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ABSTRACT This paper presents a new design to broaden polarization conversion ratio (PCR) bandwidth
utilizing reflective surfaces. The proposed design is based on anisotropic surfaces for linearly polarized
electromagnetic waves. The combination of a traditional two-corner-cut square patch and a two-layer
substrate with defected ground structure contributes to PCR bandwidth expansion and size reduction. The
experimental results indicate that PCR fractional bandwidth is higher than 121% in 5.4-22 GHz band for both
x- and y-polarized waves and the conversion efficiency is greater than 90%. In addition, the proposed
structure is approximately robust under oblique incidences, which verifies the applicability of the structure
in a practical environment. The experimental results are in excellent agreement with simulated ones. The
reflective surface with wideband PCR can be utilized in various practical applications, such as radiometer,

reflector antennas, remote sensors, and imaging sensors.

INDEX TERMS Anisotropic surfaces, defected ground structure, DGS, polarization conversion ratio, PCR,

polarization, metasurface.

I. INTRODUCTION

Many fascinating phenomena are inherently sensitive to
polarization states. Those have always been one of the
key characteristics of electromagnetic (EM) waves so that
extensive efforts have been made to control and manip-
ulate them [1]-[3]. Polarization converters are generally
categorized into transmission and reflection types [4]-[6].
In the transmission type, either the birefringence effect of
anisotropic metamaterials or the optical activity of chiral
metamaterials can be exploited. Unfortunately, traditional
approaches to controlling polarization are restricted using
bulky volumes. Miniature scale is required for practical
purposes. Metamaterials are produced by subwavelength
resonators, having unconventional EM responses that are
unachievable in the natural material [7]. Hence, EM polar-
ization states can be controlled and manipulated without
any restriction using metamaterials in the sub-wavelength
scale. Note that the two-dimensional metamaterials, which
named metasurfaces, are utilized to attain great performance
polarization convertors [7]. They have been subject to inves-
tigate experimentally and theoretically for both reflective
and transmissive types of polarization convertors. Namely, a

linear polarization convertor in terahertz was presented utiliz-
ing metal cut-wire array [8]. The rotation efficiency is greater
than 80% because of constructive interferences. A wideband
polarization conversion slab with high efficiency was earned
using stacking split-ring resonators in [9]. A thin plate in
quarter wave size was introduced using plasmonic meta-
surfaces that produce circularly polarized light in a wide
frequency band in [10]. Using multi-order plasmon reso-
nances and high impedance surfaces, wideband polarizer
was shown in [11]. In [12] a particular optical polarization
control is produced using the special EM resonances. How-
ever, the majority of these conventional structures function
in a narrow single band or multiple separated narrow bands.
PCR bandwidth expansion, high conversion efficiency,
and simple design have still been shackles of designing
polarizers [6]-[27].

In this article, an anisotropic surface having broadband
PCR bandwidth of reflective nature and small size has been
our aim. Therefore, in order to reach this goal, to expand the
PCR bandwidth and miniature the periodicity of the proposed
unit cell, the combination of a traditional two-corner-cut
square patch of [18] and a two-layer substrate with defected
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FIGURE 1. The proposed unit-cell with wideband PCR, (all dimensions are
in mm), (a) top view (two-corner-cut square patch), (b) back view (DGS),
(c) Side view, and (d) intuitive scheme of x -to- y polarization conversion.

ground structure (DGS) are employed, respectively. It relies
on the fact that using the proposed design approaches, mul-
tiple electric and magnetic resonances are generated which
results in broadening the PCR bandwidth to 120%. As com-
pared with [18], a 20% periodicity size reduction and also
53% bandwidth enhancement with respect to a PCR effi-
ciency of 90% or higher is achieved. Moreover, such a broad
bandwidth (120%) with respect to PCR efficiency greater
than 90% has never been observed in previously reported
work. In order to validate the appropriate performance of
the proposed reflective surfaces, PCR results under oblique
incidences are determined. In addition, surface current distri-
bution is presented to study whether the resonances generated
in the unit cell are of the magnetic or electric type.

Il. DESIGN OF THE STRUCTURE
A two-corner-cut square patch is used to enhance the perfor-
mance of reflective cross-polarization converters.

From the geometry perspective, adding an extra 3.175 mm
thick RT/duroid 5880 layer with the same characteristics
(er=2.2) along with defected ground structure (DGS) are
considered as the contribution of this work. Due to the DGS,
no transmission of EM wave is feasible upon incidence of
the EM wave to the structure. The structure geometry is
designed and optimized to broaden the PCR bandwidth and
miniature the periodicity of the unit cell. Fig. 1 (a) and (b)
show the geometry of the suggested unit-cell and the opti-
mized structural parameters. The side view of the unit cell is
demonstrated in Fig. 1(c). The intuitive scheme of x -to- y
reflective polarization conversion is shown in Fig. 1(d). The
incident electric field is decomposed into two perpendicular
components u and v. Thus, the incident electric field can be
expressed as E; = UE;,é/ +VE; e/, and the reflected electric
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FIGURE 2. (a) Reflected amplitudes and (b) phases different illuminated
with polarization along the u- and v-axis.

field as E, = UEyy, + VEyy = iryE e + vryE e/, where 1y,
and r, are the reflected coefficients along the u- and v-axis,
(see Fig. 2(a)) respectively. Due to the anisotropy property of
the unit cell, a phase difference (A¢) exists between r,, and r,,.
If r, ~ r, and Ap ~ 180°, the synthetic fields for Eru and
Erv will be along the y-direction, as illustrated in Fig. 1d. The
reflection coefficients for various polarization rotation are
defined as Ryx = |Exr| / |Exil = /T + [cosA@/2] and Ry, =
% = /T —[cosA@/2|, where ‘E’ indicates the electric

field. The subscripts ‘i’ and ‘r’ denote the incidence and
reflection, respectively; and the subscripts ‘x” and ‘y’ indicate
the polarization directions. Regarding above equations, when
Ag is approximately +180°, R,y = 0 and R,, = 1, which
verifies exactly 90° polarization conversion. With respect
to Fig. 2(b), Ag is nearly +180° ranged from 5.5 GHz to
21.5 GHz, verifying wide-band polarization rotation.

IIl. SIMULATED RESULTS

The suggested design, as depicted in Fig. (1), has been sim-
ulated using periodic boundary conditions in Ansys HFSS.
The frequency response of co-polarized and cross-polarized
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FIGURE 3. Simulated (a) co- and (b) cross-polarized reflection coefficient
responses.

reflection levels are attained as exhibited in Fig. 3. It is found
out from Fig. 3 that co-polarized reflection component under-
goes minimum values at 5.8 GHz, 8.6 GHz, and 16.2 with
the respective minima of —38 dB, —41 dB, and —52 dB.
The cross-polarized reflection component conserves a steady
value within the desired frequency band. In this manuscript,
the PCR of the structure has been subsequently computed
over the frequency band from (1), in which Rxx and Rxy
are co-polarized and cross-polarized reflection coefficients
respectively [23].
2
PCR = Ry (D)
(R + R

The proposed anisotropic surfaces provide broadband
PCR bandwidth of 15.9 GHz for the conversion efficiency
is greater than 90%, ranging from 5.3 GHz to 21.2 GHz for
both x- and y-polarized waves.

Moreover, this band covers considerable parts of C and
K bands in addition to the perfect coverage of X and
Ku bands. In the band of interest, three distinct co-polarized
reflection minima combined with a maximum reflection of
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FIGURE 5. Simulated curve of PCR responses for the one-layer and
two-layer unit cells.

cross-polarized components give rise to PCR maxima (100%)
at 5.8 GHz, 8.6 GHz, and 16.2 GHz respectively (see Fig. 4).

As depicted in Fig. 5, simulated curve of PCR responses
for two different designs of unit cell are presented. It is
quite apparent that the proposed unit cell with two layers
how to improve the PCR bandwidth for an efficiency greater
that 90%. Fig. 6 gives a schematic illustration of the reflection
measurement method. Two horn antennae are set symmetri-
cally with respect to the normal with a small angle of 3°. One
of the antennae functions as transmitter whilst the other one
as a receiver.

As shown in Fig. 6, the 90° polarization rotation of the
proposed design is observed. Also, from this schematic can
be realized that the reflective surfaces change the wave polar-
ization from TM to TE and vice versa. The field distribu-
tions at the three different frequencies with maximum PCRs
(5.8 GHz, 8.6 GHz, and 16.2 GHz) have been investigated to
express the minimization of co-polarized reflection compo-
nent of the incident EM field. In order to realize the physical
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FIGURE 7. Surface current distributions on the two-corner-cut square
patch and DGS at three frequencies (a) 5.8 GHz, (b) 8.6 GHz,
and (c) 16.2 GHz.

mechanism of the broadband polarization rotation with the
use of the suggested surface, surface current distributions on
the patch and DGS are simulated at three resonances and
illustrated in Fig. 7(a) to (c). It can be observed that at 5.8 GHz
and 16.2 GHz, the currents flow along the u-axis. However,
at 8.6 GHz, the orientation of the surface current is along the
v-axis. Moreover, the surface currents along the patch at each
resonance generate induced currents on the DGS.

The EM resonance types can be examined by the direc-
tions of the induced currents. As exhibited in Fig. 7(b) and
Fig. 7(c), the surface currents along the patch are parallel
to those induced on the DGS, which produce the electric
resonance. On the contrary, with respect to Faraday’s law,
magnetic resonances are produced when the electric fields on
the patch and DGS are anti-parallel, as shown in Fig. 7(a).
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FIGURE 8. (a) Circuit model of the structure when the electric field is
polarized along the v-direction, (b) intuitive scheme of x -to- y
polarization conversion, and (c) circuit model of the structure when the
electric field is polarized along the u-direction (Originations of the
inductor and capacitor) and (d) transmission line circuit model

of the unit cell.

Accordingly, at 5.8 GHz resonance, the permeability w is
very great, leading to high impedance surface (n = +/it/¢),
and consequently in-phase reflection. These two excitations
in combination provide strong EM resonance that minimizes
co-polarized reflection level at these three frequencies,
thereby creating high PCR in the proposed structure. This
phenomena produces wideband and high-efficiency polariza-
tion rotation. Subsequently, the impedance sheet was deter-
mined in in microscopic picture. We have regarded four
vertically and horizontally unit cells once the incident field
is along the v- and u-direction respectively, as depicted
in Fig. 8 (a) and (c). In the former case, patches and gaps
behave as inductor and capacitors respectively. In the second
case, when the electric field is polarized along the u-direction,
only, capacitor exist in the u direction. Those can easily be
satisfied by current distribution shown in Fig. 7. Meanwhile,
as exhibited in Fig. 8 (d), the two-layer unit cell can be shown
in the form of a transmission line circuit model. It consists
of two cascaded transmission lines with the identical lengths
h=3.175 mm. The unit cell is ended to a PEC ground plate as
a terminating load.

IV. RESPONSES UNDER OBLIQUE INCIDENCES

The proposed reflective design is investigated for oblique
incidences under two polarizations in which the EM wave
is incident on the anisotropic surfaces using the angle 6.
obviously, the oblique incidence has a high effect on
the polarization conversion bandwidth. Fig. 9 illustrates
the simulated reflection coefficients for the two cases of
co-polarization (Rxx) and cross polarization (Rxy) at various
incident angles (f). Once 8 is increased from 0° to 50°,
the —3-dB bandwidth of the reflection coefficient Rxy is
decreased, as shown in Fig. 9 (b). At higher frequencies,
Rxy fast reduces at an increment of incident angle (6).
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FIGURE 9. Simulated reflection coefficients of the designed polarization
converter at oblique incidence of EM waves (0° < 6 < 50°)
(a) Rxx and (b) Rxy.

FIGURE 10. Diagrammatic illustration of EM wave propagation in a
two-layer dielectric substrates at oblique incidence
(61 = 0y = bt3 = bgq =~ 6p)-

In the case of oblique incidence, as depicted in Fig. 10,
where EM waves run back and forth in a dielectric plate, the
propagation phase (8d) can be indicated as

4Bd = @ )

cost;

Which is greater than that at the normal incidence. The addi-
tional propagation phase generates a destructive interference
condition at the anisotropic surfaces and influences on the
bandwidth of the cross polarization (Rxy). When incident
angle () is raised, the additional propagation phase varies
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FIGURE 12. PCR results and photo of the measurement set up.

further extremely at higher frequencies. In addition, a drop
in the Rxy for oblique incidence appears at around 19 GHz,
it relies on the fact that the EM energy is absorbed. This
EM absorption has root in extra resonances between the
DGS and traditional two-corner-cut square patch [15]. The
simulated PCR result is exhibited in Fig. 11. Using [18],
the polarization conversion ratio (PCR) is defined as (1).
When incident angle (0) is increased from 0° to 50°, the
PCR bandwidth is reduced from 120% to 95%, with a con-
version efficiency higher than 90%.

Therefore, it can be concluded that PCR is approximately
independent of the incidence angle variations in the most
frequency band of interest.

V. EXPERIMENTAL RESULTS
In order to validate the proposed design performance, a proto-
type of the polarizer containing 25 x 25 unit cells and covering
an area of 200 mm x 200 mm on the top of an RT/duroid
5880 substrate with 3.175 mm thickness is fabricated and
measured.

To achieve the experimental reflection coefficients, two
ports of E8364B PNA network analyzer are connected to
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TABLE 1. Comparison with other wideband polarization convertors.

Ref. 0. BW. R.BW. Electrical size
(GHz) (%) (width x length x
thickness)
Ref [14] 10.6-17.5 49 0.6A, x 0.6A; X 0.2,
Ref [15] 12.4-28 77 0.7Ag X 0.7hg X 0.2,
Ref [16] 5.7-10.3 58 0.4A, x 0.4A; % 0.1,
Ref [17] 6-17.7 98 0.3A, x 0.3A; % 0.3,
Ref [18] 10-18.4 59 0.6\, x 0.6A; X 0.2,
Ref [24] 14.7-18 20 0.9A, x 0.3A; X 0.4A,
Ref [25] 7390-13870 61 0.7Ag < 0.7h X 0.2,
Proposed 5.4-22 121 0.40, % 0.4, % 0.3%,
Design

0. BW. : Operation bandwidth (PCR > 90 %)
R. BW. : Relative bandwidth (PCR > 90 %)

the two linearly polarized standard-gain horn antennas in an
EM anechoic chamber. The photo of the measurement set
up along with the PCR results versus frequency are demon-
strated in Fig. 12. One should note that another RT/duroid
5880 substrate (without any copper) with the same thickness
is attached to the main design.

The PCR is more than 0.9 in a broad frequency band
of 5.4 to 21.2 GHz, approximately 120% fractional band-
width. Due to restriction on the size of the anechoic chamber
and inaccuracy in the target alignment and the fabrication,
the insignificant discrepancies are observed between simu-
lation and experimental results. Table I gives a comparison
between the proposed design and other reported polariza-
tion converters. The comparison indicates that the proposed
reflective surface has a broadband property where the PCR is
wider than 120%, implying great performance.

VI. CONCLUSION

In this paper, a new structure to expand the fractional band-
width of polarization conversion ratio (PCR) on the reflective
surface has been introduced. The combination of a tradi-
tional two-corner-cut square patch and a two-layer substrate
with defected ground structure (DGS) contributes to PCR
bandwidth enhancement and size miniature. The proposed
structure, with expanded PCR bandwidth covering perfect X
and Ku bands and main portions of C and K bands, has
been designed, simulated, and experimentally validated. The
experimental results show that the proposed design can rotate
linearly polarized waves into their cross-polarized waves with
a PCR bandwidth of nearly 120% from 5.4 GHz to 21.2 GHz
for both x- and y-polarized waves with respect to a conversion
efficiency higher than 90%. The reflective surface with broad-
band PCR can be applied in several practical applications,
such as radiometer, reflector antennas, remote sensors, and
imaging sensors.
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