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ABSTRACT Mining high utility itemsets (HUI) is an interesting research problem in the field of data mining
and knowledge discovery. Recently, bio-inspired computing has attracted considerable attention, leading to
the development of new algorithms for mining HUIs. These algorithms have shown good performance in
terms of efficiency, but are not guaranteed to find all HUIs in a database. That is, the quality is comparatively
poor in terms of the number of discovered HUIs. To solve this problem, a new framework based on bio-
inspired algorithms is proposed. This approach adjusts the standard roadmap of bio-inspired algorithms by
proportionally selecting discovered HUIs as the target values of the next population, rather than maintaining
the current optimal values in the next population. Thus, the diversity within populations can be improved.
Three new algorithms based on the Bio-HUI framework are developed using the genetic algorithm, particle
swarm optimization, and the bat algorithm, respectively. Extensive tests conducted on publicly available
datasets show that the proposed algorithms outperform existing state-of-the-art algorithms in terms of
efficiency, quality of results, and convergence speed.

INDEX TERMS Data mining, high utility itemset mining, bio-inspired algorithm, genetic algorithm, particle
swarm optimization, bat algorithm.

I. INTRODUCTION
Data mining is the non-trivial process of extracting useful
and understandable information from different types of vast
data repositories [32], [35]. Generally used as the first phase
of association rule mining (ARM) [3], [36], frequent itemset
mining (FIM) [1], [28] has received considerable attention
and been applied in various domains [26], [29]. Given a
transaction database, the problem of FIM is to discover sets
of items whose occurrence frequency is no less than the
minimum support threshold set by users. Generally speak-
ing, frequent itemsets are determined by the frequency of
an item occurring in the database. However, different items
have different values for specific application scenarios, and
items with low occurrence frequencies but high values may
not be discovered by traditional FIM algorithms. To solve
this problem, utility mining [4], which considers quantity and
profit, is emerging as an important research topic.

In utility mining, each item has its own profit and can occur
multiple times in one transaction. The utility of an itemset is
calculated by summing the product of the item’s profit and its
occurrence quantity in each relevant transaction. High utility

itemsets (HUIs) are those whose utility is no lower than a
user-specified threshold. The problem of high utility itemset
mining (HUIM) is to discover all HUIs within a transaction
database.

Various mining algorithms have been proposed for the
discovery of HUIs. Typical algorithms include the level-wise
candidate generation-and-test method [18], [23] and tech-
niques based on pattern growth [2], [30]. Some new topics
on HUIs are also being discussed, such as the problem of
discovering the top-k HUIs [31] and high average-utility
itemsets [20]. The existing exact approaches for HUIM tend
to degrade as the size of the database and the number of
distinct items increase, and the performance may become
unacceptable, similar to the problem of FIM applied to social
networks or large bioinformatics datasets [5].

To deal with the performance bottleneck of exact
approaches, bio-inspired algorithms have been applied for
HUIM. For example, the genetic algorithm (GA) has been
used to mine HUIs by Kannimuthu and Premalatha [14], and
particle swarm optimization (PSO) [21], [22] has recently
been applied to the mining of HUIs. These existing HUIM
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algorithms based on bio-inspired computing follow the tradi-
tional routines of the original GA and PSO algorithm. That
is, the optimal values of one population are maintained in the
next population. However, HUIM is different from problems
in which there are relatively few best values—all itemsets
with utilities no lower than the minimum threshold must be
discovered. Because the distribution of HUIs is not even,
searching with the best values from the previous population
as targets may mean that some results are missed within a
certain number of iterations.

To solve this problem, we propose a novel bio-inspired-
algorithm-based HUIM framework (Bio-HUIF) to discover
HUIs. In this framework, rather than choosing only those
HUIs with the highest utility values in the current popula-
tion, roulette wheel selection is applied to all the discovered
HUIs to determine the initial target of the next population.
Based on Bio-HUIF, three HUIM algorithms are proposed:
Bio-HUIF-GA, Bio-HUIF-PSO, and Bio-HUIF-BA. These
employ GA, PSO, and the bat algorithm (BA), respectively.
For each algorithm, every discovered HUI could be chosen as
the initial target of the next population according to the ratio
of its utility to the total utilities of all discovered HUIs. The
major contributions of this work are summarized as follows.

First, a novel framework for HUIM is proposed based on
bio-inspired algorithms. The strategy of selecting discovered
HUIs probabilistically, instead of maintaining the best val-
ues from population to population, improves the diversity of
solutions within a limited number of iterations.

Second, under the proposed framework, three new algo-
rithms are proposed based on GA, PSO, and BA, respectively.
Besides the standard concepts of the three bio-inspired algo-
rithms, we use the strategies of bitmap database representa-
tion, promising encoding vector checking, and bit difference
sets to accelerate the process of HUI discovery.

Third, extensive experiments have been conducted on real
datasets to validate the performance of the three algorithms.
The results show that the proposed approach outperforms
existing bio-inspired HUIM algorithms in terms of efficiency,
the number of discovered HUIs, and convergence speed.

The remainder of this paper is organized as follows.
In Section II, we describe the problem ofHUIMand introduce
some related work. The proposed framework is presented
in Section III. The three algorithms based on Bio-HUIF
are explained in Sections IV–VI, respectively. Experimental
results are presented and analyzed in Section VII. Finally,
we draw our conclusions in Section VIII.

II. PROBLEM STATEMENT AND RELATED WORK
This section briefly describes the problem of HUIM before
reviewing related work in the area of HUIM and bio-inspired
algorithms for itemset mining.

A. PROBLEM OF HUIM
Let I = {i1, i2, . . . , iM} be a finite set of items. Then,
set X ⊆ I is called an itemset; an itemset containing
k items is called a k-itemset. Let D = {T1,T2, . . . ,TN } be a

transaction database. Each transaction Ti ∈ D, with unique
identifier tid, is a subset of I .
The internal utility q(ip, Td ) represents the quantity of

item ip in transaction Td . The external utility p(ip) is the unit
profit value of item ip. The utility of item ip in transaction Td
is defined as u(ip, Td ) = p(ip)× q(ip, Td ).
The utility of itemset X in transaction Td is defined as

u(X ,Td ) =
∑

ip∈X∧X⊆Td

u(ip,Td ) (1)

The utility of itemset X in D is defined as

u(X ) =
∑

X⊆Td∧Td∈D

u(X ,Td ) (2)

The transaction utility (TU) of transaction Td is defined as
TU(Td ) = u(Td , Td ).
To perform HUIM, the minimum utility threshold δ, spec-

ified by the user, is defined as a percentage of the total TU
values of the database, whereas the minimum utility valueis
defined as

min_util = δ ×
∑
Td∈D

TU (Td ) (3)

An itemset X is called an HUI if u(X ) ≥ min_util.
Given a transaction database D, the task of HUIM is to

determine all itemsets that have utilities no less thanmin_util.
The transaction-weighted utilization (TWU) of itemset

X [23] is the sum of the transaction utilities of all the trans-
actions containing X , which is defined as

TWU (X ) =
∑

X⊆Td∧Td∈D

TU (Td ) (4)

X is a high transaction-weighted utilization itemset
(HTWUI) if TWU(X ) ≥ min_util; otherwise, X is
a low transaction-weighted utilization itemset (LTWUI).
An HTWUI/LTWUI with k items is called a k-HTWUI/k-
LTWUI.

TABLE 1. Example database.

Consider the transaction database in Table 1 and the profit
table in Table 2. For convenience, we write an itemset {c, e}
as ce. In the example database, the utility of item e in trans-
action T1 is u(e, T1) = 1 × 6 = 6, the utility of itemset
ce in transaction T1 is u(ce, T1) = u(c, T1) + u(e, T1) =
18 + 6 = 24, and the utility of itemset ce in the transaction
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TABLE 2. Profit table.

database is u(ce) = u(ce, T1)+ u(ce, T3)+ u(ce, T5)+ u(ce,
T8) + u(ce, T10) = 24 + 7 + 16 + 31 + 14 = 92. Given
min_util = 115, as u(ce) < min_util, ce is not an HUI. The
TU of T3 is TU(T3) = u(ace, T3) = 13, and the utilities of
other transactions are shown in the third column of Table 1.
The TWU of an itemset ce is TWU(ce) = TU (T1)+TU (T3)+
TU (T5)+ TU (T8)+ TU (T10) = 183; thus, ce is an HTWUI.

B. RELATED WORK
1) HUIM ALGORITHMS
As an extension of FIM,HUIMhas become an active research
problem in data mining. Many algorithms have been pro-
posed for the mining of HUIs.

The basic concepts of HUIM were outlined by
Yao et al. [34], and the upper bound property was proposed
to prune the search space. The Two-Phase algorithm [23] was
developed to determine HUIs using the transaction-weighted
downward-closure property, similar to the heuristic approach
used in FIM [1]. In the Two-Phase algorithm, an HTWUI is
used as a superset of the set of HUIs, and only the supersets
of the HTWUIs are processed further. Much like the Apriori
algorithm for FIM, the main problem of the Two-Phase algo-
rithm is that too many candidates are generated and multiple
database scans are required. To reduce the number of can-
didates in the Two-Phase algorithm, Li et al. [18] proposed
the strategy of discarding isolated items for HUIM. However,
their approach still suffers from the same drawbacks as the
candidate generation-and-test scheme for determining HUIs.

To generate candidates efficiently and avoid multiple
database scans, the pattern-growth approach [9] and tree-
based algorithms have been shown to be efficient for mining
HUIs. Examples include IHUP-tree [2], UP-tree [30], and
HUITWU-tree [8]. Although the associated tree structures are
often compact, the performance of these methods is closely
related to the number of conditional trees constructed, result-
ing in significant memory requirements.

Other HUI mining algorithms include one based on maxi-
mal itemsets [19], the projection-based approach [17], and a
bitmap-based method [27].

2) BIO-INSPIRED ALGORITHMS FOR ITEMSET MINING
The field of bio-inspired computation attempts to replicate
the way in which biological organisms and sub-organisms
operate using abstract computing ideas from living phe-
nomena or biological systems [15]. Generally speaking,
bio-inspired computing optimizes a problem by iteratively
improving a candidate solutionwith regard to a givenmeasure
of quality. Biological systems provide abundant inspiration
for the construction of high-performance computing mod-
els and intelligent algorithms, enabling the production of
problem solving techniques with enhanced robustness and
flexibility under complex optimization scenarios.

The GA [12] is a typical bio-inspired technique in which
each individual has a fitness value that indicates the qual-
ity of the solution it represents. Three biologically inspired
operators (selection, crossover, and mutation) are applied
to give potentially better solutions. There are FIM and
ARM algorithms based on GA, such as GAMax [13]
and NICGAR [24]. Kannimuthu and Premalatha [14] pro-
posed two GA-based HUIM algorithms, HUPEUMU-GARM
and HUPEWUMU-GARM. The difference between them is
that HUPEWUMU-GARM does not require the minimum util-
ity threshold. In these algorithms, the selection, crossover,
and mutation operators are used iteratively to find HUIs.
Because purely random crossover and mutation may produce
itemsets that are obviously distinct from the parents, the con-
vergence speed may be low. Thus, both HUPEUMU-GARM
and HUPEWUMU-GARM give only limited results within a
certain number of iterations.

PSO [16] is another widely used bio-inspired algorithm.
Similar to the GA, PSO is a population-based approach
for determining optimal solutions by adopting a veloc-
ity to update the particles. Unlike the GA, every particle
determines its velocity using the previous velocity, best pre-
vious position, and best previous position within its neigh-
borhood. PSO has also been applied to ARM, for example,
WARMSWARM [25] and MsP-MmPSO [7]. Lin et al. pro-
posed two algorithms for mining HUIs based on PSO,
HUIM-BPSOsig [22] and HUIM-BPSO [21]. According
to [21], HUIM-BPSO outperforms HUIM-BPSOsig using an
OR/NOR-tree structure.

BA [33] is a recently developed bio-inspired algorithm that
uses the echolocation behavior of bats to solve optimization
problems. Heraguemi et al. [10] proposed the BATARM
algorithm for ARM . In BATARM, the virtual bat motion
models the ARM problem. The same authors later proposed
the multi-swarm cooperative bat algorithm MSB-ARM [11].
The algorithm’s performance can be improved by applying
the ring strategy, master-slave strategy, or a hybrid strategy.
To the best of our knowledge, the BA has not been applied to
the mining of HUIs.

Generally speaking, most existing HUIM techniques based
on bio-inspired mechanisms follow the routine of the stan-
dard bio-inspired algorithm. Thus, the search space is further
explored according to the optimal values of the former popu-
lation. This search strategy is suitable for problems with rel-
atively few optimal values. However, for the HUIM problem,
the number of results is large. For example, with a minimum
utility threshold of 14%, there are 415 HUIs in theMushroom
dataset. With so many results, the standard focusing strategy
may miss itemsets that are significantly different from the
optimal values of the previous population. One solution to this
problem involves enhancing the diversity of each population.

III. THE PROPOSED FRAMEWORK
In this section, we first introduce the bitmap representation
of the original database. The pruning strategy of promising
encoding vector checking is then proposed. Next, we discuss
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the procedure used for the population initialization phase.
Finally, the proposed framework is illustrated.

A. BITMAP DATABASE REPRESENTATION
In the proposed framework, the original database is first trans-
formed into a bitmap, which is an effective representation
method for mining HUIs [27].

Let I = {i1, i2, . . . , iM } be a finite set of items and
D = {T1,T2, . . . ,TN } be a transaction database; the bitmap
of D is an N ×M Boolean matrix B(D) with entries from the
set {0, 1}. The entry in B(D) corresponding to transaction Tj
(1 ≤ j ≤ N ) and item ik (1 ≤ k ≤ M ) is denoted (j, k), and is
located in the jth row and kth column of B(D). The value of
(j, k) is defined by

Bj,k =

{
1, if ik ∈ Tj
0, otherwise

(5)

That is, entry (j, k) of B(D) is 1 if and only if item ik is
included in transaction Tj; if ik is not an element of Tj, this
entry is set to 0.

In B(D), the bitmap cover of item ik , denoted Bit(ik ),
is the kth column vector. This naturally extends to item-
sets: the bitmap cover of itemset X is defined as Bit(X ) =
bitwise-ANDi∈X (Bit(i)), i.e., it is also a bit vector resulting
from the bitwise-AND operation on the bitmap covers of all
items included in X . Similarly, for two itemsets X and Y ,
Bit(X ∪ Y ) can be computed as Bit(X )∩Bit(Y ), i.e., the
bitwise-AND of Bit(X ) and Bit(Y ).

B. PROMISING ENCODING VECTOR CHECKING
In the proposed framework, an encoding vector is used to
represent each individual, i.e., each chromosome, particle,
or bat. The encoding vector is composed of 0s or 1s cor-
responding to whether an item is absent or present in an
individual. If the corresponding jth position of an individual
contains a 1, the item in the jth position is present in a
potential HUI; otherwise, this item is not included and cannot
be in a potential HUI. In this paper, the size of the encoding
vector representing each individual is equal to the number
of 1-HTWUIs in the database.

To speed up the mining process, the concept of promising
encoding vectors is defined as follows.
Definition 1: Let Vec be an encoding vector composed

of 0s or 1s and X be the itemset represented by Vec. If Bit(X )
is composed only of zeros, Vec is called an unpromising
encoding vector (UPEV); otherwise,Vec is called a promising
encoding vector (PEV).

Thus, if a newly generated encoding vector is a UPEV,
the fitness value computation can be neglected. This tech-
nique is called the PEV check (PEVC) pruning strategy. The
pseudocode of PEVC is shown in Algorithm 1.

Algorithm 1 first calculates the number of 1s in the encod-
ing vector, and identifies which items these 1s represent
(Steps 1–2). In Step 3, the result of applying the bitwise-
AND operation to all bitmap covers of items in Vec is
initialized by the bitmap cover of the first item. Themain loop

Algorithm 1 Function PEV_Check(Vec)
Input Encoding vector Vec
Output A PEV of Vec
1 Calculate the number of 1s in Vec, denoted by VN;
2 Denote the VN items contained in Vec by

i1, i2, . . . , iVN ;
3 RV= Bit(i1);
4 for k =2 to VN do
5 RV’=RV∩ Bit(ik );
6 if RV’ is a UPEV then
7 RV’ = RV;
8 Change the bit in Vec corresponding to

ik from 1 to 0;
9 end if
10 RV = RV’;
11 end for
12 Return RV.

(Steps 4–11) executes the PEVC pruning strategy. Step 5 per-
forms the bitwise-AND operation with the bitmap cover of
the next item. If the resulting bit vector is a UPEV, this
item cannot be included in the final bit vector (Steps 6–9).
Step 10 backtracks the result of the bitwise-AND operation.
Step 12 returns RV for further processing. If Vec is a UPEV,
executing Algorithm 1 obtains a PEV that is part of Vec;
otherwise, Vec will remain unchanged. In the following algo-
rithms, once a new individual (representing a chromosome,
particle, or bat) is generated, the PEVC pruning strategy is
executed to ensure that this individual actually occurs in the
transaction database.

C. POPULATION INITIALIZATION
In the proposed framework, the initial population is first
randomly initialized with SN individuals. The initialization
process is shown in Algorithm 2.

Algorithm 2 Procedure Pop_Init( )
Input Transaction database D, population size SN
Output The first population of individuals
1 Scan database D once, and delete 1-LTWUIs;
2 Represent the reorganized database as a bitmap;
3 for i = 1 to SN do
4 Generate a random number numi;
5 Generate a bit vector Veci with numi bits set to 1

using roulette wheel selection;
6 if numi > 1 then
7 Veci = PEV_Check(Veci);
8 end if
9 end for

In Algorithm 2, the transaction database is first scanned
once to determine the 1-HTWUIs (Step 1). In Step 2,
the bitmap representation of the pruned database is con-
structed. The main loop (Steps 3–9) generates the initial
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individuals (chromosomes, particles, or bats) one by one. For
each individual, Step 4 assigns a random number of 1s in
the ith bit vector, where numi is an integer between 1 and
the number of 1-HTWUIs. Step 5 generates a bit vector with
numi 1s, where the probability that the bit corresponding to ij
will be set to 1 is determined by

Pj =
TWU (ij)∑HN
k=1 TWU (ik )

(6)

where HN is the number of 1-HTWUIs.
From (6), we can see that if the TWU value of a 1-HTWUI

is high, it has a higher probability of being selected in an
individual within the first population.

The PEVC pruning strategy described in Algorithm 1 is
only performed when numi > 1 (Steps 6–8). This is because
each bit in a bit vector corresponds to a 1-HTWUI, so each
1-HTWUI is certainly contained by one or more transactions.
Thus, this kind of bit vector is obviously a PEV.

Consider the transaction database in Table 1 and profit
table in Table 2. After the first database scan, we obtain the
TWU of each item, as presented in Table 3.

TABLE 3. TWU of each item.

TABLE 4. Reorganized database.

Given that min_util = 115, as TWU(a) < min_util, item
a is deleted. Table 4 lists the reorganized transactions and
their TUs for the database in Table 1. In Table 4, a has
been removed from transactions T1, T3, T8, and T9, and the
utilities of a have been eliminated from the TUs of these four
transactions.

The reorganized database is then represented by a bitmap,
as in Table 5.

D. BIO-HUIF
We propose a general framework for HUI mining based on
bio-inspired algorithms. A schematic of this framework is
illustrated in Fig. 1.

For Bio-HUIF, the first population is initialized by
Algorithm 2, and then the iteration number is set to 1.

In any given population, each individual represents an
itemset. The fitness value is calculated according to (2),

TABLE 5. Bitmap representation of the example database.

FIGURE 1. Main framework of Bio-HUIF.

and those itemsets with utilities no lower than min_util are
kept. The optimal values of the next population are formed
by roulette wheel selection among all discovered HUIs.
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Namely, the probability that an HUI will be selected as the
optimal value of the next population can be obtained from

Pi =
fitnessi∑|SHUI |

j=1 fitnessj
(7)

where SHUI is the set of discovered HUIs, |SHUI| denotes the
number of elements in SHUI, and fitnessi is the fitness value
of the ith discovered HUI.
The iteration number is then incremented by one. The

above iteration, including fitness value calculation, HUI iden-
tification, and next population selection, is repeated until the
maximum iteration limit is reached. Finally, all discovered
HUIs are output.

Different from standard bio-inspired algorithms, the opti-
mal values of the current population are not definitely
retained in the next population—all discovered HUIs are
subjected to roulette wheel selection to determine the target
of the next population. This improves in average the diversity
within one population, and also enhances the efficiency and
quality of mining.

According to Bio-HUIF, we propose three algorithms
based on GA, PSO, and BA, respectively.

IV. BIO-HUIF-GA
In this section, the bio-inspired GA is briefly described.
The proposed Bio-HUIF-GA is then presented in detail.
Finally, an example is used to illustrate the application of
Bio-HUIF-GA.

A. BASIC IDEA OF GA
The GA is possibly the first bio-inspired algorithm to simu-
late genetic systems for complex optimization problems [12].
GAs operate on a population of chromosomes, each of which
is a potential solution to a given problem. Only those individ-
uals in a population who are better suited to the environment
are likely to survive and generate offspring.

In the GA, the first population is generated randomly or
heuristically. Then, the three typical operators of selection,
crossover, and mutation are applied iteratively to generate
new populations. Selection is responsible for determining
which individuals produce offspring using the predefined
fitness function. Crossover combines parts of two parent
chromosomes to produce child chromosomes for the next
population. Mutation maintains diversity in the population
according to defined probabilities and inhibits premature con-
vergence. The process of selection, crossover, and mutation
is repeated until some termination condition is satisfied.

B. ALGORITHM DESCRIPTION
Based on Bio-HUIF, Algorithm 3 describes the proposed
Bio-HUIF-GA for mining HUIs.

In Algorithm 3, the procedure Pop_Init is called in Step 1.
Step 2 then initializes the iteration number to 1. In Step 3,
the set of all HUIs SHUI is initialized to the empty set. The
main loop (Steps 4–16) discovers HUIs population by popu-
lation. Each chromosome of the population is checked in the

Algorithm 3 Bio-HUIF-GA
Input Transaction database D, minimum utility value

min_util, maximum number of iterations
max_iter

Output HUIs
1 Pop_Init( );
2 times=1;
3 SHUI = ∅;
4 while times < max_iter do
5 for each chromosome Ci do
6 X = IS(Ci);
7 if u(X ) ≥ min_util & X /∈ SHUI then
8 X → SHUI ;
9 end if
10 end for
11 Next_Gen_GA( );
12 Select two HUIs hi and hj from SHUI using

roulette wheel selection;
13 Represent hi and hj as bit vectors CNi and CNj;
14 Replace two randomly selected chromosomes

of the current population by CNi and CNj.
15 times++;
16 end while
17 Output all HUIs.

loop from Steps 5–10. Step 6 determines the itemset that cor-
responds to the enumerating chromosome. Here, the function
IS( ) gives itemset X by unifying the items in Ci if its value
is 1. If the current chromosome can produce anHUIX that has
not already been discovered (Step 7), Step 8 records this item-
set. Step 11 calls the procedure Next_Gen_GA to generate the
next population (described in Algorithm 4). In Steps 12–14,
two discovered HUIs are selected using (7) and represented
as bit vectors. The two selected bit vectors are then used
to replace the two randomly selected chromosomes in the
new population. Thus, the diversity of the new population is
improved. Step 15 updates the iteration number. Finally, all
discovered HUIs are output in Step 17.

In Algorithm 4, the number of chromosomes in the new
population, SNnew, is initialized to 0 in Step 1. The main loop
from Steps 2–12 produces the next population based on the
current SN chromosomes. Step 3 selects two chromosomes
by roulette wheel selection. That is, individuals with higher
utilities will have a higher probability of being selected.
In Step 4, the different bits of the two selected chromosomes
are recorded by BitDiff, which is defined as follows.
Definition 2: Let Veci and Vecj be two bit vectors with len

bits. The bit difference set is BitDiff (Veci, Vecj) = {num|1 ≤
num ≤ len, bnum (Veci)⊕bnum(Vecj) = 1}, where bnum (Veci)
is the num-th bit of Veci and⊕ denotes exclusive disjunction.

Step 5 then calculates the number of crossover bits in the
two selected chromosomes by:

cnum =
⌊
|BitDiff (Ci,Cj)|r

⌋
(8)
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Algorithm 4 Procedure Next_Gen_GA( )
Input The current population
Output The next population
1 SNnew = 0;
2 while SNnew < SN do
3 Select two chromosomes Ci and Cj from SN

chromosomes using (7);
4 Record the bits in which Ci is different from Cj

as BitDiff;
5 Calculate cnum using (8);
6 for k = i to j do
7 Randomly select cnum bits from

elements of BitDiff, and change the selected bits
of Ck from 0 to 1 or from 1 to 0;

8 Randomly change one bit of Ck from 0 to 1 or
from 1 to 0;

9 Ck = PEV_Check(Ck );
10 SNnew ++;
11 end for
12 end while

where r is a random number in the range (0, 1), |BitDiff(Ci,
Cj)| is the number of elements in BitDiff(Ci, Cj), and⌊
|BitDiff (Ci,Cj)|r

⌋
denotes the largest integer that is less

than or equal to |BitDiff(Ci, Cj)|r .
The loop from Steps 6–11 generates two new chromo-

somes of the next population using the idea of GA. For
each chromosome, Steps 7 and 8 simulate the crossover
and mutation of GA, respectively. That is, cnum bits are
selected at random fromBitDiff and changed using the bitwise
complement operation (Step 7). Then, one bit is randomly
selected and changed from 0 to 1 or from 1 to 0 (Step 8). The
PEVC pruning strategy described in Algorithm 1 is called in
Step 9. In Step 10, the number of chromosomes in the new
population is incremented by one.

C. ILLUSTRATED EXAMPLE
We use the transaction database in Table 1 and profit
table in Table 2 for explanation. We also suppose that
min_util = 115, and assume that the 1-LTWUIs have been
deleted and the database has been transformed to the form
in Table 5. Assume the size of population SN to be 3. As the
number of 1-HTWUIs is 5, there are five bits in the bit
vector for chromosome encoding. First, SHUI is initialized
as the empty set. To generate the first chromosome, a random
number (in this case, 4) is first generated to indicate the
number of 1s in the first chromosome. To determine which
bits are set to 1, (6) is used. Assume the bit vector of the first
chromosome is ‘‘11110’’. We obtain the other two chromo-
somes using the same method; the three chromosomes of the
first population are shown in Fig. 2.

We can see that the first chromosome C1 represents item-
set bcde. According to Algorithm 1, RV is initialized by
Bit(b). Then, RV∩Bit(c) = 0100011011 ∩ 1010100101 =
0000000001. As this result is a PEV, RV is updated

FIGURE 2. Initial chromosomes.

to 0000000001. Next, RV∩Bit(d) = 0000000000, so item
d is deleted from C1, and RV retains the value 0000000001.
Then, RV∩Bit(e) = 0000000001; as this is a PEV, the final
value of RV is 0000000001. Thus, C1 is 11010 representing
itemset bce, and this itemset is contained in T ′10. Because
u(bce) = 68 < min_util, bce is not an HUI.
Similarly, C2 is a PEV representing itemset bde. As bde

is contained in T ′2 and T ′7, and u(bde) = 166 > min_util,
SHUI = {bde : 166}, where the number after the colon
denotes the utility. Furthermore, C3, representing itemset ce,
is not an HUI, and so SHUI remains unchanged. At this point,
the first population is composed of the three chromosomes
shown in Fig. 3.

FIGURE 3. Chromosomes of the first population.

Suppose C1 and C2 are selected at first. As 11010 ⊕
10110 = 01100, BitDiff(C1, C2) = {2, 3}, that is, C1 and C2
differ in their second and third bits. Suppose the random num-
ber r is 0.5, cnum = b2 ∗ 0.5c = 1. For C1, one bit (either
the second or third) will be selected for crossover. Suppose
the second bit is selected to be changed from 1 to 0. Then, the
new C1 is 10010. Next, suppose the fifth bit is randomly
selected for mutation. After changing the fifth bit from 0 to 1,
C1 becomes 10011, representing itemset bef. This is a PEV,
contained by transactions T ′2 and T ′10, and u(bef ) = 131 >
min_util, SHUI = {bde: 166, bef: 131}. We can also obtain
the child of C2 using the same routine. Suppose the new C2
is 10000, representing itemset b. As u(b) = 216 > min_util,
SHUI = {bde: 166, bef: 131, b: 216}. After generating these
two new chromosomes, SNnew = 2. As SNnew < SN , two
chromosomes of the current population will be selected and
the above process of crossover and mutation will repeat until
SNnew ≥ SN .
Suppose that no HUIs are generated by the other child

chromosomes of C3 and C4, and SHUI is still {bde: 166, bef:
131, b: 216}. According to Algorithm 3, two HUIs will be
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selected using (7). That is, b has the highest probability of
being selected and bef has the lowest probability of being
selected. After representing the two selected HUIs as bit
vectors CNi and CNj, two randomly selected chromosomes
from the second population will be replaced by CNi and CNj.
The above process is then repeated for the new population
until the termination condition is satisfied.

V. BIO-HUIF-PSO
In this section, the PSO algorithm is briefly discussed
before the proposed Bio-HUIF-PSO algorithm is explained.
Finally, an example is used to illustrate the application of
Bio-HUIF-PSO.

A. BASIC IDEA OF PSO
PSO is a bio-inspired algorithm that simulates the foraging
behavior of birds or fish [16].

In the PSO algorithm, several particles are initialized
at random. Each particle moves toward the optimal value
according to the following two equations:

vt+1i = wvti + c1r1(pbesti − x
t
i )+ c2r2(gbest − x

t
i ) (9)

x t+1i = x ti + v
t+1
i (10)

where vti and vt+1i are the velocities of the ith particle at
iterations t and t + 1, x ti and x t+1i are the locations of the
ith particle at iterations t and t + 1, pbesti is the previous
best location of the ith particle, gbest is the current best
location of all particles, the three constants w, c1, c2 are
weighting coefficients, and r1, r2 are random numbers in the
range (0, 1).

The first part of (9) includes the previous velocity and
constitutes the momentum component; the second part uses
the previous best position and constitutes the cognitive com-
ponent; the third part takes the best previous position of the
neighborhood and constitutes the social component of the
iteration.

All particles update their velocities and positions repeat-
edly, until the best solution is found or the maximum number
of iterations is reached.

B. ALGORITHM DESCRIPTION
Based on Bio-HUIF, Algorithm 5 describes the proposed Bio-
HUIF-PSO algorithm for mining HUIs.

In Algorithm 5, the procedure Pop_Init is called in Step 1.
Step 2 then initializes the iteration number to 1. In Step 3,
the global best particle gbest is initialized as the empty set.
The set of all HUIs SHUI is also initialized as the empty
set in Step 4. The main loop (Steps 5–22) discovers HUIs
population by population. The SN particles are checked one
by one in the loop from Steps 6–17. If the current population
is the first population, the current particle Pi is also initialized
as pbesti (Steps 7–9). Step 10 determines the itemset that
corresponds to the enumerating particle. Here, the function
IS( ) returns itemset X by unifying the items in Pi if its value
is 1. If the current particle can produce an HUI X that has

Algorithm 5 Bio-HUIF-PSO
Input Transaction database D, minimum utility value

min_util, maximum number of iterationsmax_iter
Output HUIs
1 Pop_Init( );
2 times=1;
3 gbest = ∅;
4 SHUI = ∅;
5 while times < max_iter do
6 for i = 1 to SN do
7 if times==1 then
8 pbesti = Pi;
9 end if
10 X = IS(Pi);
11 if u(X ) ≥ min_util and X /∈ SHUI then
12 X → SHUI ;
13 end if
14 if u(X ) > u(pbesti) then
15 pbesti = Pi;
16 end if
17 end for
18 Find gbest among SN particles;
19 Next_Gen_PA( );
20 Determine gbest using roulette wheel selection

among HUIs in SHUI;
21 times++;
22 end while
23 Output all HUIs.

not already been discovered (Step 11), Step 12 records this
itemset. Steps 14–16 update the pbest of the current particle.
In Step 18, gbest is updated by the particle corresponding
to the discovered HUI with the highest utility value. Using
the new gbest, Step 19 calls the procedure Next_Gen_PA
to generate the next population (described in Algorithm 6).
In Step 20, initial gbest of the next population is selected
by (7) using all discoveredHUIs. Step 21 updates the iteration
number. Finally, all discovered HUIs are output in Step 23.

In Algorithm 6, the main loop in Steps 1–8 produces the
next population of SN particles. For the problem of HUIM,
the velocity of standard PSO calculated by (9) is adapted to
an integer, which indicates how many bits are to be changed
for a particle. Thus, we rewrite (9) using

vi = vi1 + vi2 + vi3 (11)

where vi1 is always set as 1, and vi2 and vi3 are calculated as

vi2 = b|BitDiff (Pi, pbesti)|r1c (12)

vi3 = b|BitDiff (Pi, gbest)|r2c (13)

In (11), vi1 approaches the optimal values at random, vi2
approaches the optimal values using the difference from the
best previous position of Pi, and vi3 approaches the opti-
mal values using the difference from the best result of the
current population. Considering the problem ofHUIM, the bit
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Algorithm 6 Procedure Next_Gen_PA( )
Input The current population
Output SN particles of the next population
1 for each particle Pi do
2 Randomly change one bit of Pi from 0 to 1 or

from 1 to 0;
3 Calculate vi2 of Pi using (12);
4 Randomly select vi2 bits from elements of

BitDiff, and change vi2 bits of Pi from 0 to 1 or
from 1 to 0;

5 Calculate vi3 of Pi using (13);
6 Randomly select vi3 bits from elements of

BitDiff, and change vi3 bits of Pi from 0 to 1 or
from 1 to 0;

7 Pi = PEV_Check(Pi);
8 end for

difference set (see Definition 2) is used to model the differ-
ence between two bit vectors.

Thus, in Steps 2–6, particle Pi randomly changes one
bit using the bitwise complement operation, then randomly
changes vi2 bits from 0 to 1 or from 1 to 0, and finally
changes vi3 bits from 0 to 1 or from 1 to 0 at random. Similar
to Algorithm 4, both vi2 bits and vi3 bits are selected at
random from elements of BitDiff. The PEVC pruning strategy
described in Algorithm 1 is called in Step 7, ensuring that the
generated particle is included in one or more transactions.

C. ILLUSTRATED EXAMPLE
Using the same initial method as the example described in
Section IV, the first population is P1 = 11010, P2 = 10110,
P3 = 01010.
This example differs from that in Section IV in two aspects.

First, there is a set representing pbest for each particle.
For the first population, pbesti is the same as Pi. Thus,
pbest1 = 11010, pbest2 = 10110, pbest3 = 01010. Second,
the bit vector representing the HUI with the highest utility is
stored as gbest. Here, gbest is 10110, and SHUI= {bde: 166}
at this point.

As an example of how the next population is generated,
let us consider P1. First, suppose the 5th bit to have been
selected at random, so this bit is changed from 0 to 1. P1 is
now 11011. Assuming the random number r1 is 0.5, we have
BitDiff(P1, pbest1) = {5}, so v12 is b1 ∗ 0.5c = 0. Thus,
P1 remains 11011. Next, suppose r2 is randomly generated
as 0.8. As BitDiff(P1, gbest) = {2, 3, 5}, v13 is b3 ∗ 0.8c = 2.
Thus, we randomly change two bits of P1 in BitDiff using
the bitwise complement operation. Suppose the 2nd and 3rd
bits are selected; the 2nd bit is changed from 1 to 0, and the
3rd bit is changed from 0 to 1. Thus, the new P1 is 10111,
representing itemset bdef. We can see that P1 is a PEV, and
u(bdef ) = 66 < min_util. Thus, both SHUI and gbest
are unchanged. Because u(bdef ) < u(bce), pbest1 is also
unchanged.

Similarly, we can obtain new values for P2 and P3 with the
same roadmap. After the second iteration, suppose SHUI =
{bde: 166, be: 222}, pbest1 = 11010, pbest2 = 10110,
pbest3 = 10010, and gbest = 10010. Using the standard
PSO algorithm, 10010 (the bit vector representing HUI be)
will certainly be the initial gbest of the next population. How-
ever, in the Bio-HUIF-PSO algorithm, 10110 representing
bde, which is the discovered HUI with lower utility, may be
selected as the global best value for the next iteration with a
probability of 166/(166+ 222) ≈ 0.428.
The above process is repeated until the maximum number

of iterations is reached.

VI. BIO-HUIF-BA
In this section, the BA method is briefly introduced and the
proposed Bio-HUIF-BA is described in detail. An example is
presented to illustrate the application of Bio-HUIF-BA.

A. BASIC IDEA OF BA
The newly developed BA is based on the echolocation behav-
ior of bats, which vary the pulse rates and loudness of emis-
sions when searching for prey and avoiding obstacles [33].

In the BA, each bat is randomly generated and approaches
the optimal solution by changing its frequency, velocity, and
position. In each population, these values are updated by

fi = fmin + (fmax − fmin)β (14)

vt+1i = vti + (x ti − gbest)fi (15)

x t+1i = x ti + v
t+1
i (16)

where fi is the frequency of the ith bat (used to adjust the
velocity), fmin, fmax are the minimum/maximum frequencies
of the pulses emitted by all bats, β ∈ [0, 1] is a random
number, vti , v

t+1
i are the velocities of the ith bat at iterations t

and t + 1, x ti , x
t+1
i are the locations of the ith bat at iterations

t and t + 1, and gbest is the current global best location.
When approaching prey, bat Bi will decrease its loudness

and increase the rate of pulse emission. This phenomenon can
be simulated by the following equations:

At+1i = αAti (17)

r t+1i = r0i (1− exp(−γ t)) (18)

where Ati , A
t+1
i denote the loudness at iterations t and

t + 1, r0i is the initial rate of pulse emission, r t+1i is the rate
of pulse emission at iteration t + 1, and 0 < α < 1, γ > 0
are constants.

All bats update their velocities, locations, loudness, and
pulse emission rates repeatedly, until the best solution is
found or the maximum number of iterations is reached.

B. ALGORITHM DESCRIPTION
Based on Bio-HUIF, Algorithm 7 describes the proposed
Bio-HUIF-BA for mining HUIs.

In Algorithm 7, the procedure Pop_Init is called in Step 1.
Step 2 then initializes the iteration number to 1. In Step 3, the
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Algorithm 7 Bio-HUIF-BA
Input Transaction database D, minimum utility value

min_util, maximum number of iterationsmax_iter
Output HUIs
1 Pop_Init( );
2 times=1;
3 gbest = ∅;
4 SHUI = ∅;
5 while times < max_iter do
6 for i = 1 to SN do
7 if times==1 then
8 Initialize Ai and ri;
9 end if
10 X = IS(Bi);
11 if u(X ) ≥ min_util&X /∈SHUI then
12 X → SHUI ;
13 end if
14 end for
15 Find gbest among SN bats;
16 Next_Gen_BA( );
17 Determine gbest using roulette wheel selection

among HUIs in SHUI;
18 times++;
19 end while
20 Output all HUIs.

global best bat gbest is initialized as the empty set. The set of
all HUIs SHUI is also initialized as the empty set in Step 4.
The main loop (Steps 5–19) discovers HUIs population by
population. The SN bats are each checked in the loop from
Steps 6–14. If the current population is the first population,
both A and r of the current bat are initialized. Step 10 deter-
mines the itemset that corresponds to the enumerating bat.
Here, the function IS( ) is the same as in Algorithms 3 and 5.
If the current bat can produce an HUI X that has not already
been discovered (Step 11), Step 12 records this itemset.
In Step 15, gbest is updated by the bat corresponding to the
discovered HUI with the highest utility value. Using the new
gbest, Step 16 calls the procedure Next_Gen_BA to generate
the next population (described in Algorithm 8). In Step 17,
the initial gbest of the next population is selected by (7) using
all discoveredHUIs. Step 18 updates the number of iterations.
Finally, all discovered HUIs are output in Step 20.

In Algorithm 8, the main loop from Steps 1–19 produces
the next population of SN bats. Similar to Algorithm 6,
we rewrite (15) for the HUIM problem as

vi = vi1 + vi2 (19)

where vi1 is always set to 1 and vi2 is calculated by

vi2 = b|BitDiff (Bi, gbest)|fic (20)

In (19), vi1 approaches the optimal values at random,
whereas vi2 approaches the optimal values using the dif-
ference between the current bat and the best result of the

Algorithm 8 Procedure Next_Gen_BA( )
Input The current population
Output SN bats of the next population
1 for each bat Bi do
2 Randomly change one bit of Bi from

0 to 1 or from 1 to 0;
3 Calculate its frequency using (14);
4 Calculate vi2 of Bi using (20);
5 Randomly select vi2 bits from elements of

BitDiff, and change vi2 bits of Bi from 0 to 1 or
from 1 to 0;

6 Bi = PEV_Check(Bi);
7 if rand1 > ri then
8 X = IS(Bi);
9 if u(X ) ≥ min_util & X /∈ SHUI then
10 X → SHUI ;
11 end if
12 Randomly change one bit of Bi using bitwise

complement operation;
13 Bi = PEV_Check(Bi);
14 end if
15 if rand2 < Ai & u(X ) < u(IS(gbest)) then
16 Reduce Ai using (17);
17 Increase ri using (18);
18 end if
19 end for

current population. Thus, in Steps 2–5, bat Bi randomly
changes one bit using the bitwise complement operation, and
then randomly changes vi2 bits from elements of BitDiff from
0 to 1 or from 1 to 0. The PEVC pruning strategy described
in Algorithm 1 is called in Step 6.

Using the idea of BA, if a random number rand1 is greater
than ri, that is, the rate of pulse emission of the current Bi
(Step 7), Steps 8–11 determine the itemset that corresponds
to the enumerating bat and records it if it has not already been
discovered. A newBi is then generated by randomly changing
one bit of the original bat from 0 to 1 or from 1 to 0 (Step 12).
The PEVCpruning strategy described inAlgorithm 1 is called
in Step 13. Steps 15–18 update Ai and ri using the standard
idea of BA.

C. ILLUSTRATED EXAMPLE
Using the same initial method as the example described in
Section IV, the first population is B1 = 11010, B2 = 10110,
B3 = 01010.

The main difference between this example and that in
Section V is that pbest is not considered here. Thus,
gbest = 10110 and SHUI = {bde : 166} at this point.
As an example of the generation of the next population, let

us considerB1. First, suppose the 5th bit is selected at random,
so this bit is changed from 0 to 1. B1 is now 11011. Given
fmin = 0, fmax = 1, suppose the randomly generated β is
0.8; then, f1 = 0.8 according to (14). Next, we compute the
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velocity of B1. We have BitDiff(B1, gbest) = {2, 3, 5}, and
v12 = b3 ∗ 0.8c = 2. Thus, we randomly change two bits
of B1 using the bitwise complement operation. Suppose the
2nd and 3rd bits are selected; the 2nd bit is changed from
1 to 0, and the 3rd bit is changed from 0 to 1. Thus, the new
B1 is 10111. A random number rand1 is then generated. For
the sake of explanation, we suppose rand1 is greater than the
current r1. The current B1 is 10111, representing itemset bdef.
We can see that B1 is a PEV, and u(bdef ) = 66 < min_util.
Thus, both SHUI and gbest are unchanged. Then,B1 is further
processed by randomly changing one bit using the bitwise
complement operation. Suppose the 3rd bit is changed from
1 to 0, so that B1 is now 10011. We can see that B1 is a PEV
that represents itemset bef. As u(bef ) = 131 > min_util,
SHUI = {bde : 166, bef:131}. As u(bef ) < u(bde), gbest is
unchanged.

Similarly, we can obtain new values for B2 and B3 with the
same roadmap. From all of the HUIs in SHUI, the gbest of
the next population is then determined by (7). That is, each
discovered HUI may be selected as the initial gbest of the
next iteration, and the selection probability is proportional to
each HUI’s utility. The above process is repeated until the
maximum number of iteration is reached.

VII. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our
algorithms and compare them with two bio-inspired HUIM
algorithms, HUPEUMU-GARM [14] and HUIM-BPSO [21].
Furthermore, this set of comparisons includes two exact
HUIMalgorithms, IHUP [2] andUP-Growth [30]. The source
code of each algorithm was downloaded from the SPMF data
mining library [6].

A. EXPERIMENTAL ENVIRONMENT AND DATASETS
The experiments were performed on a computer with a
4-Core 3.40 GHz CPU and 8 GB memory running 64-bit
Microsoft Windows 10. Our programs were written in Java.
Four real datasets were used to evaluate the performance of
the algorithms. The characteristics of the datasets are pre-
sented in Table 6.

TABLE 6. Characteristics of the datasets.

The four datasets were also downloaded from the SPMF
data mining library [6]. The Chess dataset originates from
game steps. The Mushroom dataset contains various species
of mushrooms and their characteristics, such as shape,
odor, and habitat. The Accident dataset is composed of
(anonymized) traffic accident data. Similar to the work of
Lin et al. [21], only 10% of the total dataset was used for
experiments. The Connect dataset is also derived from game
steps.

For all experiments, the termination criterion was set to
2,000 iterations and the initial population size was set to 20.

B. RUNTIME
First, we demonstrate the efficiency performance of these
algorithms. When measuring the runtime, we varied the min-
imum utility threshold for each dataset.

FIGURE 4. Execution times for the Chess dataset.

Fig. 4 compares the execution times for the Chess dataset.
We can see that Bio-HUIF-PSO and Bio-HUIF-BA are faster
than the other algorithms, with Bio-HUIF-PSO achieving
the best performance. HUPEUMU-GARM and HUIM-BPSO
show similar runtimes on this dataset. Although the proposed
Bio-HUIF-GA is slower than HUPEUMU-GARMandHUIM-
BPSO, it is always faster than the two exact algorithms,
IHUP and UP-Growth. When the minimum utility thresh-
old is 28.5%, IHUP cannot return any results because of
the excessive memory requirements. On average, both Bio-
HUIF-GA and Bio-HUIF-BA are one order of magnitude
faster than UP-Growth, and Bio-HUIF-PSO is two orders of
magnitude faster than UP-Growth.

FIGURE 5. Execution times for the Mushroom dataset.

With the Mushroom dataset (see Fig. 5), Bio-HUIF-BA
achieves the best performance, being slightly faster than Bio-
HUIF-PSO. All three of the proposed algorithms are more
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efficient than the other two bio-inspired HUIM algorithms,
HUPEUMU-GARM and HUIM-BPSO. For example, Bio-
HUIF-BA is 5.33 times faster than HUPEUMU-GARM and
5.04 times faster than HUIM-BPSO on average. Regard-
ing the two exact algorithms, UP-Growth is slower than
Bio-HUIF-BA and Bio-HUIF-PSO and faster than the other
algorithms, whereas IHUP is still slower than all the other
algorithms on average.

FIGURE 6. Execution times for the Accidents_10% dataset.

From Fig. 6, we can see that all three proposed algorithms
are faster than the two exact algorithms when applied to
the Accidents_10% dataset. For example, Bio-HUIF-GA is
one order of magnitude faster than IHUP, and both Bio-
HUIF-PSO and Bio-HUIF-BA are two orders of magnitude
faster than IHUP. Being slightly faster than Bio-HUIF-BA,
Bio-HUIF-PSO gives the best runtime performance on this
dataset. The performance of Bio-HUIF-GA is between that
of HUPEUMU-GARM and HUIM-BPSO.

FIGURE 7. Execution times for the Connect dataset.

For the Connect dataset, when the minimum utility thresh-
old is between 31.8% and 32.6%, both IHUP and UP-Growth
run out of memory. Thus, in Fig. 7, the two exact algo-
rithms are not plotted. For the five bio-inspired algorithms,
Bio-HUIF-PSO is obviously more efficient than the other
four algorithms. For example, Bio-HUIF-PSO is 8.59 times

faster than HUPEUMU-GARM and 8.28 times faster than
HUIM-BPSO. The proposed Bio-HUIF-BA is also faster
than HUPEUMU-GARM and HUIM-BPSO. Bio-HUIF-GA is
always slower than the other four algorithms.

C. NUMBER OF DISCOVERED HUIS
Because bio-inspired HUIM algorithms cannot ensure the
discovery of all itemsets within a certain number of cycles,
we compared the percentage of discovered HUIs among the
five bio-inspired algorithms. As the two exact algorithms,
IHUP and UP-Growth, can certainly find all HUIs, we do not
illustrate their results. The comparison results are presented
in Tables 7–10.

TABLE 7. Percentage (%) of discovered HUIs for the Chess dataset.

TABLE 8. Percentage (%) of discovered HUIs for the Mushroom dataset.

TABLE 9. Percentage (%) of discovered HUIs for the Accidents_10%
dataset.

TABLE 10. Percentage (%) of discovered HUIs for the Connect dataset.
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We can see that all three of the proposed algorithms
outperform the other two bio-inspired algorithms in terms
of number of discovered HUIs. Specifically, Bio-HUIF-GA,
Bio-HUIF-PSO, and Bio-HUIF-BA can discover more than
90% of all the HUIs, with the lowest average percentage
being the 92.64% given by Bio-HUIF-BA for the Mushroom
dataset. Note that Bio-HUIF-GA can find all HUIs under
all listed thresholds for all four datasets. On the contrary,
HUPEUMU-GARM, the other HUIM algorithm based on GA,
cannot discover more than 20% of all HUIs with any of
the four datasets. Similarly, the Bio-HUIF-PSO algorithm
outperforms the other PSO-based HUIM-BPSO algorithm
in terms of discovered HUIs. For example, Bio-HUIF-PSO
discovers an average of 30% more HUIs with the Mushroom
dataset. This set of experiments shows that the proposed
Bio-HUIF improves the population diversity of bio-inspired
HUIM algorithms.

D. CONVERGENCE
In this section, the convergence is evaluated for all the
datasets. Since the two exact algorithms IHUP and UP-
Growth can discover all HUIs, we only plot the conver-
gence performance of the five bio-inspiredHUIM algorithms.
The results w.r.t. different number of iterations are shown
in Figs. 8–11.

FIGURE 8. Convergence performance comparison for the Chess dataset.

For this set of experiments, we can observe that the conver-
gence speed of HUPEUMU-GARMwas lower than that of the
all other algorithms. This is because the standard GA-based
algorithm suffered from the combination explosion problem
in the evolution process composed of selection, crossover,
and mutation.

Although HUIM-BPSO demonstrated similar conver-
gence performance to the Bio-HUIF-BA algorithm on
Accidents_10% when the number of iterations is small,
the Bio-HUIF-BA algorithm converges faster than HUIM-
BPSO when the number of iterations is higher than 600.

For all the other cases, all the three proposed algorithms
converge more efficient than the other two bio-inspired
HUIM algorithms, HUPEUMU-GARM and HUIM-BPSO.

FIGURE 9. Convergence performance comparison for the Mushroom
dataset.

FIGURE 10. Convergence performance comparison for the Accidents_10%
dataset.

FIGURE 11. Convergence performance comparison for the Connect
dataset.

The results of this set of experiments are consistent with the
experimental results on the number of discovered HUIs.

E. SUMMARY OF EXPERIMENTAL RESULTS
We now summarize the experimental results from the per-
spectives of efficiency, the number of discovered HUIs, and
convergence speed.

19580 VOLUME 6, 2018



W. Song, C. Huang: Mining HUI Using Bio-Inspired Algorithms: A Diverse Optimal Value Framework

For the experiments on runtime, we can see that both Bio-
HUIF-PSO and Bio-HUIF-BA are more efficient than all
the other algorithms, including the two exact HUIM algo-
rithms, IHUP and UP-Growth. This shows that bio-inspired
algorithms do not need to scan the database many times or
construct trees or other structures to transform the original
database, and can solve the HUIM problem within a reason-
able time. Furthermore, the bitmap representation, bitwise
operation, and PEVC used in Bio-HUIF accelerate the pro-
cess of traversing the search space.

For the experiments on number of discoveredHUIs, we can
see the other remarkable feature of the three proposed algo-
rithms: they can discover nearly all HUIs in most scenar-
ios. This is obviously better than the other bio-inspired
HUIM algorithms. Bio-HUIF-GA is not as efficient as the
other two proposed algorithms, and is slower than the other
GA-based HUIM algorithm with the Chess, Accidents_10%,
and Connect datasets. Bio-HUIF-GA can discover all HUIs
under all the listed thresholds for all four datasets. This is
because the optimal values of the current population are not
retained in the next population under Bio-HUIF. Instead,
roulette wheel selection is applied to all discovered HUIs to
determine the optimal values of the next population. Thus,
the diversity of the population is greatly improved. In con-
trast, both HUPEUMU-GARM and HUIM-BPSO follow the
standard routine of GA or PSO and, accordingly, can only
find limited results.

For the experiments on convergence, we can see that the
three proposed algorithms can obviously discover more HUIs
than HUPEUMU-GARM and HUIM-BPSO within fewer
number of iterations. The results on convergence can verify
that the search space of HUIs can be traversed efficiently
by randomly changing optimal values iteration by iteration.
Thus, the improved diversity of the population do accelerate
the convergence speed.

VIII. CONCLUSION
In this paper, we have proposed an HUIM framework,
Bio-HUIF, from the perspective of bio-inspired algorithms.
To fit the scenario of HUIM, all discovered HUIs have a
chance of being the optimal values of the next population
according to the roulette wheel selection process. Under
Bio-HUIF, the bitmap representation of the database, PEVC
checking strategy and population initialization method are
applied in the three proposed algorithms based on GA, PSO
and BA. Experimental results show that the proposed algo-
rithms not only outperform other state-of-the-art bio-inspired
HUIM algorithms in terms of efficiency, the number of dis-
covered HUIs, and convergence speed, but are also more
efficient than two exact HUIM algorithms.

In future work, we plan to incorporate other bio-
inspired algorithms such as bee swarm optimization into
Bio-HUIF. Furthermore, the parallelization of Bio-HUIF and
related HUIM algorithms will be examined using MapRe-
duce or Spark.
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