31],
the FA shows good performance inmaintaining particle diver-
sity and improving the overall quality of the particle swarm.
Thus, in the IA framework, alternative techniques to obtain a
more selective and precise solution are also possible.

The rest of the paper is organized as follows. The
mathematical preliminaries needed are briefly presented in
Section II. The Ball-PF algorithm is introduced in Section III,
and its performance is analyzed. The fast algorithm of SLAM,
based on the Ball-PF implementation process, is presented in
Section IV. Section V provides the experimental results and
comparative analyses, while Section VI concludes the paper.

II. ELEMENTARY CONCEPTS AND OPERATION OF THE
BALL PARTICLE FILTER
In this section, elementary concepts about IA are introduced,
based on which the ball can be described in a straightforward
manner by using the concept of the center interval. Thus,
the CSP is analyzed with a fixed-point subsolver.

A. CENTER INTERVAL AND BALL
The main concept of IA is to deal with the intervals of
real numbers instead of dealing with the real numbers them-
selves [32]. A real interval [x] = [x, x̄] is defined as a closed
and connected subset ofRwith x and x̄ denoting the lower and
the upper bounds of x, respectively. The set of n-dimensional

FIGURE 1. Mapping of a box [x] by a vector of function f and its two
different inclusion functions [f ] and [f ]∗.

real intervals is denoted by IRn. An interval vector, or a
box [x] ∈ Rn, is a Cartesian product of n intervals, which
may be represented as follows:

[x] = [x1]× [x2]× · · · × [xn] = ×ni=1[xi] (1)

In IA, the size of box [x] is denoted as |[x]|, and a center
interval [x] is denoted as [x] = [mid([x]), rad([x])] =
[x0, r], where mid([x]) = (x + x̄)/2 and rad([x]) =
(x̄ − x)/2.
The mathematical operations of the center interval can

be drawn from the elementary interval operations (see
Appendix, Table 7). In particular, the distance between
[x] = [x0, rx] and [y] = [y0, ry] is defined as follows:

d([x], [y]) = |x0 − y0| +
∣∣rx − ry∣∣ (2)

A ball in Rn is in fact a center interval in R extending to Rn.
Let x0 ∈ Rn, 0 ≤ r ∈ R, and ‖·‖ be an arbitrary norm in Rn.
The set {x ∈ Rn |‖x − x0‖ ≤ r } is called the n-dimensional
real ball with the center (midpoint) x0 and radius r . At this
point, a ball in Rn can be expressed as 〈x〉 = 〈x0, r〉. The ball
mathematics basically has two definitions. Let λ ∈ R, x ∈ Rn,
and 〈x〉 = 〈x0, r〉; then,

λ · 〈x〉 = 〈x〉 · λ = 〈λx0, |λ| r〉 (3)

x + 〈x〉 = 〈x〉 + x = 〈x0 + x, r〉 (4)

B. CONSTRAINTS SATISFACTION PRPBLEM
Consider a mapping f : Rn→ Rm; then, the interval function
[f ] from IRn to IRm is an inclusion function as shown in Fig. 1.
It is obvious that f ([x]) ⊂ [f ]([x]),∀[x] ∈ IRn.

One of the purposes of IA fo f is to provide a reasonable
[f ] which can be evaluated such that an appropriate size

of [f ]([x]) is achieved. Therefore, we need to solve the CSP
commonly expressed as follows:

H : (G(x) = 0, x ∈ [x]) (5)

The connotation of (5) is to find the optimal box enclosure
of the set of vectors x belonging to a given prior domain [x]
satisfying a set of constraints G(x) = (g1(x), · · ·gm(x))T for
various real functions gi(x). The solution set S consists of all
of the values of x satisfying G(x) = 0, and can be denoted as
follows:

S = {x ∈ [x] |G(x) = 0 } (6)
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A contractor for H is any operator that can be used to
contract H , i.e. replacing [x] by a smaller domain [x]′, such
that

S ⊆ [x]′ ⊆ [x] (7)

Various constraints methods named contractors are
described in [33], including Gauss elimination, the Krawczyk
method, and forward-backward propagation, etc. Each of
these methods can be suitable for different types of CSP.
Furthermore, it is important that the consistency conditions be
satisfied, namely, global consistency and local consistency.
Global consistency represents the ideal solution for CSP, and
it is stronger than local consistency. However, for most CSPs,
the existing methods can only reach local consistency.
Let ψ : Rnx → Rnx be a fixed-point subsolver [33] for H ,

and [ψ] : IRnx → IRnx be an inclusion function for ψ .
A contractor for H is obtained by replacing [x] in H by
[x] ∩ [ψ]([x]). This contractor will be called the fixed-point
contractor associated with ψ . For a given set of constraints,
an iterative application of the corresponding projection pro-
cedures over the constraints will lead to a state where no
variable domain can be further reduced. That is, a fix point
is reached. Nickel first proposed an iterative mapping tech-
nique from ball-to-ball called the ‘‘ball Newton operator’’.
It is essentially a fixed-point method; more details about this
method can be found in [34]–[36].

III. FROM BOX PARTICLE FILTER TO BALL
PARTICLE FILTER
In this section, we first present a brief description of Box-PF
and analyze its performance. Then, the evolutionary strategy
for Ball-PF is discussed in detail.

A. BOX PARTICLE FILTER AND ITS PERFORMANCE
In terms of IA, for the sake of quantifying uncertainties, the
state vector and the measurement vector become the vectors
of intervals. Likewise, the propagation and the observation
functions become inclusion functions, denoted as [f ] and [h],
respectively. Thus, the system dynamics equations can be
defined as follows:{

[xk+1] = [f ]([xk ], [uk+1])
[zk+1] = [h]([xk+1])

(8)

where [xk ] ∈ IRnx and [zk ] ∈ IRny are the state interval
vector and the measurement interval vector at time step k ,
respectively. The control vector [u] is deduced from the pro-
prioceptive sensor data.

Box-PF is a nonlinear filtering algorithm which couples
a sequential Monte Carlo method and IA. The key idea is
to use box particles and a bounded error model, instead
of discrete point particles and probabilistic models, for the
errors and the inputs. Details of the full Box-PF algorithm are
provided in [20] and [37]–[39]. Fig. 2 illustrates the scenarios
of Box-PF. The main advantage of Box-PF compared with
traditional PF is that it substantially reduces the number of

FIGURE 2. Scenarios for the box particle filter.

particles required for the prediction. Its low computational
complexity and high speed improve the filtering performance
and make it suitable for distributed filtering. This approach
guarantees that the real state of the system is included in the
estimation box at each step.

Unfortunately, random subdivision resampling is usually
adopted for Box-PF to solve the degeneracy phenomenon.
In general, the process of subdivision is relatively ran-
dom, which affects its filtering precision and the result of
each experiment is different, while the computational burden
caused by oversampling is increased. In the bounded error
areas, the choice of the number of divisions for each dimen-
sion is not optimal and remains a subject of research [40].
In addition, Box-PF employs the CP technique [22], [39], [41]
to contract boxes. A well-known drawback of CP is that
the decomposition into primitive constraints introduces new
variables in the CSP. This hinders efficient domain tightening.
Meanwhile, the main limitation of CP is its sensitivity to the
multiple occurrences of variables [42], and the results only
satisfy local consistency. For some applications, we can only
contract box particles for two-dimensional cases [43], and
the results are by no means satisfactory as the constraints are
accounted for in an arbitrary order [44].

B. BALL PARTICLE FILTER AND ITS EVOLUTIONARY
SUPERIORITY
The Ball-PF implementation has a similar scheme to that of
Box-PF. The main idea of Ball-PF is to construct a whole
ball with properties that replace a box, use a ball contractor
to contract the ball particle instead of CP, and introduce the
firefly intelligent optimization strategy to improve the total
mass of the ball particles. The differences between Box-PF
and Ball-PF will be presented in the following text.

1) CONSTRUCTION OF A BALL
Mathematically, determine a box in Rn needing 2n parame-
ters. In contrast, for obtaining a ball in Rn, we simply need to
determine the center x0 ∈ Rn and the radius r ∈ R, that is,
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FIGURE 3. Construction procedure for a ball ∈ R2 in a single iteration
cycle.

FIGURE 4. Intersection of two balls in R2, 〈J〉 = 〈〈x〉 ∩ 〈y〉〉 is the smallest
ball containing 〈x〉 ∩ 〈y〉. (a)
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a total of n + 1 parameters. Therefore, the determination of
a ball is more convenient than that of a box. Thus, a ball has
higher real significance than a box. In our work, the definition
of a ball can be transformed from that of a box.

Assume that [x] = [x1]× [x2]×·· ·× [xn] is a state interval
vector in Rn, where [xi] is the center interval [xi0, ri], i =
1, · · ·, n. We can define the center vector x0 = (x10, x20, · ·
·xn0)T composed of all midpoints of xi0 as the center of

an n-dimensional ball and r0 =
√
r21 + r

2
2 + · · · r

2
n as the

radius. Thus, the form of a circumsphere of a box [x] may
be constructed as a whole ball 〈x0, r0〉 with the property (see
Fig. 3). To prevent Box-PF from breaking down, one can
add an artificial noise to the bounds of the box [20]. In our
cases, the ball maintains a suitable size for each dimension of
the center interval vector in every iteration cycle, which can
effectively prevent the algorithm from breaking down.

2) INTERSECTION OF THE BALLS
The intersection of two balls does not form a ball.
Fig. 4 shows the intersection set of two circles in R2. Signifi-
cantly, there is always a circle satisfaction 〈x〉 ∩ 〈y〉 ∈ 〈J〉.
To make up for this un-closeness, we can calculate the
intersection ball to guarantee that the ball contains the inter-
section set.

Let 〈x〉 = 〈x0, r1〉 , 〈y〉 = 〈y0, r2〉, and 〈J〉 = 〈〈x〉 ∩ 〈y〉〉 =
〈J0, r3〉. Suppose that x0 6= y0, r1 ≥ r2 > 0, and r1 + r2 ≥
‖y0 − x0‖, thus, the following results hold:

• J0 ∈ 〈x〉 ∩ 〈y〉 ⊂ 〈J〉 , r3 ≤ min{r1, r2}, (9)

• ‖y0 − x0‖2 + r22 < r21 , 〈J〉 = 〈y〉 (10)

• ‖y0 − x0‖2 + r22 ≥ r
2
1 ,

J0 =
1
2

(
y0 + x0 +

(y0 − x0)(r21 − r
2
2 )

‖y0 − x0‖2

)
(11)

r3=
1
2

√
2(r21+r

2
2 )−‖y0−x0‖

2
−

(r21−r
2
2 )

2

‖y0−x0‖2
(12)

3) CONTRACTION OF A BALL
To conserve a judicious radius for each ball, contraction
algorithms should be used to eliminate the non-consistent
part of the ball particle with respect to the ball measurement.
In our work, depending upon the observation equation and
the ball contraction algorithm, a whole n-dimensional ball is
determined in each iteration cycle. The real measurement ball
is given with respect to the sensor uncertainty. If the predicted
measurement ball contains the desired zero (true state) of
the given observation function, perform the ball contraction
algorithm to obtain a new ball. The ball contraction operator
can be found in Appendix, Section B, andmore details, please
refer to [35].

For the ball contraction operator C , numerical experi-
ments [35] were carried out to obtain a nonsingular matrix3
and λ ∈ R, (0 ≤ λ < 1) to construct a regular ball operator
Q = 〈〈3, λ〉〉, that is,

Qx = 〈3x; λ ‖3x‖〉 , for x ∈ Rn (13)

According to the observation functions h and the real
measurement y, define the ball contraction operator C by as
follows:

Cx=x−(Qh(x)−y)=〈x−3(h(x)−y);λ‖3(h(x)−y)‖〉 (14)

In the applications, we usually adopt one iteration inter-
section operation to obtain the new ball after contraction,
because we only pay attention to the solution of the problem
in Bk . The contraction result of each ball particle

〈
xik
〉
is

denoted as
〈
xik
〉new

. Clearly, each iteration step produces a
new ball that is smaller than the original one. The method is
globally convergent and guarantees xk ∈ B0. The algorithm is
listed in Table 1 and the contraction procedure is summarized
in Fig. 5.

4) BAYESIAN EXPLANATION
Within the Bayesian framework, the state estimation consists
of prediction and correction, i.e.

p(xk+1|z1,k ) =
∫
p(xk+1|xk )p(xk |z1,k )dxk (15)

p(xk+1|z1,k+1) =
1
α
· p(zk+1|xk+1)p(xk+1|z1,k ) (16)
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TABLE 1. Ball contraction algorithm.

FIGURE 5. Contraction procedure for the ball contractor. (a) x̃k+1 ∈ B0.
(b) x̃k+1 /∈ B0.

where normalized coefficient α =
∫
p(zk+1|xk+1)p(xk+1|

z1,k )dxk .
According to [20], [37], and [38], the Box-PF can

be considered an approximation of the Bayesian filter
by interpreting each box particle as a uniform proba-
bility density function (PDF). Likewise, the set of ball
particles is interpreted as a mixture of uniform PDFs.
The previous time PDF for Ball-PF is written as
follows:

p(xk
∣∣z1,k ) =∑N

i=1
ωikU

〈
xik
〉(xk ) (17)

where ωi denotes a set of normalized weights
∑N

i=1 ω
i
= 1

and ∀i, ωi ≥ 0, and U〈x〉 denotes the multivariate
uniform PDF with the ball 〈x〉 as the support (the uni-
form distribution in the ball is described in Appendix,
Section A).

• Prediction
Inserting (17) into (15)

p(xk+1
∣∣z1,k ) = ∫ p(xk+1 |xk )

∑N

i=1
ωikU

〈
xik
〉(xk )dxk

=

∑N

i=1
ωik

1∣∣〈xik 〉∣∣
∫
〈
xik
〉 p(xk+1|xk )dxk (18)

Assume that the noise vk+1 at time k + 1 is bounded
in 〈vk+1〉. The noise PDF is also approximated with a mixture
of uniform PDFs, that is,

p(vk+1) =
∑R

i=1
λik+1U

〈
vik+1

〉(vk+1) (19)

Thus, the transition probability p(xk+1|xk ) can be further
developed into

p(xk+1|xk )

=

∫
p(xk+1|xk , vk+1)

∑R

i=1
λik+1U

〈
vik+1

〉(vk+1)dvk+1
=

∑R

i=1
λik+1

1∣∣〈vik 〉∣∣
∫
〈
vik+1

〉 p(xk+1|xk , vk+1)dvk+1 (20)

Combining (18) and (20) leads to the expression

p(xk+1|z1,k )=
∑N

i=1

∑R

j=1
ωikλ

i
k+1

1∣∣∣〈vjk+1〉∣∣∣
1∣∣〈xik 〉∣∣

· (
∫
〈
xik
〉
∫
〈
vjk+1

〉 p(xk+1|xk , vk+1)dxkdvk+1)︸ ︷︷ ︸
2(x,v)

(21)

Using IA techniques and the Lebesgue measure
theory [38], we approximated the term 2(x, v) by a sum of
constant functions with ball supports. To obtain the analytic
form, for any inclusion function [f ] in Box-PF, the support
for the PDF terms can be approximated by the following:∫

p(xk+1 |xk )U[xik ]
(xk )dxk ≈ [f ]([xik ], [vk+1]) (22)

Thus, according to (18) and (22), the predictive distribution
could be expressed as follows:

p(xk+1
∣∣z1,k ) ≈∑N

i=1
ωikU[f ]([xik ],[vk ])

(xk+1)

=

∑N

i=1
ωikU[xik+1]

(xk+1)

construction of ball
−→

[xik+1]7→
〈
xik+1

〉 =∑N

i=1
ωikU

〈
xik+1

〉(xk+1) (23)

Equation (23) shows that p(xk+1
∣∣z1,k ) can be approxi-

mated using the weighted sum of N ball particles
〈
xik
〉
as the

support.
• Correction
With the ball measurement 〈zk+1〉 ⊇ h(xk+1) + wk+1,

the likelihood function has the following expression with L
components weighted with the normalized coefficient β jk+1:

p(zk+1 |xk+1 ) =
∑L

j=1
β
j
k+1U

〈
zjk+1

〉(h(xk+1)) (24)
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where
⋃L

j=1

〈
zjk+1

〉
= 〈zk+1〉 for a set of ball supports

〈
zjk+1

〉
with j = 1, 2, · · ·, L. Therefore, according to (16), we
obtained the following:

p(xk+1
∣∣z1,k+1 ) = 1

αk+1

∑L

j=1
β
j
k+1U

〈
zjk+1

〉(h(xk+1))
·

∑N

i=1
ωik+1U〈xk+1〉(xk+1) =

1
αk+1

×

∑L

j=1

∑N

i=1
β
j
k+1ω

i
k+1

×U〈
zjk+1

〉(h(xk+1))U〈xik+1〉(xk+1)︸ ︷︷ ︸
ψ

(25)

The term ψ is a constant function with the following set as
the support:

SSψ =
{
xk+1 ∈

〈
xik+1

〉
|∃wk+1 ∈ 〈wk+1〉,

such that h(xk+1,wk+1) ∈
〈
zjk+1

〉}
(26)

The above set defines a CSP; that is, the predicted ball
particle

〈
xik+1

〉
can be contracted with respect to the rela-

tionship between the measurement function h and the ball
measurement

〈
zjk+1

〉
. Therefore, a set of new balls

〈
x̂ ik+1

〉
may be provided to fit p(zk+1 |xk+1 ) after the CSP. Thus,
we obtained the following:

U〈
zjk+1

〉(h(xk+1))U〈xk+1〉(xk+1)
= U〈

zjk+1

〉(h(xk+1)) 1∣∣〈xik+1〉∣∣
∣∣SSψ ∣∣USSψ (xk+1) (27)

Combining (22) with (25), we defined
〈
x̂ ik+1

〉
as the mini-

mum ball containing SSψ , i.e.,
〈
x̂ ik+1

〉
=
〈
SSψ

〉
. Further, the

predictive probability distribution was obtained as follows:

p(xk+1
∣∣z1,k+1 )

=
1

αk+1

∑N

i=1

∑L

j=1
β
j
k+1ω

i
k+1U

〈
zjk+1

〉(h(xk+1))
×

1∣∣〈xik+1〉∣∣
∣∣SSψ ∣∣USSψ (xk+1)

≈
1

αk+1

∑N

i=1
β
j
k+1ω

i
k+1

1
|〈zk+1〉|

×
1∣∣〈xik+1〉∣∣

∣∣∣〈x̂ ik+1〉∣∣∣U〈x̂ik+1〉(xk+1)
∝

∑N

i=1
ωik+1

∣∣〈x̂ ik+1〉∣∣∣∣〈xik+1〉∣∣U〈x̂ik+1〉(xk+1) (28)

5) SCENARIOS OF BALL-PF
• Initialization
The state space region in question was divided into

N center interval vectors [xik ], i = 1 · · · N , with an empty
intersection and equivalent weights.
• Time update
According to [xik ] and input [uk ] at time k , the cen-

ter interval vectors [xik+1] at step k + 1 were built by

[xik+1] = [f ]([xik ], [uk ]), and then each ball
〈
xik+1

〉
was

constructed with respect to [xik+1].
• Measurement update
For all [xik+1], we predicted the box measurements using

[zik+1] = [h]([xik+1]). Therefore, the real measurement ball〈
yk+1

〉
and the prediction measurement ball

〈
zik+1

〉
were con-

structed according to the corresponding center interval vec-
tors (see Fig. 3).
• Firefly intelligent optimization
The core idea of FA combined with Ball-PF is to move the

ball particle points towards the high-likelihood region, which
mainly involves the following three aspects:
1) Light intensity
As opposed to the conventional FA, we used the real obser-

vation value compared with the forecasted observation value
of each ball particle, which helped to avoid the computational
complexity caused by the light intensity of each ball particle
compared with the other ball particles in the current position.
Furthermore, for each moment, only one observation was
recorded. This led us to reconstruct a light intensity I ik+1 for
each ball particle. Within the interval framework, it was eval-
uated as the volume of the intersection ball

〈
εik+1

〉
between the

prediction measurement ball
〈
zik+1

〉
and the real measurement

ball
〈
yk+1

〉
, i.e.

I ik+1 =
∣∣∣〈εik+1〉∣∣∣ = ∣∣∣〈zik+1〉 ∩ 〈yk+1〉∣∣∣ (29)

2) Attractiveness
Each firefly has its distinctive attractiveness β which

implies how strongly it attracts other members of the swarm.
As the global optimal value of the particle swarm was only
one, in our work, each ball is only compared with the
optimal ball

〈
gk+1

〉
, which helped to further avoid higher-

order interactive calculations and the repeated calculations
of attractiveness. The computational complexity of this stage
was reduced from the original O(N 2) to O(N ). Meanwhile,
the improved method used the FA to find a better value with
fewer iterations and fewer particles, which obviously reduced
the computational complexity of Ball-PF.
The attractiveness between any ball particle and the opti-

mal ball
〈
gk+1

〉
was defined as the exponential function of di

β = β0e−γ d
2
i (30)

where β0 and γ are the predetermined parameters maximum
attractiveness and absorption coefficient, respectively; in gen-
eral, β0 ∼ [0.8, 1]. The distance between any ball

〈
xik+1

〉
and

the global optimal ball
〈
gk+1

〉
was denoted as follows:

di = d(
〈
gk+1

〉
,
〈
xik+1

〉
) =

∥∥∥mid(〈gk+1〉)− mid(〈xik+1〉)∥∥∥
+

∣∣∣rad(〈gk+1〉)− rad(〈xik+1〉)∣∣∣ (31)

3) Position update
For each ball particle, the radius was kept constant by

changing the position of the center to make the ball move.
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After initialization, the position update for every ball particle
was as follows:

mid(
〈
xik+1

〉
) = mid(

〈
xik+1

〉
)+ β × (mid(

〈
gk+1

〉
)

−mid(
〈
xik+1

〉
))+ α × (rand − 1/2) (32)

where rand ∼ U (0, 1) is a random number obtained from the
uniform distribution. The addition of α× (rand −1/2) as the
disturbance term effectively reduced the probability of falling
into a local extremum to some extent, α ∈ [0, 1].
When the position update was completed, we calculated

and compared the light intensity for each ball particle and
then, updated the global optimal ball as follows:〈
gk+1

〉
∈

{〈
x1k+1

〉
,
〈
x2k+1

〉
, · · ·,

〈
xNk+1

〉
|I (〈x〉)

}
=

N
max
i=1

I (
〈
xik+1

〉
)

(33)

• Contraction
After the position update, if

〈
εik+1

〉
was not empty, the ball

particle
〈
xik+1

〉
was contracted using the ball contraction algo-

rithm combined with the measurement equation to obtain a
new ball particle

〈
xik+1

〉new
. Else, the ball particle remained

unchanged
〈
xik+1

〉new
=
〈
xik+1

〉
. Meanwhile, the new center

interval vector [xik+1]
new was generated using

〈
xik+1

〉new
; we

then used it to obtain the interval vector [xik+2] at time k + 2.
• Likelihood
A ball particle for which the predicted ball measurement

had no intersection with the real ball measurement was penal-
ized, and a ball particle for which the predicted value was
included in the real ball measurement was favored. This led
us to construct the following measure of the ball likelihood:

Ai = Î ik+1(j)/
∣∣∣〈zik+1(j)〉∣∣∣ (34)

where Î ik+1(j) represents the updated value after the position
update.
• Weight update
As the FA changed the position of each ball particle in

the state space, the weight was updated along with the ball
particle position. We constructed an update to the weights of
the ball particle by multiplying the previous weight by every
ball’s likelihood as follows:

ωik+1 = Aiωik (35)

• Normalization
This step was used to handle the normalized weights such

that their sum was equal to one, i.e.

ωik+1← ωik+1/
∑N

j=1
ω
j
k+1 (36)

• Estimation

x̂k+1 =
∑N

i=1
ωik+1 · mid(

〈
xik+1

〉
) (37)

FIGURE 6. Scenarios for the box particle filter.

We could also use the maximum weight estimate. Sim-
ilarly, according to the definition of the enclosing box in
Box-PF, given that the Ball-PF estimation x̂k+1 was calcu-
lated using N vectors mid(

〈
xik+1

〉
), another confidence in the

estimation based on the confidence of each mid(
〈
xik+1

〉
) was

calculated using a Gaussian-like mixture strategy with

P̂k+1=
∑N

i=1
ωik+1(rad(

〈
xik+1

〉
)

+ (x̂k+1−mid(
〈
xik+1

〉
))(x̂k+1−mid(

〈
xik+1

〉
))T ) (38)

where P̂k+1 was the partial confidence generated when using
each ball particle center. The Ball-PF algorithm is illustrated
in Fig.6, and its procedure is listed in Table 2.

IV. FAST ALGORITHM OF SLAM BASED ON BALL
PARTICLE FILTER
According to the conventional FastSLAM algorithm, the pro-
posed Ball-PF based fast SLAM algorithm and the perfor-
mance evaluation are presented in this section.

A. FASTSLAM ALGORITHM
FastSLAM is a framework using an RBPF, which is based on
the following factorization [45]:

p(x1:t ,M |z1:t , u1:t , n1:t )︸ ︷︷ ︸
SLAM posterior

= p(x1:t |z1:t , u1:t , n1:t )︸ ︷︷ ︸
path posterior

·

L∏
i=1

p(mi |x1:t , z1:t , n1:t )︸ ︷︷ ︸
landmark posterior

(39)

20418 VOLUME 6, 2018



J. Luo, S. Qin: Fast Algorithm of SLAM for Mobile Robot Based on Ball-PF

TABLE 2. Ball particle filter algorithm.

where x1:t , z1:t , u1:t and n1:t are the robot trajectory, observa-
tions, controls, and correspondences, respectively, from the
start to time t . mi is a local map of the ith particle, andM is a
global map.

Thus, the posterior p(x1:t |z1:t , u1:t−1, n1:t ) was solved
applying PF, which implied that one particle would represent
one potential trajectory over one time step while generating

its own map. The posterior
L∏
i=1

p(mi |x1:t , z1:t , n1:t ) was com-

puted analytically when given information on x1:t and z1:t .
Presently, FastSLAM is the best-performing probabilis-

tic technique for solving SLAM problems, which improves
the system efficiency by reducing the dimensionality of the
state space. It could achieve the desired performance for
large-scalemap calculations in real-time applications because
of its parallelized structure [46]. A full SLAM system for
mobile robots is shown in Fig. 7. Most of the researchers
have been working on improving the performance of state
estimation algorithms, whereas IA provides a good solution
for dealing with data containing unknown but bounded errors.

FIGURE 7. Full SLAM system for mobile robots.

According to Section III, the Ball-PF algorithm achieved
better estimation accuracy and less computation time than tra-
ditional PF. Thus, it was more suitable for the implementation
of SLAM under the FastSLAM framework.

B. FAST ALGORITHM OF SLAM BASED ON BALL-PF
The position of a mobile robot was represented by a center
interval vector [x] = ([x] × [y] × [θ ])T , where ([x] × [y])T

stands for the position of the mobile robot in the global
coordinate system, and [θ] is its orientationwith respect to the
x axis. Thus, the time-discrete kinematic model was formu-
lated as follows:

[xk+1] = [xk ]+ [1dk ] cos ([θk ]+ 1/2[1θk ])
[yk+1] = [yk ]+ [1dk ] sin ([θk ]+ 1/2[1θk ])
[θk+1] = [θk ]+ [1θk ]

(40)

where input vector [uk ] = ([1dk ][1θk ])T consists of the
elementary displacement and the elementary rotation of the
mobile robot at time k . More details and the elucidation of
parameters are presented in [14] and [45].

The measurement vector [zk ] = ([rk ][ϕk ])T is composed
of a range of measurements r and bearing measurements ϕ,
which were respectively modeled as follows:

[r] =
√
([mx]− [xk ])2 + ([my]− [yk ])2

[ϕ] = arctan(
[my]− [yk ]
[mx]− [xk ]

)− [θk ]
(41)
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TABLE 3. Map matching truth-value table.

TABLE 4. Fast algorithm of SLAM based on ball-PF.

FIGURE 8. Simulation environment map and the motion direction of a
mobile robot.

Considering the interval-based uncertainties, the laser
range finder provided interval measurements that were
expressed as [yk ] = [yk − 3σ, yk + 3σ ], where σ denotes the
standard deviation. Below, details of the Ball-PF algorithm
for the SLAM implementation are presented, and its proce-
dure is described in Table 4.

1) An initial pose estimate of each center interval vector
[xik+1] was obtained from the previous position center interval
vector [xik ] in terms of the inclusion function [f ]. The odome-
ter measurements [uk ] and a realistic approximation of the
errors were proposed.

2) The prediction measurements for each ball
particle drawn from [zik+1] = [h]([xik+1]). According to

FIGURE 9. Individually estimated values for all box (and ball) particles
throughout the process. The magenta ‘‘.’’ is the center of the box (or ball)
particle. (a) Box-PF (Nb=10). (b) Box-PF (Nb=20). (c) Ball-PF (Nb = 10).
(d) Ball-PF (Nb = 20).

[xik+1], [z
i
k+1], and [yk+1], we constructed the corresponding

ball particles
〈
xik+1

〉
,
〈
zik+1

〉
, and

〈
yk+1

〉
. Thus, each

〈
xik+1

〉
had an estimated value for its pose and an individual map,
meanwhile, the intersection

〈
zik+1

〉
∩
〈
yk+1

〉
was calculated,

and then, the FA was executed.
3) In the applications, each ball particle had its own local

and global maps. Through the transformation from the local
to the global coordinates of each grid in the local map,
we used the overlap of the local map and the global map to
calculate the weight for each ball particle, which avoided the
complexity of using the likelihood function to calculate the
ball particle weights. In fact, the match between the local and
global maps was used to compare the probability values of
each grid in the local map pL(ci) with those of the correspond-
ing global map pG(ci). For each cell c, the occupancy grids
stored the probability p(c) of being occupied by an obstacle.

One often assumes that the prior occupancy is 0.5, where
p(c) > 0.5 indicates occupancy, and p(c) < 0.5 indicates
non-occupancy. Table 3 shows that only pL(ci) and pG(ci)
simultaneous satisfied the condition of > 0.5 or < 0.5; then,
µ+1; else, µ−1. Thus, the weight of the ith ball particle was
calculated as follows:

ωi = e
µ
λ (42)

whereµ denotes thematching results, and λ is a constant used
to control the divergence rate of the weights. After obtaining
the weight of each ball particle, we normalized the particle
weight, that is, satisfied the following condition:∑N

i=1
ωi = 1 (43)

4) As the laser scan data with high accuracy, here,
we inserted the latest data scan data yk = mid([yk ]) and
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FIGURE 10. Estimated trajectories for different algorithms. Np represents the number of particles for RBPF; Nb represents the number of particles for
Box-PF (and Ball-PF). (a) RBPF SLAM (Np = 100). (b) Box-PF SLAM (Nb = 20). (c) Ball-PF SLAM (Nb = 20)

the existing maps (mx ,my) into (41), along with the ball
contraction algorithm to contract the ball particles

〈
xik+1

〉
.

The ball particle map was updated with the final estimated
position and the laser scan data, and then, the largest weight
ball particle

〈
x̂ lk+1

〉
was selected as the localization result.

5) The occupancy grid map of each ball particle was
updated using ‘‘mapping with known poses’’, given the
knowledge of x1:k and y1:k . In this study, we used the approach
proposed in [45].

C. PERFORMANCE ASSESSMENT
To assess the performance of Ball-PF, we used the criteria
similar to the ones proposed by Gning et al. [39] for the
assessment of Box-PF: inclusion and volume. Therefore,
the optimal Ball-PF for a SLAM problem had to satisfy the
following two conditions:
• The true value of the pose state vector must be contained
in the support of the posterior spatial PDF.

• The volume of the support of the posterior spatial PDF
should be minimal.

In Ball-PF, the credible setCk (1) was approximated simply
by the union of all of the ball particles, that is,

Ck (1) =
⋃N

i=1

〈
xik
〉

(44)

Thus, the inclusion criterion ρk followed directly from [6]
as follows:

ρk =

{
1, Ck (1) =

⋃N
i=1

〈
xik
〉

0, otherwise
(45)

The volume criterion vk was approximated the volume
of Ck (1) by the spread of the ball particles. In practice, vk
was approximated by the covariance P̂k defined in (38), i.e.

vk = P̂k (46)

The failure to satisfy the inclusion criteria indicated the
filter divergence. If the average inclusion was 1, the true value
of the state was consistently contained within the particle
support set.

Furthermore, to apply the root-mean-square error (RMSE)
metric to Box-PF and Ball-PF, we used the center points of
the box or ball to evaluate the performance.

XRMSE =

√√√√ 1
N

N∑
i=1

(
x ik − x

∗
k

)2
(47)

where N is the number of particles, x∗k is the true pose, and
x ik is the center of the i

th ball or box at time k .

V. SIMULATION EXPERIMENTS AND COMPARATIVE
ANALYSIS
The simulation studies and a case study with mobile robots
for the proposed algorithm are given in this section. All of
the experiments were performed on a mobile computer with
an Intel R©CoreTMi5-5200U CPU @ 2.20 GHz with 8 GB of
RAM running underWindows 7. The simulation experiments
were implemented using MATLAB (2014a) and based on
the INTLAB9.0 toolbox, which contains a number of built-
in routines for the interval calculations. The mobile robot
experiment was conducted using Ubuntu14.04 and a robot
operating system (ROS).

A. SIMULATION EXPERIMENT AND COMPARATIVE
ANALYSIS
To verify the performance of the proposed algorithm,
we compared the conventional RBPF SLAM, Box-PF
SLAM, and Ball-PF SLAM through simulation experiments
in view of the following two different typical situations of
maps.

1) GRID MAPS
In this study, the performance evaluationwas conducted using
the simulated environment that we created, and with some
simulated measurement data. Firstly, we designed an envi-
ronment map with an area of approximately 250 m2 and a
resulting grid map resolution of 10cm2/cell. Meanwhile, we
generated a real trajectory reference for the mobile robot to
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FIGURE 11. 2D floor plan occupation grid map generated after running different SLAM algorithms using different numbers of particles. (a) RBPF SLAM
(Np = 10). (b) RBPF SLAM (Np = 20). (c) RBPF SLAM (Np = 100). (d) Box-PF SLAM (Nb = 10). (e) Box-PF SLAM (Nb = 15). (f) Box-PF SLAM (Nb = 20).
(g) Ball-PF SLAM (Nb = 10). (h) Ball-PF SLAM (Nb = 15). (i) Ball-PF SLAM (Nb = 20).

follow, as illustrated in Fig. 8. To observe the effect of the
SLAM algorithm more accurately, we added some depres-
sion features in the straight corridor. Then, we simulated the
odometer and the laser range finder measurements to which
we added some noise to produce the final actual measurement
data.

A kinematics model (40) was used in this simulation.
The mobile robot equipped with a laser rangefinder with a
maximum range of 20 m and a frontal field-of-view of 180◦.
The mobile robot moved at the speed of 4 m/s and with
a maximum steering angle of 30◦. The control frequency
was 40 Hz, and observation scans were obtained at 5 Hz.
The distance measurement and the angular accuracy of the

laser rangefinder were assumed to be ±50 mm and ±0.125◦,
respectively. The FA parameters were β0 = 0.9, γ = 1,
and α = 0.45. At each iteration step, one-third of the laser
measurements were chosen randomly for the localization,
from which one-third were allowed to be outliers. For the

regular ball operator λ = 0.3, and 3 =

(
−1 0
0 1

)
.

In the simulations, the number of particles was set as
10, 15, 20, and 100. Fig. 10 shows that Ball-PF provided
better contraction results than Box-PF at each step. The two
interval-based methods provided consistency and guarantee
results during the entire process. In Fig. 11, to successfully
build the environment’s 2D floor plan occupation grid maps,
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FIGURE 12. Absolute value of the estimated errors over the filtering runs
for the PF, Box-PF, and Ball-PF methods using 100, 20, and 20 particles,
respectively. Top: x-errors. Middle: y-errors. Bottom: theta errors.

FIGURE 13. RMSE vs. number of particles.

the Ball-PF needed only 20 ball particles to outperform the
RBPF with 100 particles, and performed better than the
Box-PF. For RBPF SLAM, obvious errors were observed
when 20 particles were used and the mapping results were
inconsistent.

Fig. 9 shows that the box particles were more dispersed
than the ball particles near the true value, which led to the
degeneracy phenomenon occurring in Box-PF and required
and random subdivision resampling. Instead, the Ball-PF
used firefly intelligent optimization to move the ball parti-
cles towards the high-likelihood region and reasonably retain
parts of the ball particles in the low-likelihood region. Thus,
it maintained the variety of ball particles as well as ensured
the necessary number of effective ball particles. As compared
to the RBPF, the Ball-PF and the Box-PF used bounded error
methods; thus, the error was transmitted directly. As the error
was not abandoned or approximate, the effect of the errors on
the location results was reduced. Fig. 12 shows a plot of the
absolute value of the estimated error for the three algorithms.

FIGURE 14. Running time vs. number of particles.

FIGURE 15. Inclusion values.

FIGURE 16. RMSE with varying levels of measurement noise (Np=100,
Nb=20). (a) RMSE for trajectory prediction. (b) RMSE for estimated
landmark.

As can be seen from Fig. 13, Ball-PF SLAM could achieve
the error rate of a 100 particle RBPF SLAMwhile using only
20 particles. Thus, at the same accuracy, the Ball-PF reduced
the computational load and improved the real-time perfor-
mance. Meanwhile, Ball-PF SLAM had better accuracy than
the other two algorithms with the same number of particles.
However, because the posterior probability of the uniform
distribution was fitted in both Ball-PF and Box-PF, it was
impossible to improve the accuracy considerably by simply
increasing the number of particles.

Fig. 14 shows that the two interval-based SLAM methods
were inferior to RBPF SLAM in terms of the time cost for
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FIGURE 17. Estimated and true mobile robot trajectories with the estimated and true landmarks for different SLAM algorithms. The black line and blue
‘‘∗’’ denote the true trajectory and the setting landmark positions, respectively. The red line is the mean estimate of the mobile robot, and the red ‘‘+’’
denotes the estimated landmark. The magenta ellipse is the covariance of the estimated landmarks. (a) RBPF SLAM (Np = 100). (b) Box-PF SLAM
(Nb = 20). (c) Ball-PF SLAM (Nb = 20).

TABLE 5. Comparison of RBPF, Box-PF and Ball-PF methods.

TABLE 6. Computational cost of different SLAM algorithms.

the same number of particles. The running time of RBPF
SLAM was proportional to the number of particles, whereas,
the main time consumption of the Box-PF and Ball-PF meth-
ods were used for the calculation of the intervals. The time
consumption of Ball-PF was slightly more than that of Box-
PF for the same number of particles, but the accuracy of
Ball-PF was better than Box-PF, which implied that Ball-PF
was more suitable for use in cases with a small number of
particles.

As illustrated in Fig. 15, according to the inclusion values,
Ball-PF was sufficient to satisfy the inclusion criterion. This
was a useful advantage of the Ball-PF implementation as
compared to the Box-PF implementation. The comparison
results of more than 10 simulation runs for the three algo-
rithms are reported in Tab. V. A smaller number of particles
and less time were required to obtain the same estimation

accuracy with the Ball-PF algorithm. Therefore, the proposed
algorithm reduced the computational cost and decreased the
error.

2) LANDMARK MAPS
In this study, a simulator developed by Bailey [47] was
used to evaluate the performance of Ball-PF for the SLAM
approach.We assumed that the data association was unknown
and the individual compatibility nearest neighbor (ICNN)
method was used for the association [48]. The simulation
environment had an area of 250 m × 200 m with 35 land-
marks. The control noise and the measurement noise were
respectively set to (0.3m/s, 3◦) and (0.2m, 4◦).
Fig. 17 shows a comparison of the trajectory estimation

and the landmark position estimation between three different
algorithms. The estimated trajectory by the Box-PF SLAM
and Ball-PF SLAM was better than that by RBPF SLAM,
and the trajectory estimated by Ball-PF SLAM was closer to
the true trajectory than that estimated by Box-PF SLAM. The
estimated landmarks by RBPF SLAM showed large align-
ment errors, whereas that estimated by the Ball-PF SLAM
was almost the same as the actual landmark.

To compare the performance and the accuracy of all of the
mentioned SLAM algorithms, at the different measurement
noise levels, we set six groups of measurement noise data for
each simulation. For each measurement noise level, the mean
and the standard deviation of the RMSE were calculated
over 20 runs for each SLAM algorithm. We could reasonably
to conclude from Fig. 16 that the mean and the standard
deviation for Ball-PF SLAM increased at a slower rate than
the other two algorithms for each measurement noise level.
Hence, the ability of Ball-PF SLAM to suppress noise was
stronger than that of RBPF SLAM and Box-PF SLAM with
respect to the increasing measurement noise levels.

The CPU time for the full SLAM process and the average
time of all of the filtering steps of different SLAMapproaches
over 20 simulation runs are reported in Tab. VI.We concluded
that the average time of two interval particle based SLAM
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FIGURE 18. Wheel-leg compound mobile robot and its software console
interface.

FIGURE 19. Experiment scene.

methods was longer than that of RBPF SLAM at the same
number of particles. However, according to Fig. 13, we found
that a smaller number of particles for the interval based
SLAM algorithm were needed to obtain the same or higher
estimation accuracy than RBPF SLAM (Np= 100, Nb= 20).
This indicated that the Ball-PF SLAM algorithm performed
well in terms of the computational efficiency over RBPF
SLAM at the same accuracy.

B. A CASE STUDY WITH WHEEL-LEG COMPOUND
MOBILE ROBOT
The proposed approach was implemented and tested using
a wheel-leg compound mobile robot (dimensions: 515 cm
× 481 cm × 285.5 cm, weight: 5 kg) equipped with an
ASUS-Xtion depth camera.

As shown in Fig. 18, the walking gait and the motion mode
of the mobile robot were set by the software console and
sent the control instruction to the mobile robot to move along
the reference trajectory. The experimental site was a confer-
ence room located in the New Main Building of Beihang
University, Beijing, and the experimental scene is depicted
in Fig. 19.

During the experiment, the mobile robot was set to the
wheel motion mode and the real data were gathered with
a depth camera. To reduce the computational complexity,

FIGURE 20. ORB feature poins.

FIGURE 21. Estimated trajectory for different algorithms (Nb = 20).

FIGURE 22. Error analysis for different algorithms.

we selected the key frames for the image sequence according
to a certain step length [49] and then, opted for the oriented
FAST and rotated BRIEF (ORB) feature points [50] (see
Fig. 20) to detect and extract landmark information from an
image. Remarkably, the ORB feature provided results with a
very low error rate and good performance in real time. Thus,
each key frame corresponded to a set of 3D feature point
clouds. The observation model between a 3D point P(x, y, z)
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FIGURE 23. Sparse point cloud maps and trajectory estimation for different SLAM algorithms. Point clouds (red and black points), key frames (blue
rectangles), and current location of the depth camera (green rectangle). (a) Visual odometry. (b) Box-PF SLAM (Nb = 20). (c) Ball-PF SLAM (Nb = 20).

FIGURE 24. Reconstructed 3D dense maps for different SLAM algorithms. (a) Visual odometry. (b) Box-PF SLAM (Nb = 20). (c) Ball-PF SLAM (Nb = 20).

and the image coordinates P(u, v) was given by the pinhole
camera model. The landmark locations were feature point
positions estimated from the observations of the environment
in the image. The iterative closest point (ICP) algorithm was
used to implement the point cloud data registration [51].

Three experiments were carried out using the visual
odometry (VO) method [52], Box-PF SLAM algorithm and
Ball-PF SLAM algorithm. Fig. 21 illustrates the result of the
trajectory estimation for different algorithms performed in a
loop. We observed that the trajectory defined by the location
balls correctly followed the reference trajectory and all of the
reference trajectory points were included in the localization
balls; the localization balls were thus consistent. The Ball-
PF relied on its superiority to provide guaranteed results.
In contrast, the estimated trajectory for the Box-PF showed
obvious deviations in some places. For the entire process,
the VO took 251.26 s, the Box-PF SLAM took 239.47 s with
20 box-particles and the Ball-PF SLAM took 246.83 s with
20 ball-particles.

From Fig. 22, themaximum error of the pose estimation for
the Box-PF SLAM algorithm in the X-direction was approx-
imately 6 cm and over 4.5 cm in the Y-direction, whereas,
the maximum error of the pose estimation for the Ball-PF
SLAM algorithm in the X-direction was no more than 3 cm
and approximately 2 cm in the Y-direction. Fig. 23 shows

the trajectory estimation and the corresponding sparse point
cloud maps for the VO method, Box-PF SLAM algorithm
and Ball-PF SLAM algorithm. Clearly, because of a lack
of the added loop closure detection, the cumulative errors
of registration between contiguous key frames resulted in a
larger error for VO, whereas the Ball-PF SLAM provided the
guaranteed result by using interval techniques, and the esti-
mation accuracy was higher than that for the Box-PF SLAM.
This further showed that the proposed method could largely
eliminate the error caused by no loop closure detection.

We also used OctoMap [53] splicing point clouds to recon-
struct the dense maps for the three SLAMmethods to display
the final effect of mapping. From Fig. 24, the reconstructed
3D dense map of the Box-PF had obvious deviation and
inconsistency due to the error caused by the trajectory estima-
tion. The reconstructed 3Dmapwas consistent with the actual
3D environment based on the estimated trajectory of the
Ball-PF, and no map overlap and distortion was observed.
Consequently, the experimental results demonstrated the fea-
sibility and the effectiveness of Ball-PF for the implementa-
tion of SLAM.

VI. CONCLUSION AND REMARKS
The work described in this paper is a modification of the
Box-PF algorithm; that is, Ball-PF is presented and applied
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TABLE 7. Elementary operations for center interval.

to SLAM. Unlike the traditional FastSLAM algorithm,
the approach calculates the posterior of a mobile robot’s
pose on the basis of Ball-PF. The proposed method was
validated using a series of simulation experiments and exhib-
ited good results. Although the proposed algorithm exhibited
good results, several points should be noted. Because each
ball particle was seen as a uniform distribution approxima-
tion, simply increasing the number of ball particles caused
no significant improvement in the filtering accuracy. Thus,
ways to optimize the balls and select the probability den-
sity functions should be the main future research direction,
such as by using Gaussian distributions. Indeed, solutions to
this problem are beneficial for building more accurate maps
with fewer particles for SLAM. On the basis of this work,
we considered using a Dirichlet process (DP) to determine the
number of components, to further answer the question about
how to determine the number of ball particles. In addition, the
choice of λ and 3 in the ball contraction operator required
deliberation, as their values were not unique. In some cases,
several numerical experiments were required, and in the other
cases, it was easier if the mapping of f involved a strongly
monotone operator (see Appendix, Section C).

APPENDIX
A. UNIFORM DISTRIBUTION IN BALL
Known radius R0(R0 > 0), 0 is gamma function, the volume
of n-dimensional ball x21 + x

2
2 + · · · + x

2
n ≤ R

2
0 is

VR0 =
π

n
2Rn0

0( n2 + 1)

Definition: If the probability density function of n-
dimensional random vector (X1,X2, · · ·,Xn) can be defined
as

g(x1, x2, · · ·, x3) =


0( n2+1)

π
n
2Rn0

, x21+x
2
2+· · ·+x

2
n ≤ R

2
0

0, x21+x
2
2+· · ·+x

2
n > R20

Call (X1,X2, ···,Xn) obeys the uniform distribution in x21+
x22 + · · · + x

2
n ≤ R

2
0.

B. DEFINITION OF BALL CONTRACTION OPERATOR
Definition 1: Let3 be a nonsingular n×nmatrix, λ ∈ Rwith
0 ≤ λ < 1, the regular ball operator Q is defined by the ball
valued operator{

Q : Rn→ ℵn0(Rn)
⋃
{0}

Qx = 〈3x; λ ‖3x‖〉 , for x ∈ Rn

where ℵ(Rn) denotes the set of all balls 〈x〉 ∈ Rn.
The operator Q will also be denoted by Q = 〈〈3, λ〉〉.
Definition 2: Let f : D ⊆ Rn → Rn,D ={
x ∈ Rn

∣∣∥∥x − x ′∥∥2 ≤ d, 0 ≤ d ∈ R} is n-dimensional closed
ball. The regular ball operator Q = 〈〈3, λ〉〉 corresponding
to set A = 〈a, r〉, Define the ball contraction operator C by{
C : A→ ℵ(Rn)
Cx = x − Qf (x) = 〈x −3f (x); λ ‖3f (x)‖〉 , x ∈ Rn

where ℵn0(Rn) denotes the set of all balls X ∈ Rn for which
0 /∈ X .

C. DEFINITION OF BALL OPERATOR WITH DIFFERENT
MAPPING
1) Provided that mapping f : D ⊂ Rn → Rn has a strongly
monotone operator, i.e. ∃α > 0,∀x, y ∈ D, satisfaction:

(f (x)− f (y), x − y) ≥ α ‖x − y‖2 .

Redefine ball operator P asP : D→ ℵn(R
n)

Px =
〈
x −

1
2α

f (x);
1
2α
‖f (x)‖

〉
, ∀x ∈ D

2) Provided that the strongly monotone operator f : D ⊂
Rn → Rn also satisfies the Lipschitz condition, L is the
Lipschitz constant. Let

c1 =
α

L2
, p1 =

(
1
α2
−

1
L2

) 1
2

, λ1 =
p1
c1
, (0 < λ1 < 1).

Definition of ball operator L = 〈〈c1, p1〉〉{
L : Rn→ ℵn(Rn)
Lx = 〈c1x; p1 ‖x‖〉 , ∀x ∈ Rn

According to L, define operator Q:{
Q : B0→ ℵn(Rn)
Qx = x − Lf (x) = 〈x − c1f (x); p1 ‖f (x)‖〉 , ∀x ∈ B0
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