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ABSTRACT Coordinated task allocation formultiple unmanned aerial vehicles (multi-UAVs) is an important
problem. Taking considerations of the types of UAVs, and the resources are extremely significant in the
coordinated control of multi-UAVs. In the interests of assigning tasks efficiently and accurately for the
cooperative UAVs of different types, the advanced multi-UAVs control technology requires a universal
task assignment method under resource constraints. In this paper, we introduce a novel multi-type UAVs
coordinated task allocation method based on cross-entropy (CE), and take the resources required for tasks
into account. The CE method takes random samples from the candidate solutions, and then uses them to
update the allocation probabilitymatrix.We address the specific processes of CE dealingwith the constrained
multi-type UAVs task allocation problem, and reveal that CE has the advantage of solving large scale
allocation problems. Furthermore, numerical simulations of CE handling task assignment, and comparisons
with the exhaust search method are conducted to validate the merits of the cross-entropy method dealing
with the considered problem.

INDEX TERMS Multi-type UAVs, cross-entropy, coordinated task allocation, resource constraints.

I. INTRODUCTION
Over the last decades, unmanned aerial vehicles (UAVs) have
become an increasingly feasible component of the battle-
field environment as well as the civilian applications, such
as modern warfare, search and rescue under disaster cir-
cumstances, traffic monitoring, planetary exploration, and
many other fields [1]–[4]. The UAVs for theses applications
may have limited capabilities, and may not have enough
required resources to complete the task single-handedly.
Therefore, the UAVs need to be deployed in cooperating
teams. With increasing attention being paid to cooperating
UAVs, the coordinated control technology among them seems
especially important which includes UAVs coordinated path
planning and their coordinated task assignment. In this paper,
we focus mainly on the cooperative task allocation problem
of multi-UAVs.

Task allocation has been an active research area for
the past few years, and there have been numerous
works that study multiple UAVs task allocation problem.
Grtli and Johansen [5] dealt with task allocation using Mixed
Integer Linear Programming (MILP), although it can pre-
serve global optimality, it suffered from poor scalability.
Heuristic approach had been considered in [6] and [7]which

gave near-optimal results in real time, allowing it to be used
for large scale problem sizes, and for dynamic scenarios.
Swarm intelligence algorithms, for example, Ant Colony
Optimization (ACO) [8], [9], had fast convergence speed in
solving large scale task allocation problems and could obtain
effective assignment scheme, however, they had risks falling
into local optimum. Decentralized approaches complemented
with market-based method which has low computation com-
plexity also have been applied to the multi-agent system.
Badreldin et al. [10] presented a comparative study between
optimization-based andmarket-based approaches to solve the
multi-robot task allocation problem that arose in the con-
text of multi-robots system, and the results showed that the
optimization-based approach outperformed the market-based
approach in terms of optimal allocation and computational
time. Capitan et al. [11] proposed a method that decentralized
multi-robot partially observable Markov decision precesses
(POMDPs) while maintaining cooperation between robots
by using POMDP policy auctions, and the auctions provided
a flexible way of coordinating individual policies modeled
by POMDPs and had low communication requirements.
Yaqoob et al. [12] presented a new intelligent distributed
adaptive scheduling method for real-time tasks with energy
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harvesting constraints to guarantee a feasible system with a
graceful quality of service. Many other algorithms are also
applied to solve such problems, see [13]–[21].

The Cross-Entropy (CE) algorithm [22] is a relatively new
method solving combinatorial optimization problems, and it
was initially used for estimating probabilities of rare events
in complex stochastic network. The convergence analysis of
CE was also discussed in [23] and [24]. Besides, the authors
proved that the CE method is particularly relevant for solv-
ing combinatorial optimization problems in [25]. Since then,
several recent publications demonstrate the power of the CE
method as a simple and efficient tool for many applications,
such as vehicle routing [27], buffer allocation [26], machine
learning [28]. There are also researches applying the CE
method to UAV task allocation. Undurti [29] proposed an
algorithm based on CE to solve three different task allocation
problems. Le Thi et al. [30] also utilized CE method to deal
with UAV task assignment problem. However, they take no
considerations of specific resource constraints and the UAV
types.

In task allocation schemes of UAV domain, the researchers
usually assume that one UAV has to be assigned to one target
only, and they do not consider the resource requirement of
targets or the UAV types. Whereas, sometimes certain kinds
of resources are essential in the completion of a target, as well
as the types of UAVs. Besides, for large scale task allocation
problems, some deterministic methods may not find the opti-
mal solution within an acceptable time. Under this condition,
we can treat the CE method as a supplementary to obtain an
optimal or near-optimal result. Thus, we intend to investigate
the CE method for multiple types of UAVs cooperative task
allocation problem under resource constraints.

In this paper, we focus on the task allocation situation
where different types of UAVs are assigned to several tasks
through CE method, and the tasks require certain kinds of
resources. During the allocation process, we firstly determine
the number of feasible solutions according to the resource
demand of the targets. The evaluation criterion of our allo-
cation scheme is measured by the overall target score, and
we aim at finding the optimal allocation scheme with the
highest score. After that, we apply the Cross-Entropy method
to the considered task allocation problems, and simulations
are also conducted to verify the feasibility and effectiveness
of CEmethod in solving the multi-types UAVs task allocation
problem.

The rest of paper is organized as follows. Section II
elaborates on an introduction of the Cross-Entropy method.
In Section III, we describe the problem, giving its mathe-
matical formulation, and the application of CE method for
solving the considered problem. Section IV conducts several
simulations and comparisons to show the performance and
merit of the proposedmethod. SectionV concludes this paper.

II. THE CROSS-ENTROPY METHOD
In this section, we will discuss the main ideas behind
the Cross-Entropy (CE) algorithm for combinatorial

optimization under our task allocation circumstances. For
more detailed derivation processes, see [25] and [30].

We consider the general combinatorial optimization
problem,

γ ∗ = S(X∗) = max
X ∈χ

S(X ), (1)

where χ is a finite set of states, X is a combination in χ , and
S is a real-valued performance function on χ . Our goal is to
find the maximum of S over χ , which is denoted as γ ∗, and
X∗ is the corresponding states under γ ∗.
In CE, the optimization problem is converted into a prob-

ability estimator problem with probability density function
(pdf) f (·; u), which is

l = Pu(S(X ) ≥ γ ) = EuI{S(X )≥γ }, (2)

where γ is a value close to γ ∗, Pu is the probability mea-
sure, Eu denotes the corresponding expectation operator, and
I (X; γ ) (also written as I{S(X )≥γ }) is the indicator function
depicted as

I (·; γ ) =

{
1, if S(X ) ≥ γ,
0, if S(X ) < γ.

(3)

Then, we can estimate l through importance sampling,
which is

l̂ =
1
N

N∑
i=1

I{S(Xi)≥γ }
f (Xi; u)
g(Xi)

, (4)

where random samples X1, . . . ,XN are drawn from f (·; u)
and g is an importance sampling density on χ .

Specially, the best way to estimate l is to use the change of
measure with density

g∗(X ) =
I{S(X )≥γ }f (X; u)

l
. (5)

Obviously, g∗ depends on the unknown parameter l, and it
cannot be acquired directly. Thus, we find another pdf f (·; v)
with parameter v on χ via minimizing the cross-entropy
between g∗ and f (·; v), which is

min
v

Eg∗ ln
g∗

f (·; v)

= min
v

(∫
g∗(X ) ln g∗(X )dX −

∫
g∗(X ) ln f (X; v)dX

)
. (6)

Minimizing the problem in (6) is equivalent to solving the
maximization problem

max
v

∫
I{S(X )≥γ }f (X; u)

l
ln f (X; v)dX . (7)

Finally, we can convert (7) into the following format

max
v

EuI{S(X )≥γ } ln f (X; v)=max
v

1
N

N∑
i=1

I{S(Xi)≥γ }ln f (Xi; v).

(8)

Note that the probability measure l also can be the count-
ing measure in which f is often called a probability mass
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FIGURE 1. The flowchart of CE algorithm for solving combinatorial optimization problems.

function [25]. To express conveniently, we will always use
the generic terms density or pdf.

It is plausible that if γ is close to γ ∗, then f (·; v∗) assigns
most of its probability mass close to X∗. To find γ and v
which are close to the optimal values, two sequences of levels
γ1, . . . ., γT , and parameters v1, . . . ., vT are constructed, and
γT and vT are the ones close to the optimal values. Particu-
larly, the initialization phase is done by setting v0 = u, and
choosing the quantile θ , then, we can proceed the following
two steps.

1. Adaptive updating of γt . For a fixed vt−1, let γt be the
θ -quantile of S(X ) under vt−1, which means γt satisfies

Pvt−1 (S(X ) ≤ γt ) ≥ θ, (9)

where X ∼ f (·; vt−1).
A simple estimator γ̂t of γt can be obtained by drawing

a random sample X1,X2, . . . ,XN from f (·; vt−1), calculating
the performances S(Xi) for all i, and ordering them from
smallest to biggest: S1 ≤ S2 ≤ . . . ≤ SN . Finally, we estimate
the sample θ -quantile as

γ̂t = SbθNc. (10)

2. Adaptive updating of vt . For fixed γt and vt−1, vt can be
derived by solving the aforementioned (8).

Thus, the main procedures for combinatorial optimization
problems using CE algorithm can be depicted as follows:
Step 1: Define v̂0 = u, θ (0 < θ < 1), the maximum

iteration T , and initialize the level counter t = 1.
Step 2: Generate a sample X1,X2, . . . ,XN from the den-

sity f (·; v̂t−1), then compute the sample θ -quantile γ̂t of the
performance S according to (10).

Step 3: Use the same sample X1,X2, . . . ,XN to solve
the stochastic problem in (8), and denote the solution
by v̂t .
Step 4: If for some t ≥ d (d is a constant, e.g., d = 7),

γ̂t = γ̂t−1 = · · · = γ̂t−d ,

then stop, otherwise, set t = t + 1, and goto step 2.
The flow of CE algorithm for combinatorial optimization

is shown in Fig. 1.

III. MULTI-TYPE UAVS TASK ALLOCATION USING CE
METHOD UNDER RESOURCE CONSTRAINTS
In this section, we will demonstrate the task assignment
problem, and apply the CE method to multi-type UAVs task
assignment problem under resource constraints.

A. PROBLEM STATEMENT
The problem of multi-type UAVs task allocation is to find the
best combination of UAVs to cover certain targets. We sup-
pose that some amount of resources are required by the
targets, and the UAV formations must meet the resource
demands of the targets to be the qualified candidates, which
we call the resource constraints.
Then we formalize the problem of multi-type UAVs task

allocation. Suppose that there are m targets and Ut types of
UAVs. Specially, each target can be deployed maximum n
UAVs, and the UAVs can belong to the same type or the
different types. Let Ns be the set of all feasible plans
to deploy UAVs to targets, and the size of Ns is equal
to l. Note that there are maximum n UAVs in each plan
in Ns.
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Furthermore, let X = (x1, x2, . . . , xm) be a random viable
assignment vector of plans assigned to m targets. Arbitrary
element xj must belong to Ns and each target j is executed
by only one UAV formation k . Thus, X must follow the
limitations:{

xj ∈ Ns,
card{j ∈ {1, . . . ,m} : xj = k} = 1, k ∈ Ns,

where card is set cardinality.
Then, let χ be the set of all feasible X satisfied the given

resource constraints of targets. Thus, our object is to find the
optimal solution vector X̂ ∈ χ with the largest score. And
the score function S(X ) defining effectiveness under a certain
assignment X is denoted as

S(X ) =
m∑
j=1

[Bj − C(xj)], (11)

where Bj is constant, and is the rewarded benefit when com-
pleting target j, and C(xj) is the cost of applying xj to target j,
which is denoted as

C(xj) = Wjeβtj (1−
∏
a∈xj

Paj), (12)

where Wj is the threat level of target j; Paj is the success
probability of the UAV in plan xj performing its desired part
in target j; eβtj determines the time cost of the UAVs arriving
at target j; β is a coefficient, and tj is the longest time among
all the UAVs arriving at the target in a certain solution.

Submit (11) to (12), we have

S(X ) =
m∑
j=1

[Bj −Wjeβtj (1−
∏
a∈xj

Paj)]. (13)

Furthermore, for a certain index γ , we denote that the
optimal solution X̂ follows S(X̂ ) ≥ γ . To simplify (13),
we introduce Ŝ(X̂ ), and γ̂ , which are defined as

Ŝ(X̂ ) =
m∑
j=1

Wjeβtj (1−
∏
a∈xj

Paj) ≤
m∑
j=1

Bj − γ = γ̂ . (14)

Consequently, to obtain the optimal solution X̂ is equal to
find a combination of m in Ns which satisfies Ŝ(X̂ ) ≤ γ̂ . And
this can be solved through the Cross-Entropy method.

B. THE CE METHOD FOR MULTI-TYPE UAVS TASK
ALLOCATION UNDER RESOURCE CONSTRAINTS
In this subsection, we redefine the indicator function and the
pdf in the classical CE method to make it better adjusted to
our problem. Also, the detailed procedures for solving the
considered optimization problem are revealed.

According to (14), we redefine the indicator function with
respect to X for a certain thresholds γ̂ ∈ R in our problem as

I (·; γ̂ ) =

{
1, if Ŝ(X ) ≤ γ̂ ,
0, if Ŝ(X ) > γ̂ .

Let f (·; v), v ∈ V be a family of (discrete) pdfs on χ ,
parameterized by a real-valued parameter (vector) v. Given

a certain u ∈ V , according to (8) mentioned in Section II,
the optimal parameter v∗ for a f (·; v) can be estimated by

argmax
v

1
N

N∑
i=1

I (Ŝ(Xi) ≤ γ̂ ) ln f (Xi; v), (15)

where Xi are generated from pdf f (·; u).
Mapped to our problem, we introduce the probabil-

ity matrix Mm×l , in which the element p(k|j) repre-
sents the probability of assigning the UAV team k to
target j.

M =


p(1|1) p(2|1) · · · p(l|1)
p(1|2) p(2|2) · · · p(l|2)

· · ·

p(1|m) p(2|m) · · · p(l|m)

,
which is subjected to

∑l
k=1 p(k|j) = 1.

Consequently, according to M , we define the pdf in the
constrained multi-type UAVs coordinated task assignment
problem as:

f (X;M ) =
m∏
j=1

l∏
k=1

p(k|j)g(xj;k) =
m∏
j=1

p(xj|j), (16)

where p(xj|j) is the coefficient in the column xj and the
row j of matrixM , and g(x; k) is an auxiliary function which
satisfies

g(x; k) =

{
1, if x = k,
0, if x 6= k.

Then, based on the two important adaptive updating phases
in Section II, we firstly suppose that X1

t , . . . ,X
N
t are the sam-

ples drawn in the t-th iteration from f (X; u). Then, we calcu-
late the performances Ŝ(X it ) for all i, and order them from
smallest to biggest, Ŝ(1) ≤ · · · ≤ Ŝ(N ). Let γ̂ ∗t = Ŝ(H ) be
H -th smallest sample in the t-th iteration.

Thus, (15) can be rewritten as follows using our pdf
f (X;M ):

argmax
M

1
N

N∑
i=1

I (Ŝ(X it ) ≤ γ̂
∗
t ) ln f (X

i
t ;M ). (17)

In (17), the indicator function I (X it ; γ̂
∗
t ) is already known,

and when N →∞, the problem in (17) is equivalent to

max
M

H∑
h=1

ln f (X;M ). (18)

Submit (16) to (18), we rewrite the optimization problem
in (18) in the following form

max
M

H∑
h=1

ln f (X;M )

= max
p(k|j)

H∑
h=1

ln

 m∏
j=1

p(xhj |j)
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= max
p(k|j)

m∑
j=1

H∑
h=1

ln
(
p(xhj |j)

)

= max
p(k|j)

m∑
j=1

l∑
k=1

card{h ∈ {1, . . . ,H} : xhj = k} ln(p(k|j)).

(19)

Then, we redefine that rkj = p(k|j), akj = card{h ∈
{1, . . . ,H} : xhj = k}, and the problem in (19) is equivalent
to

min
rkj

− m∑
j=1

l∑
k=1

akj ln(rkj)


s.t.

l∑
k=1

rkj = 1, j = 1, . . . ,m,

rkj > 0, j = 1, . . . ,m, k = 1, . . . , l. (20)

Since it is a convex function, and let f (rkj) be the optimiza-
tion problem in (20), we can form the Lagrangian function

L(rkj, λ, µ) = f (rkj)+
m∑
j=1

λj(
l∑

k=1

rkj − 1)

+

m∑
j=1

l∑
k=1

µkj(−rkj), (21)

where λj and µkj are the related restraint coefficient.
In general, the Karush-Kuhn-Tucker (KKT) condition is

necessary but not sufficient for optimality. However, for
convex optimization problems, the KKT condition is also
sufficient [31]. Therefore, to acquire the optimal solution,
we just consider the KKT conditions of the problem in (21):

−
akj
rkj
+ λj − µkj = 0,

λj

(
l∑

k=1

rkj − 1

)
= 0,

µkjrkj = 0,
λj > 0,
µkj ≥ 0,
rkj > 0,

(22)

where j = 1, . . . ,m, and k = 1, . . . , l.
By solving the KKT conditions above, we get

rkj =
akj

λj − µkj
,

λj =

l∑
k=1

akj,

µkj = 0.

(23)

Submit λj and µkj to rkj, we have the relationship between
rkj and akj, which is

rkj =
akj
l∑

k=1
akj

. (24)

Furthermore, back to our problem, we get the updating for-
mula of matrix M as follows:

p(k|j) =
card{h ∈ {1, . . . ,H} : xhj = k}

H
. (25)

Through the iterative updating of allocation matrix M ,
the final assignment scheme is obtained. Then, the main steps
for CE algorithm solving our problem in (14) are described
as follows:
Step 1: Initialize M = M0 = (p0(k|j))m×l a uniform

distribution, let n be the number of qualified solutions, then,

p0(k|j) :=
1
n
, j = 1, . . .m, k = 1, . . . , l,

and choose θ ∈ (0, 1).
Step 2:DrawN valid samples X1, . . . ,XN according toM ,

and compute Ŝ(X i), i = 1, . . . ,N .
Step 3: Sort the sequence Ŝ(X i)

N
i=1 in the increasing orders.

Set Ŝ(1) ≤ · · · ≤ Ŝ(N ) and H = bθNc, then choose H best
draws Ŝ(1), . . . , Ŝ(H ).
Step 4: Update M according to (25).
Step 5: Iterate step 2,3,4 until M converges, which indi-

cates that only 0 and 1 in the matrix, and the sum of the
elements in each row is 1.

IV. SIMULATION RESULTS AND ANALYSIS
To evaluate the effectiveness of the proposed algorithm,
we applied it to various test problems, and compared it with
the Exhaust Search method (ES). The simulations were all
implemented in Matlab with version 7.12 programming envi-
ronment on an Intel Core PC with 8GBmemory, and no other
programming solver tools were introduced in the following
simulations. The system performance is measured by the total
cumulative rewards that the UAV teams collects by success-
fully accomplishing targets during a mission horizon.

TABLE 1. Initial resource capabilities of UAVs in the simulation.

In the following simulations, three types of UAVs with
different initial resource capabilities are considered, as shown
in Table 1. The speeds of UAVs are assumed to be identical
and constant (e.g., 40m/s). The success probability of each
type UAV is generated randomly from 0 to 1 for easy calcu-
lation, and UAVs with the same type have identical success
probability.

For the purpose of economizing resources, we set the
maximum number of cooperative UAVs to 3, which means it
takes nomore than 3UAVs to achieve the targets, and the total
number of each type UAV is not restricted. Therefore, in our
cases, 19 solutions are feasible for each target, which are A,
B,C , AA, AB, AC , BB, BC ,CC , AAA, AAB, AAC , ABB, ACC ,
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TABLE 2. Information of resources needed, rewarded benefit, and threat
level for each target.

BBB, BBC , BCC , CCC , and ABC , respectively. For other
cases, we can also get the feasible solutions easily through a
matching algorithm. For easy understanding, we consider 10
targets in the following cases. Resources needed to accom-
plish the targets are randomly generated, and meet the UAVs
maximal cooperate number condition. The information of
resources needed, and some parameters for each target are
given in Table 2.

In the following simulations, the notations used in the
tables are displayed as:
• Ta: targets.
• Res: allocation results.
• ObjCE : value of the objective function obtained by the
Cross-Entropy (CE) algorithm.

• ObjES : value of the objective function obtained by the
Exhaust Search (ES) method.

• Time: CPU time in seconds of each case.
• Gap(%) = (ObjES − ObjCE ) / ObjES .

A. CONSTRAINED TASK ALLOCATION
USING CE: TWO CASES
In case 1, we tested multi-type UAVs task allocation under 6
targets, and the allocation results are shown in Table 3.

TABLE 3. Information of CE method allocating UAVs to 6 targets.

From the results table, we can see that two A type UAVs are
assigned to target 1, twoA typeUAVs and oneC typeUAV are
assigned to target 2, one A type UAV and one C type UAV are
assigned to complete target 3, three C type UAVs are sent to
target 4, one B type UAV and one C type UAV are allocated
to target 5, one A type UAV and one C type UAV are assigned
to complete target 6, and the total score obtained is 273.39.
To clearly see the iteration processes of the alloca-

tion probability matrix, we give the corresponding changes
of matrix M in diagram form of each iteration, shown
in Figs. 2(a)-3(d).

TABLE 4. Information of CE method allocating UAVs to 10 targets.

In the initialization process, each qualified solution has the
same probability executing the tasks, as shown in Fig. 2(a).
For target 1, solutions 4, 5, 6, 8, and 9 share the same
probability of 1/5. The satisfied solutions 12, 14, 16, 17, 18,
and 19 have the same probability 1/6 for target 2. Solutions
satisfying the resource demands of target 3 are 6, 8, and
9, respectively, thus, they share the same probability 1/3 to
carry out target 3. To target 4, 3 solutions satisfy the resource
demands, which means solution 12, 14, and 18 share the same
probability 1/3. The qualified solutions 6, 8, and 9 have the
same probability 1/3 when accomplishing target 5. Solutions
satisfying the resource demands of target 6 are 6, 8, and 9,
respectively, thus, they share the same probability 1/3 to carry
out target 6.

After the first iteration of CE, the probability matrix is
updated, as shown in Fig. 2(b). From Fig. 2(b), we can obtain
that, for target 1, the capable projects are solution 4 and 6,
and the probabilities are 0.65 and 0.35, respectively. The
reserved solutions 12, 14, and 18 are remained satisfiable
for target 2, and the probabilities are 0.15, 0.5, and 0.35,
respectively. To target 3, 4, 5 and 6, the iteration process has
been terminated and the final suitable projects are solution 6,
18, 8, and 6, respectively.

Fig. 2(c) shows the probability matrix after CE execut-
ing twice, and target 1 has obtained solution 4 as its final
project. For target 2, solution 12 and 14 are still remained
satisfiable, however, solution 12 has more advantages achiev-
ing the target with probability 0.62 over project 14 with
probability 0.38.
At the end of the third iteration, the algorithm con-

verges, and the optimal allocation scheme for the 6 targets is
obtained, as shown in Fig. 2(d). The final assignment scheme
is { 4, 12, 6, 18, 8, 6 }. Correspondingly, the scheme includ-
ing detailed information of UAVs is { AA, AAC , AC , CCC ,
BC , AC }, and the terminal score is 273.39 demonstrated
in Table 3.

In case 2, we increase the number of targets to 10, the UAV
types and resources taken remain unchanged. Then we give
the results of UAVs completing 10 targets using CE method,
shown in Table 4.

The corresponding changes of allocation probability
matrix M in diagram form of each iteration are shown in
Figs. 3(a) - 3(e).

In the initialization process, each qualified solution has the
same probability executing the tasks, as shown in Fig. 3(a).
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FIGURE 2. Changes of the allocation probability matrix M under 6 targets: (a) Initial
allocation probability matrix M0; (b) Probability matrix M1 after iteration 1; (c) Probability
matrix M2 after iteration 2; (d) Probability matrix M3 after iteration 3.

From target 1 to target 6, the allocation probabilities are 1/5,
1/6, 1/3, 1/3, 1/3, and 1/3, respectively. To target 7, solu-
tions 6, 8, and 9 share the same probability 1/3. The qualified
solutions 10, 12, 14 and 18 have the same probability 1/4
for target 8. Solutions satisfying the resource demands of
target 9 are 14, 17, and 18, respectively, thus, they share the
same probability 1/3. To target 10, solutions 6, 8, and 9 share
the same probability 1/3.

After the first iteration of CE, the probability matrix is
updated, as shown in Fig. 3(b). And we can obtain that,
for target 1, the capable projects are solution 4, 6, and 8,
and the probabilities are 0.75, 0.1 and 0.15, respectively.
The solutions 12, 14, and 18 are remained satisfiable for
target 2, with corresponding probabilities 0.4, 0.25, and 0.35,
respectively. To target 3 and 4, they both find the final suit-
able projects, which are solution 6 and 18, respectively. For
target 5, the satisfied solutions are solution 6, and 8 with cor-
responding probabilities 0.35 and 0.65. The solutions 6, and
8 are remained satisfiable for target 6 with the probabilities
0.9 and 0.1, respectively. Target 7 and 10 both filter solution
9 to be their terminal solution. Solutions 12, 14, and 18 are
remained satisfiable for target 8, and solution 18 exceed the
other two solutions with the probability 0.45, while the prob-
abilities of solution 12 and 14 are 0.4 and 0.15, respectively.
To target 9, the remained solution 17 has more advantages to
complete the task with probability 0.9 than solution 18.

Fig. 3(c) shows the probability matrix after the algo-
rithm executing twice. All targets, with the exception of

targets 1, 2, and 8, have obtained their final projects, which
are solution 6, 18, 8, 6, 9, 17, and 9, respectively. Solutions 4
and 6 are both satisfiable for target 1 with the corresponding
probabilities 0.9 and 0.1. For target 2, solution 12 excels
the other two solutions with the probability 0.6. For target
8, solutions 14 and 18 remain feasible, however, solution 18
has advantage achieving the target with probability 0.9 over
project 14 with probability 0.1.
Fig. 3(d) shows the probability matrix after the third itera-

tion, target 1 and 8 have obtained their final projects, which
are solution 4 and solution 18 respectively. While for target 2,
solution 12, 14 and 18 are still capable with probabilities 0.5,
0.31 and 0.19, respectively.
At the end of the fourth iteration, the algorithm con-

verges, and the optimal allocation scheme for the 10 targets is
obtained, shown in Fig. 3(e). The final assignment scheme is
{ 4, 12, 6, 18, 8, 6, 9, 18, 17, 9 }. Correspondingly, the scheme
including detailed information of UAVs is { AA, AAC , AC ,
CCC , BC , AC ,CC ,CCC , BCC ,CC }, and the terminal score
is 422.65 demonstrated in Table 4.

B. COMPARISONS BETWEEN CROSS-ENTROPY AND
EXHAUST SEARCH METHOD
To investigate the performance of the CE method in solving
the constrained multi-type UAVs task allocation problem,
we firstly tested several cases where the number of targets
are different. In CE, the objection function value, and the
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FIGURE 3. Changes of the allocation probability matrix M under 10 targets: (a) Initial allocation probability M0; (b) Probability
matrix M1 after iteration 1; (c) Probability matrix M2 after iteration 2; (d) Probability matrix M3 after iteration 3; (e) Probability
matrix M4 after iteration 4.

TABLE 5. Performance of the CE method.

time consumed to obtain that value are the two main factors
concerned. Due to the randomly drawn samples, we may
get different allocation results each time CE is executed.
Therefore, we investigate the maximal, minimal and average
values of the ObjCE and Time. Further more, the standard
deviations of the objection function values which are obtained
through certain execution times of CE are also given out for
different cases to reveal the dispersion degree of the objection
function values. In each case, θ is set to 0.04, and the number
of samples changes. Then, we run CE for 100 times in each
case, and the results are shown in Table 5.

From Table 5, we can see that for 3 and 6 targets, the stan-
dard deviations are 0, which means the 100 ObjCE values are
identical, and only the execution time varies. When the target
number increases to 10, 15, 20, and 30, the final results with
distinct values come into sight, however, the results are very
close for the small standard deviation value. The final results
also have something todo with the sample numbers, the larger

the sample number, the higher probability to achieve the best
result, and the longer the time consumed. It is crucial to
balance the best result and the sample number, and sometimes
we have to sacrifice time or keep it in an acceptable range to
get the optimal or near optimal results especially under large
scale problem conditions. While for the off-line assignment
issues, we can take our time, and increase the sample number
to get better results.

We then compare the Cross-Entropy (CE) method with the
Exhaust Search method (ES) in values of objection function,
time taken (for CE, we use the average value), and the gap by
varying the number of targets. We use ES here because it can
get the exact optimal result, and can act as the baseline. The
comparison results are shown in Table 6.

From Table 6, we can see that ES is superior to CE in time
consumed under a low number of targets, such as 3 targets and
6 targets. However, both CE and ES achieve the same optimal
results. When the number of targets increased to 10, CE spent
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TABLE 6. Comparisons between CE and ES.

TABLE 7. Maximum value of ObjCE and the percentage.

averagely 0.93 s to obtain the medial objection function value
422.64, whereas, it took ES 21.84 s to achieve the best value
422.65, and the Gap between them is only 0.002%. For the
14 targets situation, CE is distinctly superior to ES in time
taken, since CE took 6.15 s to get the final objection function
value 521.77 medially, however, ES took nearly 47 minutes
to get 522.30 with Gap 0.10%. When the targets’ number
reached 15, ES failed to figure out the final allocation results
because of insufficient memory. However, CE spent only
7.08 seconds to obtain the objection function value 575.43
averagely. When the number of targets turned to 20, it took
CE 51.14 s to get the score value 850.68 averagely, which
is much slower compared to 15 targets situation due to the
exponentially increase of the solution space. Then, we tested
a 30 targets situation, the CE method took 306.80 seconds to
acquire the score value 1257.0 medially. Although the time
consumed increased exponentially along with the increment
of targets numbers, it still stayed capable for those off-line
task allocation problems, or we can promote the hardware
performance of our machine to tackle the time consumption
problem.

What’s more, using the ES score values as references,
we count the numbers of the maximum CE score values of
several cases (in each case, we run CE for 100 times), and the
statistics results are illustrated in Table 7.

In the statistics results, we can see that for target numbers
3 to 9, the CE method achieves 100% the same results as ES.
For 10 targets, we get 99 (out of 100) times of the best result.
Because of the selected samples and sample quantity, for 11
to 14 targets, the percentages of the optimal results descend
gradually, however, the optimal results account the majority
of all the results.

V. CONCLUSION
In this paper, we propose a novel multi-type UAVs coor-
dinated task assignment method based on Cross-Entropy.
We consider different types of UAVs cooperatively accom-
plishing tasks which need corresponding resources. We apply
the CE method to constrained task allocation issue, enriching
its sphere of application in solving complicated combinato-
rial optimization problems with a simple, efficient and gen-
eral way. Simulation results validate the concrete processes,
the feasibility, and effectiveness of the CE method in han-
dling resource constrained multi-type UAVs coordinated task
assignment problems.

However, there still exist questions in CE processing opti-
mization problems, such as sample selection, appropriate
parameter settings, and so on. Therein, we’ll focus on the
promotion of CE in its efficiency and time consumption,
as well as on task assignment issues in complicated dynamic
and uncertain situations for future research.
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