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ABSTRACT This paper addresses land surface temperature (LST) retrieval from Landsat-8 data using
the generalized split-window (GSW) algorithm. First, radiative transfer modeling experiment is conducted
using the moderate spectral resolution atmospheric transmittance algorithm and computer model fed with
SeeBor V5.0 atmospheric profile database to build a data set of LST related to brightness temperatures in
Thermal Infrared Sensor (TIRS) bands 10 and 11, land surface emissivities (LSEs), and total precipitable
water (TPW). Then, the GSW algorithm’s coefficients are obtained through linear regression, in which the
simulated data are grouped into several sub-ranges to improve the accuracy. The impacts of noise equivalent
temperature difference and uncertainty of LSEs and TPW on derived LST are evaluated. Next, the TIRS
channels 10 and 11 are inter-calibrated against the channels of infrared atmospheric sounding interferometer
on board Metop-B. After that, LST is retrieved from the re-calibrated and clear sky Landsat-8 data using the
GSW algorithm, where LSEs are estimated from the measurements of operational land imager on Landsat-8
by the modified normalized difference vegetation index (NDVI) based emissivity method, and TPW is
extracted from the european centre for medium-range weather forecasts reanalysis data. Finally, the retrieved
LST is cross-validated with the MOD11_L2 V6 product. The results show that the GSW algorithm can
accurately retrieve LST from Landsat-8 data, and errors mainly come from the uncertainty of LSEs and
TPW. Against the MOD11_L2 V6 product, the LST errors are −1.45± 0.80 K and −0.49± 0.78 K before
and after the correction of LSEs and TPW, respectively.

INDEX TERMS Algorithm, infrared sensors, land surface temperature.

I. INTRODUCTION
Land surface temperature (LST) is a key parameter in the
physics of land surface processes on regional as well as a
global scale, combining the results of all surface–atmosphere
interactions and energy fluxes between the atmosphere and
the ground [1]. It is critical to have access to accurate esti-
mates of LST because many applications in climatological,
hydrological, ecological, and biogeochemical studies rely
on the knowledge of LST [2]–[4]. In order to accurately
retrieve LST, many algorithms have been developed, and
they can be roughly grouped into three categories: the single-
channel algorithm [5], [6], multi-channel algorithm [7]–[13],
and multi-angle algorithm [14]. The commonly used multi-
channel method is the split-window algorithm, which takes

the advantage of atmospheric water vapor absorption differ-
ence between two channels respectively centered at around
11.0 µm and around 12 µm to eliminate the influence of
atmosphere [7].

In the past decades, a series of instruments with split-
window channels have been sent into space, such as the
Advanced Very High Resolution Radiometer (AVHRR) on
series of National Oceanic and Atmospheric Administration
(NOAA) satellites, the Moderate-resolution Imaging Spec-
troradiometer (MODIS) aboard Terra and Aqua, the Visible
and Infrared Radiometer (VIRR) on board Chinese Fengyun
3 satellites, and so on. Landsat-8, the eighth satellite in
the Landsat program, was successfully launched into space
on February 11, 2013. It carries two instruments, the Land
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FIGURE 1. Spectral response functions of OLI and TIRS channels.

TABLE 1. Technical specification of operational land imager (OLI) on
Landsat-8.

TABLE 2. Technical specification of thermal infrared sensor (TIRS) on
Landsat-8.

Imager (OLI) and the Thermal Infrared Sensor (TIRS)
(https://landsat.usgs.gov). The OLI instrument includes nine
refined heritage bands in visible, near-infrared (NIR) and
short wave infrared (SWIR), along with three new bands:
a deep blue for coastal/aerosol studies, a shortwave infrared
band for cirrus detection, and a quality assessment band
(Table 1), while the TIRS instrument has two thermal
infrared bands respectively centered at 10.9 µm and 12.0 µm
(Table 2). The two instruments on Landsat-8 are superior
to the Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+) aboard previous Landsat satellites.
Figure 1 shows the Spectral Response Functions (SRFs) of
both OLI and TIRS channels. Another advantage is that
the OLI and TIRS instruments observe Earth’s surfaces
with moderate-resolution from 15 meters to 100 meters,
which is higher than most of Low Earth Orbit (LEO)
satellites. According to the technical specification, the
Landsat-8 measurements are very suitable for LST map-
ping. Recently, single-channel algorithms [15], [16] and
split-window algorithms [17]–[19] have been developed to
retrieve LST from the Landsat-8 data. Previous research com-
pared the performance between the single-channel algorithm
and the split-window algorithm for Landsat-8 LST retrieval,

and concluded that the split-window algorithm is much more
accurate [18], [20]. The Generalized Split-Window (GSW)
algorithm proposed by Wan and Dozier [9] has been widely
used to retrieve LST from satellite measurements, such as
the AVHRR, MODIS and VIRR data, and its performance
is perfect. Therefore, the GSW algorithm will be developed
with radiative transfer modeling experiment to retrieve LST
from the Landsat-8 data in this work.

This paper is organized as follows: Section II describes
the methodology of LST retrieval. Section III presents the
data description and processing. Section IV demonstrates the
application of LST retrieval from Landsat-8 data. Section V
is devoted to the cross-validation and analysis, and Section VI
is about the summary and conclusion.

II. METHODOLOGY
A. DEVELOPMENT OF THE GSW ALGORITHM
Becker and Li [8] proposed a split-window algorithm, and
then Wan and Dozier [9] extended this algorithm to esti-
mate LST from MODIS measurements with Viewing Zenith
Angle (VZA) up to 69◦. The extended algorithm is so called
the GSW algorithm, and it is given by

LST = C + (A1 + A2
1− ε
ε
+ A3

1ε

ε2
)
Ti + Tj

2

+ (B1 + B2
1− ε
ε
+ B3

1ε

ε2
)
Ti − Tj

2
(1)

with ε = (εi + εj)/2 and 1ε = εi − εj. where Ti and Tj
are, the brightness temperatures (BTs) in Kelvin at top-of-
atmosphere (TOA) in bands i (centered at around 11.0 µm)
and j (centered at around 12.0 µm), respectively. εi and εj
are, respectively, the Land Surface Emissivities (LSEs) in
bands i and j, and C , A1, A2, A3, B1, B2, B3 are algorithm
coefficients. For Landsat-8, i and j correspond to the TIRS
bands 10 and 11, respectively.

In order to obtain the seven coefficients in Equation (1),
it requires a large number of collocated, coincident and
co-angled measurements of LST, LSEs and BTs in the TIRS
bands 10 and 11. In reality, it is difficult to obtain a sufficient
number of representative in-situ measurements on a global
scale. A feasible and effective solution is to use the radia-
tive transfer modeling experiment, which is conducted by
the moderate spectral resolution atmospheric transmittance
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TABLE 3. The regression results of equation (1) with the simulated data set for TPW sub-ranges.

algorithm and computer model (MODTRAN) [21] fed with
currently available atmospheric data set, and possible com-
binations of LST, LSEs and VZA [9], [11]. In this work,
the SeeBor V5.0 database (http://cimss.ssec.wisc.edu) serves
as the input atmospheric profiles in the radiative transfermod-
eling experiment. The SeeBor V5.0 training database, estab-
lished by University of Wisconsin, consists of 15704 global
profiles of temperature, moisture, and ozone at 101 pressure
levels for clear sky condition (the relative humidity is less
than 99%). The profiles are taken from NOAA-88, an Euro-
pean Centre for Medium-rangeWeather Forecasts (ECMWF)
60L training set, TIGR-3, ozonesondes from 8 NOAA Cli-
mate Monitoring and Diagnostics Laboratory (CMDL) sites,
and radiosondes from 2004 in Sahara Desert. Over land
surfaces, there are 8429 profiles, and the temperature of
atmosphere adjacent to land surface, namely the bound-
ary temperature (T0), ranges between 200.2 and 318.5 K,
while the Total Precipitable Water (TPW) varies from
0.1 to 7.8 cm.

The TIRS instrument observes the Earth surfaces in push-
broom mode. Its swath width is about 185 km, and the maxi-
mum VZA is about 7.5◦. Radiative transfer simulation shows
that the BT difference in TIRS bands between 0◦ and 7.5◦ is
about 0.02 K on average, which can be ignored. Therefore,
only a nadir VZA is considered in the radiative transfer
modeling experiment. With qualified atmospheric profiles
extracted from the SeeBor V5.0 database, combined with
spectral range and VZA, MODTRAN calculates the spec-
tral transmittance, spectral upwelling radiance and spectral
downwelling radiance, and then the MODTRAN’s outputs
are convolved with the SRFs of the TIRS bands 10 and 11 to
obtain the band-averaged atmospheric quantities.

For given LST, LSEs and band-averaged atmospheric
quantities, the BTs in the TIRS bands 10 and 11 at TOA can
be simulated using the radiative transfer equation (RTE) [11].
The LST and LSEs are set as follows: for each atmospheric
profile, LST goes from T0−5 to T0+20 K with a step of 5 K,
and the mean of LSEs (ε) changes from 0.90 to 1.0 with a
step of 0.02, while the LSE difference varies from −0.025 to
0.015 with a step of 0.005. Noted that, to convert between
radiance inmW/m2-sr-cm−1 andBT inKelvin, look-up tables
with a BT step of 0.1 K are established using Plank equation
and the SRFs of TIRS bands 10 and 11. When the simulated
data set of LST related to TPW, BTs and LSEs in TIRS bands

is established, the seven coefficients in Equation (1) can be
determined with multi-variable linear regression [22].

To improve the fitting accuracy of multi-variable lin-
ear regression, in terms of the number of simulated sam-
ples, TPW is empirically grouped into four sub-ranges
with an overlap of 0.5 cm: [0, 2.0], [1.5, 3.5], [3.0, 5.0]
and [4.5, 7.8] cm. For each TPW sub-range, a set of coeffi-
cients in Equation (1) are obtained, and the regression results
are listed in Table 3. The regression Root Mean Square Error
(RMSE), ranging between 0.24 and 0.64 K, is proportional
to TPW, while the opposite is observed for the determinant
coefficient (R2), which decreases from 0.9999 to 0.9935.

To further improve the fitting accuracy of multi-variable
linear regression, besides the groups of TPW, LST (Ts) also
is empirically divided into four sub-ranges with an overlap of
5.0 K: ≤ 282.5, [277.5, 297.5], [292.5, 312.5], ≥ 307.5 K.
For each TPW and LST sub-range, a set of coefficients also
are obtained, and the regression results are given in Table 4.
The RMSE, varying from 0.19 to 0.74 K, increases with both
LST and TPW. In general, the RMSEs for LST and TPW
sub-ranges are lower than that for TPW sub-ranges, and the
accuracy of the GSW algorithm is better than 0.8 K.

When the GSW algorithm has been developed, LST will
be derived in two steps: First, approximate LST is estimated
using the coefficients of TPW sub-ranges according to input
TPW. Then, more accurate LST is retrieved with the coeffi-
cients of LST and TPW sub-ranges according to input TPW
and the approximate LST retrieved in the first step.

B. THE ESTIMATION OF LAND SURFACE EMISSIVITIES
In Equation (1), the LSEs in the TIRS bands 10 and 11 are
two key input parameters to retrieve LST. LSEs, unlike sea
surface emissivity, can differ significantly from unity and
vary with vegetation, surface moisture, roughness, and view-
ing angle [23]. To date, various methods have been proposed
to derive LSE from space. Several use the statistical rela-
tionships between the measurements and the LSEs, e.g., the
classification-based emissivity method [24], and the Normal-
ized Difference Vegetation Index (NDVI) based emissivity
method (NBEM) [25]–[28]; others use reasonable assump-
tions or constraints in terms of Planck’s function and the
atmospheric RTE to solve the undetermined problem or the
ill-posed inversion process, e.g., the day/night temperature
independent spectral indices method [29], the physics-based

VOLUME 6, 2018 18151



S. Li, G.-M. Jiang: Land Surface Temperature Retrieval From Landsat-8 Data

TABLE 4. The regression results of equation (1) with the simulated data set for LST and TPW sub-ranges.

day/night method [30], and the temperature emissivity
separation method [31]. Taking full consideration of the
advantages and disadvantages of existing LSE estimation
methods and the technical specifications of TIRS and OLI
on Landsat-8, the modified NBEMmethod [27] is adopted in
this work, and for Landsat-8 data, it is

εi =



a1i +
7∑
j=2

ajiρj NDVI < NDVIs

εv,iPv + εs,i(1− Pv)+ Ci NDVIs ≤ NDVI
≤ NDVIv

εv,i + Ci NDVI > NDVIv

(2)

where εi is the estimated LSE in the TIRS band i
(i = 10 or 11), εv, i and εs, i denote LSEs of vegetation and
bare soil, respectively, ρj is the apparent reflectance in the
OLI band j, a1i ∼ a7i are unknown coefficients, and Pv is the
fractional vegetation cover, which is given by [32]

Pv =
[
NDVI− NDVIs
NDVIv − NDVIs

]2
(3)

where NDVIs and NDVIv, respectively, stand for the NDVI
of bare soil and vegetation, and typically, NDVIs = 0.2 and
NDVIv = 0.5 for global conditions [26]. It is set to zero
for measurements with NDVI ≤ NDVIs, and set to one for
measurements with NDVI ≥ NDVIv.
The term Ci is the cavity effect of mixed natural surfaces

due to surface roughness (Ci = 0 for flat surface), and it

is [33]

Ci = (1− εs,i)εv,iF ′(1− Pv) (4)

where F ′ is a geometrical factor ranging between zero and
one, depending on the geometrical distribution of land sur-
faces, and a typical value of 0.55 is used [28].When the NDVI
is larger than NDVIv, Ci is zero. To complement the cavity
effect of homogeneous vegetation, a fixed value of 0.005 is
recommended for Ci [26], [28].

To determine the unknown coefficients in Equation (2),
first, spectral data of vegetation and bare soils are
extracted from the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) spectral library
(http://speclib.jpl.nasa.gov) [34], and then they are convolved
with the SRFs to obtain the reflectances in the OLI bands
2∼7 and LSEs in the TIRS bands 10 and 11. Because the
LSE differences within the same type of materials are small,
the mean values are calculated to substitute for εv,i and
εs,i in Equation (2), i.e., εv,10 = 0.982, εv,11 = 0.984,
εs,10 = 0.971, and εs,11 = 0.976. Finally, the coefficients
a1i ∼ a7i in Equation (2) are determined by multi-variable
linear regression. The regression results are listed in Table 5.
For the TIRS bands 10 and 11, the correlation coefficients (R)
are, respectively, 0.788 and 0.812, while RMSEs are, respec-
tively, 0.003 and 0.002. Figure 2 shows the LSEs estimated
by the modified NBEM method versus that extracted from
the ASTER spectral library in the TIRS bands 10 and 11, and
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TABLE 5. Results of multi-variable linear regression for the unknown coefficients in equation (3).

TABLE 6. LST errors caused by NE1T in TIRS bands 10 and 11.

FIGURE 2. LSEs estimated by the NBEM method versus that extracted
from ASTER Spectral Library in TIRS bands 10 and 11.

they are basically distributed around diagonals. The accuracy
of LSEs estimated by the modified NBEMmethod satisfy the
requirement of LST retrieval.

C. SENSITIVITY ANALYSIS
BTs, LSEs and TPW are major input parameters to the
GSW algorithm, and their uncertainty will influence the
derived LST.

The errors of TIRS measurements mainly come from
radiometric calibration and the NE1T. The biases of radio-
metric calibration in the TIRS bands 10 and 11 will be
corrected in section III, so only NE1T is discussed here. Sup-
posing that the NE1T obeys normal distribution, Gaussian
noises with zero mean and standard deviation equal to two
times of NE1T are added to the simulated BTs. LST is again
retrieved with the NE1T-contaminated BTs, and the impact

of NE1T is evaluated. The RMSEs with and without NE1T
are listed in Table 6.

In contrast to RMSEs without NE1T, the RMSEs with
NE1T increased by 0.09 to 0.19 K, or in percentage from
19.0% to 52.6%. The absolute increment of RMSE with
NE1T is proportional to LST and TPW, whereas the increas-
ing percentage is not. Generally, the influence of NE1T on
LST retrieval is weak.

LSEs play an important role in LST retrieval. As reported
in [35], the uncertainty of LSEs derived from satellite
measurements is about 1%. To assess its impact on LST,
1% uncertainty is introduced into LSEs in the TIRS
bands 10 and 11, and then LST is derived with the LSEs with
1% uncertainty. The results in Table 7 indicate that the RMSE
with LSEs uncertainty increased by 0.08 to 0.53 K. The
RMSE increment is inversely proportional to TPW, whereas
it increases with LST, i.e., the impact of LSE uncertainty on
LST is much stronger for dry and hot atmosphere.

As for TPW, assuming that the TPW uncertainty is
±0.5 cm, TPW on the border of sub-ranges might be incor-
rectly grouped into its neighboring sub-range, which will lead
to inaccurate LST retrieval. The RMSEs before and after
incorrect TPW grouping are listed in Table 8. The increment
of RMSEs varies from 0.02 to 0.33 K. The impact of TPW
uncertainty on LST retrieval is stronger than NE1T does,
whereas it is weaker than the influence of LSEs uncertainty.

D. COMPARISON WITH OTHER
SPLIT-WINDOW ALGORITHMS
At present, there are other three kinds of split-window algo-
rithms developed to retrieve LST from Landsat-8 data. The
first one was proposed by Jiménez-Muñoz et al. [18] based
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TABLE 7. LST errors caused by 1% uncertainty in land surface emissivities.

TABLE 8. Root mean square errors in LST retrieval caused by TPW
uncertainty.

on the structure suggested by Sobrino et al. [36], and it is
given by

Ts = Ti + d1(Ti − Tj)+ d2(Ti − Tj)2 + d0
+ (d3 + d4w)(1− ε)+ (d5 + d6w)1ε (5)

where dk (k = 0, 1,. . . , 6) is the algorithm coefficient, and
w is the TPW.

The second split-window algorithm was developed by
Rozenstein et al. [17], and it can be written as follows:

Ts = Ti + f0(Ti − Tj)+ e1f1 + e2f2 + e3f1Ti − e4f2Tj (6)

where ek (k = 1, 2, 3 or 4) is algorithm coefficient, and
f0 and f1 are functions of atmospheric transmittance and LSEs
in bands i and j.

The third one is a new refinement of the GSW algo-
rithm, in which a quadratic term of (Ti − Tj) is added [37].
To compare the above three split-window algorithms with
the GSW algorithm in this work, the simulated data set in
section II is used to determine the algorithm coefficients for
each TPW and LST sub-range, and meanwhile the RMSEs
are calculated. The comparison of RMSEs of different split-
window algorithms for all TPWandLST sub-ranges are listed
in Tables 9 and 10. For convenience, the RMSEs of the GSW
algorithm in this work are also list in the tables. The RMSEs
are generally proportional to TPW and LST. The GSW algo-
rithm in this work is consistent with Jiménez-Muñoz’s algo-
rithm, with RMSE varying from 0.2 to 0.7 K, whereas it
is much more accurate than Rozenstein’s algorithm, whose
RMSE is up to 2.1 K. Further investigation reveals that the

TABLE 9. Comparison of root mean square errors of different
split-window algorithms for TPW sub-ranges (Unit: Kelvin).

TABLE 10. Comparison of root mean square errors of different
split-window algorithms for LST and TPW sub-ranges (Unit: Kelvin).

split-window algorithm proposed by Rozenstein et al [17]
produces large errors for extremely humid atmosphere, which
leads to low accuracy on average. The results also indicate
that the GSW algorithms with and without quadratic term
have no obvious difference.

III. DATA DESCRIPTION AND PROCESSING
A. LANDSAT-8 L1 DATA
In this work, the main data are the geo-located and cal-
ibrated Landsat-8 L1 product, which is downloaded from
the website of United States Geological Survey (USGS)
(http://landsat.usgs.gov). The Landsat-8 L1 product, inWorld
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Reference System 2 (WRS-2) and GeoTIFF file format,
provides visible and near infrared measurements in the
OLI bands 1∼9 and thermal infrared measurements in
the TIRS bands 10 and 11, Quality Assessment (QA),
and meta data. The thermal infrared measurements in the
TIRS bands 10 and 11 are up-sampled from 100 meters to
30meters tomatchOLI’s measurements in space. For the OLI
bands 1∼9, the following equation is applied to converting
digital number into reflectance,

ρλ = Mρ × Qcal + Aρ (7)

where ρλ is the reflectance at TOA, Qcal is the Digital Num-
ber (DN), and Mρ and Aρ are, respectively, the multiplying
and adding factors, which can be extracted from the meta
data. Then the reflectance is corrected with solar elevation
angle θs by

ρ′λ = ρλ/ sin(θs) (8)

For the TIRS bands 10 and 11, a similar calibration equa-
tion is used

Lλ = ML × Qcal + AL (9)

where Lλ is the radiance at TOA in W/m2-sr-µm, and ML
and AL are, respectively, the multiplying and adding factors,
which can also be extracted from the meta data. The NDVI
is calculated from the reflectances in OLI bands 4 and 5,
and then LSEs in TIRS bands 10 and 11 are estimated using
Equation (3). Water bodies are discriminated according to
NDVI, whose value is usually less than zero. The cloudy
measurements and those with ice/snow cover are removed in
terms of the information extracted from the QA band.

B. INTER-CALIBRATION OF TIRS BANDS 10 AND 11
Former research reported that the measurements in the TIRS
bands 10 and 11 are strongly affected by the out-of-field
energy (stray light), especially for band 11 [38]. Therefore,
the TIRS measurements should be re-calibrated before LST
retrieval. As we know, the Infrared Atmospheric Sounding
Interferometer (IASI) is a key payload element on the Metop
series of European meteorological polar-orbiting satellites.
It was developed by the Centre National d’Études Spa-
tiales (CNES) in the framework of a cooperation agree-
ment with the European Organisation for the Exploitation
of Meteorological Satellites (EUMETSAT). The first flight
model was launched in 2006 on board the first European
operational meteorological polar-orbiting satellites, namely
Metop-A. The second one mounted on the Metop-B satellite
was launched in September 2012. The IASI instrument has
8,461 channels continuously covering the spectrum from the
edge of the thermal infrared at 3.62 µ m (2760 cm−1) up
to 15.5 µ m (645 cm−1) with a fixed unapodized spectral
resolution of 0.25 cm−1, and the spatial resolution at nadir
is about 12 km. The IASI’s in-orbit calibration has proven
to be stable and consistent with that of Atmospheric Infrared
Sounder (AIRS) on board Aqua, whose standard uncertain-
ties is about 0.1 K (k = 1) [39]. Therefore, the TIRS

FIGURE 3. Inter-calibration study area (generated from GLC2000 product).

bands 10 and 11 are inter-calibrated against IASI/Metop-B
hyperspectral channels using the hyperspectral convolu-
tion (HSC) method [40]–[44]. An Arctic area (60◦N–90◦ N,
180◦W–180◦E) shown in Figure 3 is selected as an inter-
calibration area to obtain a sufficient number of collocated,
coincident and co-angled measurements. Besides the Arctic
Ocean, this inter-calibration area also contains Greenland
and part of Asia, North America and Europe. According
to the Global Land Cover 2000 (GLC2000) product
generated by Institute for Environment and Sustainabil-
ity (IES, http://bioval.jrc.ec.europa.eu/products/glc2000/
products.php), this area is dominated by water bodies, ice and
snow, which is beneficial to inter-calibration.

The Landsat-8 L1 data and IASI/Metop-B 1C data cover-
ing the inter-calibration area in July and August of 2015 are
used. The IASI/Metop-B 1C data are provided by the
NOAA Comprehensive Large Array-Data Stewardship Sys-
tem (CLASS, http://www.class.ngdc.noaa.gov). To match the
TIRS and IASI measurements in space, first, an x-y Cartesian
coordinate system is set up (Figure 3), and longitude (α) and
latitude (β) in degree are converted into x-y as follows:{

x = (90◦ − |β|) cos ζ
y = (90◦ − |β|) sin ζ

(10)

with ζ = 90◦ − ϑ for ϑ ≤ 90◦ or ζ = 450◦ − ϑ otherwise,
and ϑ = α for α ≥ 0◦ or ϑ = α + 360◦ otherwise.
Then, the inter-calibration area is gridded with1x and1y

equal to 0.2. Finally, all the data, including TIRS and IASI’s
radiances, VZA and observation time, are pixel-aggregated
into the discretized area using area-weighting interpolation
method.

After pixel-aggregation, the gridded TIRS and IASI mea-
surements are put into the same x-y discrete coordinate
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FIGURE 4. Measurement differences in bands 10 and 11 versus viewing
zenith angle difference (a). and observation time difference (b).

system, i.e., the measurements over the same pixel-
aggregated grid are collocated. The coincident and co-angled
criteria are satisfied with difficulty for actual TIRS and IASI
measurements, and they are usually replaced by approxi-
mations: the absolute observation time difference (|1time|)
and absolute VZA difference (|1VZA|) are less than given
thresholds [42]–[44]. Figure 4 displays the radiance dif-
ferences between matching TIRS and IASI measurements
varying with VZA difference (1VZA) and observation time
difference (1time). The radiance difference mainly ranges
between ±0.5 W/m2-sr-µm (approximately ±6.0 K), and
they have no obvious increase or decrease trend when1VZA
goes from -30◦ to 8◦ and 1time varies from −25 to 25 min-
utes. Moreover, the linear fit lines are almost horizontal,
which indicates that the dependence of radiance differences
on 1VZA and 1time is weak. Based on the results in
Figure 4, the following matching criteria are applied: the
collocation over the pixel-aggregated grid, |1time| <25 min-
utes, and |1VZA| <30◦. Furthermore, to mitigate the influ-
ence of surface inhomogeneity, an extra criterion is used: the
maximum absolute BT difference in the 3×3 neighborhood
centered at the matching measurement in an image is less
than 5.0 K.

With the matching criteria given above, a total of
1532 TIRS-IASI matching measurements are collected. Tak-
ing the TIRS measurements as x and IASI measurements

FIGURE 5. TIRS-IASI matching measurements in the TIRS
bands 10 and 11 and linear fit results.

as y, the matching measurements, ranging between
3.0 and 9.0W/m2-sr-µm, are displayed in Figure 5. The TIRS
measurement is highly linearly related to the convolved IASI
measurement: the correlation coefficients (R) are greater than
0.984, and RMSEs are 0.12272 and 0.12008 W/m2-sr-µm
for the TIRS bands 10 and 11, respectively. In general,
the calibrations of both TIRS bands 10 and 11 are biased
against the IASI hyperspectral channels, however TIRS band
10 agrees with IASI hyperspectral channels relatively much
better. Inter-calibration coefficients (slope and intercept) for
TIRS bands 10 and 11 are obtained through linear fits on the
matching measurements (Figure 5).

In terms of the inter-calibration coefficients given in
Figure 5, all the TIRS measurements are re-calibrated.
To demonstrate the inter-calibration effects, Figure 6 shows
the histograms of BT differences between TIRS and IASI
matching measurements before and after re-calibration. The
BT differences, mainly ranging between ±6.0 K, basically
obey normal distribution. Before re-calibration, in contrast
to histogram in the TIRS band 10, the histogram center for
band 11 more obviously deviates from zero, and its distribu-
tion is much disperser. On average, the calibration biases in
the TIRS bands 10 and 11 are, respectively, −0.54±1.21 K
and −1.52±1.35 K against the IASI measurements. After
re-calibration, both histograms in the TIRS bands 10 and 11
are centered at zero. The results in Figure 6 indicate that the
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FIGURE 6. Histograms of brightness temperature differences between the
TIRS-IASI matching measurements in TIRS bands 10 and 11 before and
after re-calibration (the bin size is 0.5 K).

calibration of IASI hyperspectral channels has been success-
fully transferred to the TIRS bands 10 and 11.

IV. APPLICATION OF LST RETRIEVAL
FROM LANDSAT-8 DATA
The GSW algorithm is applied to LST retrieval from
Landsat-8 data in 2015. BTs and LSEs in the TIRS bands
10 and 11, TPW and cloud mask are four input parame-
ters to retrieve LST. BTs in the TIRS band 10 and 11 and
cloud mask are extracted from Landsat-8 L1 data, and then
the TIRS measurements are re-calibrated using the inter-
calibration coefficients in Figure 5. LSEs in the TIRS bands
10 and 11 are estimated from the OLI data by the modified
NBEM method developed in Section II. TPW is extracted
from temporally and spatially nearest 0.025◦ × 0.025◦

ECMWF reanalysis data, and then they are spatially resam-
pled into the Landsat-8 swath using bilinear interpolation
method.

With the input of BTs and LSEs in the TIRS
bands 10 and 11, TPW and cloud mask, LSTs in 2015 are
retrieved using the developed GSW algorithm in this work.
Taking the Landsat-8 swath acquired at 2:27 UTC on
July 19 of 2015 over a Northeast China area centered at

FIGURE 7. Maps of NDVI (a), LSEs in TIRS bands 10 and 11 (b and c) and
LST (d) derived from Landsat-8 data acquired at 2:27 UTC on July 19 of
2015 over a Northeast China area centered at (44.594◦N, 124.336◦E)
(swath path = 119 and row = 29 in WRS-2).

(44.594◦N, 124.336◦E) (swath path = 119 and row = 29
in WRS-2) as example, Figure 7 demonstrates the NDVI,
LSEs in bands 10 (ε10) and 11 (ε11) and LST derived from
Landsat-8 L1 data. The NDVI changes from 0.11 to 0.81,
and LSEs range between 0.963 and 0.989, while LSTs are
distributed between 297 and 323 K. The NDVI over densely
vegetated areas are higher than that over sparsely vegetated
and bare areas, and LSEs have positive correlation with
NDVI. The LST over bare areas (lowNDVI) is usually higher
than that over vegetated areas (relatively higher NDVI) due
to the relative low thermal inertia of bare areas.

V. CROSS-VALIDATION AND ANALYSIS
In this work, the derived LST is cross-validated against
the MODIS/Terra LST and Emissivity (LST/E) product
MOD11_L2 V6. The MOD11_L2 V6 product is a 5-min
level-2 swath 1 km data set and covers both daytime
and nighttime observations. The MOD11_L2 V6 product
is generated from clear sky MODIS/Terra L1B data using
the GSW algorithm [9], whereas LSEs are estimated by
classification-based emissivity method [24]. Besides LST
and LSEs, the MOD11_L2 V6 product also provides longi-
tude and latitude, observation time, VZA and quality assur-
ance. The validation with in-situ measurements indicated
that the MOD11_L2 product is better than 1.0 K for most
cases [37], [45].

Cross-validation requires collocated and coincident LST.
For two polar-orbit satellites, to obtain a sufficient number
of collocated and coincident measurements, the study area
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FIGURE 8. Eurasian area for LST cross-validation (generated from GLC2000).

should be located as high a latitude as possible [46]. The
Arctic and Antarctic regions satisfy this condition, however
most of the two areas are covered by ice and snow all the
year round, and they are not good places for LST validation in
this work. Taking full consideration of the matching criteria,
land cover diversity and feasibility, an area of the Eurasian
continent with latitude larger than 50◦N and longitude from
20◦E to 130◦E is selected for cross-validation (Figure 8).
According to the GLC2000 product, the main land cover
types are tree cover, sparse herbaceous cover, shrub cover,
and cultivated and managed area.

As we know, the sizes of pixels in Landsat-8 L1 data prod-
uct are 30×30meters in equal areaUniversal TransverseMer-
cator (UTM) projection, whereas theMOD11_L2V6 product
is a 5-min swath 1-km data set in longitude and latitude
coordinate system. To match the LST in space, first, the data
extracted from the MOD11_L2 V6 product are geometrically
transformed into the equal area UTM projection system (the
MOD11_L2 pixel in equal area UTM system is an irregular
quadrilateral), and then the LST derived from Landsat-8 data,
as well as the observation time and VZA, are resampled into
the irregular MOD11_L2 pixel using area-weighting interpo-
lation method.

Based on the trade-off between uncertainty and the num-
ber of matching LST, the following criteria are selected
to collect matching LST: collocation over the irregu-
lar MOD11_L2 pixel in the equal area UTM projection,
the absolute observation time difference of less than 35 min
(|1time| < 35’), and the absolute VZA difference of less than
35◦ (|1VZA| < 35◦ ).

Besides the above three major matching criteria, several
factors are also necessarily taken into account. Although the
MOD11_L2 LST and LST in this work are derived under
the so-called ‘‘clear sky’’ conditions, the effects of unfiltered
clouds cannot be ignored. If a pixel in a 3×3window centered
at the matching pixel is labeled as cloudy or possible cloudy,
the matching LST will be discarded. To eliminate impact
of water and ice/snow, if a pixel in 3 × 3 window centered

at the matching pixel is along water or ice/snow boundary,
the matching LST is also abandoned. Moreover, to mitigate
the influence of heterogeneity of land surface properties, the
maximum LST difference in a 3 × 3 window centered at
the matching pixel within an image is required to be less
than 2.0 K.

The collection of matching LST is carried out in three
steps. First, the Landsat-8 swaths and MOD11_L2 are
approximatelymatched according to covering area and acqui-
sition time. Sixteen matching swaths of Landsat-8 and
MOD11_L2 V6 from July 11 to September 22 in 2015 over
the cross-validation area are qualified. Taking the Landsat-8
data at 6:00 UTC on August 6 of 2015 (swath row = 6
and path = 155 in WRS-2) and MOD11_L2 V6 product
at 5:30 UTC on the same day as example, Figure 9 shows
the comparison of LST derived from Landsat-8 data in this
work and that extracted from MOD11_L2 V6 product over
the same area (red boxed region in Figure 9(c)). Although
the observation time difference is up to 30 minutes, and
VZA also is different, the LST derived from Landsat-8
data (Figure 9(a)) is quite consistent with that extracted
from MOD11_L2 V6 product (Figure 9(b)), not only for
spatial distribution, but also for the values of LST. Then,
the LST derived from Landsat-8 data is resampled over
MOD11_L2 V6 pixels in equal area UTM projection system.
Finally, in terms of the matching criteria, matching LST is
collected from the matching swaths through pixel by pixel
search.

With the above criteria, 18106 matching LSTs over the
MOD11_L2 V6 pixels in equal area UTM projection sys-
tem are collected. Figure 9(a) shows the LST derived
from Landsat-8 data in this work versus that extracted
from MOD11_L2 V6 product. The matching LST ranges
between 280.0 and 301.0 K. The LST derived from Landsat-8
data is highly linearly related to that extracted from
MOD11_L2 V6 product with a correlation coefficient R of
0.973. Against MOD11_L2 V6 product, the bias of LST
in this work is −1.45±0.80 K. Figure 10(b) displays the
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FIGURE 9. Comparison between the LST derived from Landsat-8 data in this work and that extracted from MOD11_L2 V6
product. (a) Map of LST derived from Landsat-8 data in this work resampled over MOD11_L2 V6 grid (6:00 UTC,
August 6, 2015) (b) A close-up of red boxed region in (c) corresponding to the area in (a); (c) Map of LST
extracted from MOD11_L2 V6 product (5:30 UTC, August 6, 2015).

FIGURE 10. The LST derived from Landsat-8 data in this work versus that
extracted from MOD11_L2 V6 product (a), and histogram of LST
differences between LST retrieved in this work and that extracted
MOD11_L2 V6 product (b).

histogram of LST differences between LST in this work and
that extracted from MOD11_L2 V6 product. The difference
mainly varies from -4.0 to 1.5 K, and it basically obeys a
normal distribution centered at about 1.4 K.

Recalling the sensitivity analysis in Section II, LST error
mainly comes from the uncertainty of LSEs and TPW.

FIGURE 11. Histograms of land surface emissivity differences in TIRS
bands 10 and 11 (a) between LSE in this work and that extracted from
MOD11_L2 V6 product, and histogram of TPW difference between ECMWF
reanalysis data and MOD07_L2 V6 product (b).

To assess the actual impact of LSEs and TPW uncertainty
on LST retrieval, we compute the differences between LSEs
estimated from the OLI data by NBEM method in this
work and that extracted from the MOD11_L2 V6 product,
in which the spectral differences are removed by linear fits
over typical samples extracted from the ASTER Spectral
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FIGURE 12. LST derived from Landsat-8 data versus that extracted from
MOD11_L2 V6 product after LSEs and TPW correction (a), and histogram
of LST differences between LST retrieved in this work and
MOD11_L2 V6 LST (b).

Library, and we also calculate the TPW differences between
the ECMWF reanalysis data and theMOD07_L2 V6 product.
Figure 10 displays the histograms of LSE and TPW differ-
ences. The LSE difference ranges in [−0.005, 0.025] and
[−0.005, 0.018] for the TIRS bands 10 and 11, respectively.
In contrast to the MOD11_L2 V6 product, the LSEs in the
TIRS bands 10 and 11 estimated by the NBEM method
are averagely 0.016±0.005 and 0.013±0.003 overestimated,
which leads to LST underestimate of 0.5∼1.0 K. The TPW
differences changes from −1.25 to 0.4 cm, and in contrast
to the MOD07_L2 V6 product, the TPW bias of ECMWF
reanalysis data is −0.55±0.26 cm, which also leads to LST
underestimate of about 0.5 K in this work.

If the LSEs in the TIRS bands 10 and 11 and TPWextracted
from the ECMWF reanalysis data are, respectively, corrected
with the biases calculated in Figure 11, in theory, the LST in
this work will be much more consistent with that extracted
from the MOD11_L2 V6 product. Figure 12(a) shows the
LST in this work after LSEs and TPW correction versus LST
extracted from the MOD11_L2 V6 product. After correction,
the matching LST is symmetrically distributed around the
diagonal with a correlation coefficient of 0.974. In contrast
to the MOD11_L2 V6 product, the bias of LST in this work
after correction is −0.49±0.78 K. The histogram of LST

differences in Figure 12(b) also obeys normal distribution,
and the center is much closer to zero. Compared to the results
before LSEs and TPW correction (Figure 10), the LST bias
after LSEs and TPWcorrection decreased by about 1.0 K, i.e.,
the LST derived from Landsat-8 data is muchmore consistent
with that extracted from the MOD11_L2 V6 product after the
correction of LSEs and TPW.

Several research also developed split-window algorithms
to retrieve LST from Landsat-8 data, and then validated the
results with independent simulated data, MODIS LST or
in-situ LST. Jiménez-Muñoz et al. [18] and Du et al. [47]
validated the derived LST against independent simulated
data, and RMSEs for the split-window algorithm over the
whole TPW range are around 1.0 K, with almost no bias.
Nikam et al. [48] cross-validated the retrieved LST
with MODIS LST, and the bias is approximate 2.4 K.
Wang et al. [49] validated the LST retrieved from Landsat-8
TIRS measurements against in-situ LST in an extremely arid
region, and the RMSEs range from 1.7 K to 4.7 K. Compared
to the results of previous research, the LST derived from
Landsat-8 data in this work is accurate enough.

VI. CONCLUSION AND DISSCUSSION
The paper presented the development of the GSW algo-
rithm to retrieve LST from Landsat-8 data using MODTRAN
fed with the SeeBor V5.0 atmosphere profile data set, and
the algorithm’s accuracy is better than 0.8 K for all condi-
tions in theory. Sensitivity analysis indicates that the LST
error mainly comes from the uncertainty of LSEs and TPW:
1% uncertainty in LSEs will lead to RMSE increment of
0.08∼0.53 K, while an uncertainty of ±0.5 cm in TPW will
cause RMSE increased by 0.02 to 0.33 K.

Before LST retrieval, the TIRS bands 10 and 11 were inter-
calibrated against the IASI/Metop-B hyperspectral chan-
nels over the Arctic area, and on average, the calibration
biases of the TIRS bands 10 and 11 are −0.54±1.21 K
and −1.52±1.35 K, respectively. The GSW algorithm was
applied to LST retrieval from re-calibrated and clear sky
Landsat-8 data in 2015, in which LSEs in the TIRS
bands 10 and 11 were estimated from the OLI data using
the NBEM method and TPW was extracted from the tem-
porally and spatially nearest ECMWF reanalysis data. The
derived LST was cross-validated with that extracted from
the MOD11_L2 V6 product over the Eurasian continent with
latitude larger than 50◦N and longitude from 20◦E to 130◦E.
In contrast to LSEs extracted in the MOD11_L2 V6 prod-
uct and TPW extracted from the MOD07_L2 V6 prod-
uct, the LSEs in the TIRS bands 10 and 11 estimated
by the NBEM method are, respectively, 0.016±0.005 and
0.013±0.003 overestimated, whereas the TPW extracted
from ECMWF reanalysis data is 0.55±0.26 cm underesti-
mated. The results reveal that the uncertainty in LSEs and
TPW has strong impacts on retrieved LST: the LST errors in
this work are −1.45±0.80 K and −0.49±0.78 K on average
before and after correction of LSEs and TPW. Generally,
the development of GSW algorithm is successful and the
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derived LST is consistent with the MOD11_L2 V6 LST and
the results in previous research.

To improve the accuracy of derived LST, more accurate
LSEs and TPW are required. As presented in Section II,
almost none of existing LSE estimation methods is suitable
for Landsat-8. Another alternative method is to deduce the
LSEs from existing LSE product with similar spatial resolu-
tion, e.g., the ASTERGEDv4 product. However, it is difficult
to acquire spatially and temporally matching data between
polar-orbiting satellites due to high spatial resolution (narrow
swath). For TPW, although it could be corrected with in-situ
measurements or third party product, similar problems of
spatial and temporal resolutions also exist. It is counting
on more infrared channels appeared in next generation of
Landsat satellites, and thus both LSEs and TPW can be
directly retrieved from satellite measurements. In addition,
it is necessary to validate the results in this work with in-situ
measurements in larger region and longer period of time.
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