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ABSTRACT Massive multi-input multi-output (MIMO), which employs large number of antennas at the
base station, can significantly boost the spectral efficiency and multiplexing gain. To fully exploit the huge
array gain, the accurate channel state information is required at the transmitter side. However, the associated
training overhead for downlink channel estimation consumes large amount of communication resource,
especially for frequency division duplexing massive MIMO system. To address this issue, a distributed
compressed sensing (DCS)-aided channel estimation approach is proposed, which fully exploits slow
variation of the channel statistics in consecutive frames and spatially common sparsity within multiple
subchannels in the frequency domain. Specifically, by exploiting the slow variation of the channel statistics,
a hybrid training structure is proposed to probe the channel in the current frame based on the support
information in previous frame. Then, a DCS-aided channel estimation algorithm, which combines least
square method and DCS method, is proposed to estimate the two parts of channel vector in angular domain
among different subcarriers. In addition, to effectively acquire the support information at the beginning
of communication, a prior information estimation method is proposed by exploiting the uplink-downlink
angular reciprocity. Simulation results demonstrate that the proposed approach outperforms the counterparts
and is capable to significantly reduce the training overhead for channel estimation.

INDEX TERMS Massive MIMO, frequency division duplexing, sparse channel estimation, distributed
compressed sensing.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) systems,
which deploy a large number of antennas at the base sta-
tion (BS) [1], have been extensively investigated by both
academia and industry in recent years. It has been shown
that with the increasing number of antennas, the energy
consumption by each antenna inversely increases, while the
high spectral efficiency can be enhanced by orders of mag-
nitude [2]. Such advantages promote the massive MIMO
to be a key technology for the next generation cellular
communication [3].

To attain the benefits of massive MIMO, BS requires the
accurate channel state information (CSI) to perform precod-
ing and resource allocation operations [4]. However, it is
challenging to acquire the downlink CSI, especially for fre-
quency division duplex (FDD) massive MIMO system, since
the high dimensional channel matrix incurs large amount of
pilot overhead. This issue is not intractable in time division

duplex (TDD) based massive MIMO system, since the down-
link CSI can be obtained via the uplink channel training by
exploiting the channel reciprocity property. Consequently,
the length of pilot for uplink channel training is only propor-
tional to the number of users, instead of number of antennas
at the BS [5]. However, the complicated system calibration is
required for TDD reciprocity and leads to inaccurate down-
link CSI [6]. On the other hand, most of the contemporary
cellular networks have adopted the FDD protocol, which is
more effective for the delay-sensitive and symmetric traffic
applications [7], thus it is vital to develop an effective down-
link CSI estimation approach to achieve backward compati-
bility with current cellular networks [8].

In conventional small-scale MIMO systems, CSI is
obtained by orthogonal pilots with least square (LS)-based
channel estimators [9], [10]. The pilot can be orthogonal in
either time domain or frequency domain [11], while the asso-
ciated pilot length is proportional to the number of antennas
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at the BS, which is inefficient for massiveMIMO systemwith
large number of antennas. To address this issue, the pilot was
designed based on the channel statistics [12] and correlated
nature of massive MIMO channels [6]. These approaches
require the long-term channel statistics, i.e., channel covari-
ance matrix, which is difficult to acquire in practice and
consumes training time and memory storage. Although the
method in [6] can be also applied when the channel statistics
is unavailable at the BS, it is appropriate for the channels with
slow fading property and high temporal correlation.

An alternative way to effectively acquire the CSI in FDD
massive MIMO system is based on compressed sensing
(CS) [13], which enables to estimate a high dimensional
vector from compressive measurements with overwhelm-
ing probability, as long as the high dimensional vector is
sparse or approximately sparse [14]. Accordingly, CS theory
is naturally applied to reduce the required pilot overhead of
channel estimation [15]–[18]. The essential reason behind
this is that the massive MIMO channels between the BS and
users exhibit limited scatterers and small angle spread when
compared to the large number of transmit antennas, which
enables wireless channels to be represented by a sparse form
in the virtual angular domain [19]–[21]. In [22], a multi-user
scenario was considered, in which the channel matrices share
some common scatterers and the common sparsity property
among geographically neighbouring users. A joint orthog-
onal matching pursuit recovery algorithm was proposed to
exploit the hidden joint sparsity in the channel matrices of
multiple users. The user grouping strategy was considered
in [23], where the channel matrices of a user group are jointly
recovered by exploiting the beam block sparsity.

However, the above approaches only consider the static
massive MIMO channels, where the channel sparsity infor-
mation and support set remain unchanged in consecutive time
slots. In [24], Rao and Lau further considered the sparse chan-
nel estimation with temporal correlation in massive MIMO
systems, where the channels in several frames share some
common channel paths, i.e., common support set. In this case,
the prior support and the prior support quality information
of sparse channel were taken into consideration to further
reduce the required pilot training overhead. The prior support
information was also theoretically considered in [25], where
the impact on the required training overhead was exam-
ined within a weighted l1 minimization framework, and a
sharp estimate of the reduced overhead size was analytically
obtained. In [26], by exploiting the slowly changing property
of channel statistics [27], a CS-Aided approach was proposed
to reduce the pilot overhead, which simultaneously utilizes
the LS and CS approaches.

However, the above approaches only consider the nar-
row band channel. In [28], a spatially common sparsity
based adaptive channel estimation and feedback scheme
was proposed for orthogonal frequency division multiplexing
(OFDM) based FDD system, which can adaptively adjust
the training overhead and pilot design for reliable down-
link channel estimation. This approach fully exploits the

common sparsity among the subchannels of different subcar-
riers, which is referred as spatially common sparsity. This
is caused by the fact that the spatial propagation charac-
teristics of channels are nearly unchanged with different
sub-channels [21]. In addition, by exploiting the unchanged
support set in adjacent time blocks, a distributed spar-
sity adaptive matching pursuit algorithm was proposed to
jointly estimate the channels of multiple subcarriers and
time blocks [29]. On the other hand, although the channel
reciprocity is unavailable for FDD system, the angles of
arrivals or departures (AoAs/AoDs) of the channel paths
enjoy reciprocity due to the fact that the paths experience
the same scatterers in the downlink (DL) and uplink (UL)
transmission [30], [31]. Based on this idea, a dictionary learn-
ing based sparse representation of massive MIMO channel
was considered in [32], whereby a joint dictionary learn-
ing algorithm was proposed to reduce pilot overhead by
exploiting the joint sparse pattern of the UL and DL chan-
nels. In [33], by exploiting the reciprocity of the scattering
function between UL and DL channels, the required pilot
overhead for obtaining the support of DL channel can be
reduced.

In this paper, a distributed compressed sensing (DCS)-
aided channel estimation scheme is proposed for the DL
channel estimation in FDD massive MIMO system. This
is based on the the observation that the channel statistics
changes with a low rate during the consecutive frames and
this channel statistics remains frequency-invariant due to the
similar propagation characteristics among subcarriers. The
channel vectors share the spatially common sparsity and par-
tially common sparsity among several consecutive frames. To
fully exploit this channel structure, a hybrid training structure
is proposed to probe the channel in the current frame based
on the support information in previous frame. To estimate
the channel in different subcarriers, a DCS-aided channel
estimation algorithm is proposed, which combines LS and
DCS methods to estimate the two parts of channel vector in
angular domain of current frame. In addition, to effectively
acquire the support information at the beginning of communi-
cation, a prior information estimation method is proposed by
exploiting the UL-DL angular reciprocity. The contribution
of this paper can be summarized as follows:

Hybrid training structure: To fully exploit the slow
variation of channel statistics, a hybrid training structure is
proposed based on the prior support information in previous
frame. The proposed hybrid training structure is a generaliza-
tion of the pilot design in [28].

DCS-aided channel estimation method: By leveraging
the spatially common sparsity and prior support information
in previous frame, the channel to be estimated in each sub-
carrier at the current frame can be divided into two parts:
one is the dense part containing the elements indexed by the
previous support, the other one is sparse part containing the
elements indexed by the complementary set of support in
the previous frame. Then, the DCS-aided channel estimation
algorithm combines the LS method and DCS method, which
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are used to estimate the dense part and sparse part of channel
coefficients in the angular domain, respectively.

Prior information estimation via UL training: To effec-
tively acquire the prior support information, UL-DL angular
reciprocity is exploited to obtain the initial support estimation
via UL training, which can reduce the pilot overhead when
compared to the DL training.
Notations: Vectors and matrices are written in lower-

case and upper-case boldface, respectively; |·|c denotes the
cardinality of a set, while ‖·‖0 and ‖·‖2 denote the l0 norm and
l2 norm, respectively. The matrix transpose, conjugate, con-
jugate transpose and inversion are denoted by (·)T , (·)∗, (·)H

and (·)−1 respectively; The (i, j)-th entry of matrix A and i-th
entry of vector a are denoted by {A}i,j and {a}i, respectively;
I is an identity matrix; E[·] defines the expectation operation;
{B}�,: is the sub-matrix of B by collecting the rows indexed
by set� and {B}:,� denotes the sub-matrix of B by extracting
the columns indexed by set �; \ denotes the set subtraction
operation.

II. SYSTEM MODEL
A. MASSIVE MIMO SYSTEM
Consider a typical massive MIMO system where the BS
is equipped with M antennas and simultaneously serves U
single-antenna users withM � U . The OFDM transmission
is employed and the number of subcarriers in an OFDM
symbol is K . The BS performs downlink channel training
by broadcasting the pilot sequences. For the j-th time slot,
j = 1, 2, · · · ,T , the received signal of the u-th user at the k
subcarrier is written as

yu,k,j =
√
ρhTu,kxk,j + zu,k,j, (1)

where hu,k ∈ CM×1 is the downlink channel vector between
the BS and the u-th user, zu,k,j ∈ C1×1 is the additive
Gaussian white noise with the distribution CN (0, 1), ρ is the
signal to noise ratio (SNR), xk,j ∈ CM×1 is the transmitted

pilot vector which satisfies power constraintE
[∥∥xk,j∥∥22] = 1.

The concatenated received signal in all T time slots yu,k =[
yu,k,1, yu,k,2, · · · , yu,k,T

]
∈ C1×T can be given by

yu,k =
√
ρhTu,kXk + zu,k , (2)

where Xk =
[
xk,1, xk,2, · · · , xk,T

]
∈ CM×T and zu,k =[

zu,k,1, zu,k,2, · · · , zu,k,T
]
∈ C1×T are the aggregated pilot

signal and noise, respectively. To effectively obtain the CSI,
the LS-based approach performs channel estimation by

hu,k =
1
√
ρ

(
yu,kX

†
k

)T
, (3)

where X†
k = XH

k

(
XkXH

k

)−1. This pseudo-inversion demands
T ≥ M , which leads to overwhelming pilot overhead for
massive MIMO system.

B. CHANNEL MODEL
A physical channel model, which captures the propagation
structure between BS and user, is considered. Specifically,

the downlink channel associated with the uth user at the kth
subcarrier is expressed as [25], [30], [34], and [35]

hu,k =
Nc∑
l=1

αu,le−j2πdu,l/λce(φu,l)e−j2πτu,l fsk/K , (4)

where Nc is the number of channel paths, αu,l ∼ CN (0, 1),
du,l , φu,l and τu,l are the channel attenuation, physical dis-
tance between BS and user, AoD and propagation delay asso-
ciated with the lth path for uth user, respectively, λc denotes
the signal wavelength, fs is the sampling rate of system,
e(φu,l) ∈ CM×1 is the antenna array vector at the BS side
along with the direction of φu,l , which satisfies

∥∥e(φu,l)∥∥22 =
1 and can be given by

e(φu,l) =
1
√
M

[
1, ej

2πd
λc

sinφu,l , · · · , ej
2πd
λc

(M−1) sinφu,l
]T
,

(5)

where d is the antenna spacing, when uniform linear
array (ULA) is employed at the BS. To elaborate the
channel sparsity in massive MIMO system, the channel
vector in (4) can be further represented in the angular
domain [21]:

hu,k = Fhu,k , (6)

where hu,k ∈ CM×1 is the channel vector in the angular
domain, F ∈ CM×M is the unitary discrete Fourier transform
(DFT) matrix, the qth column of which is given by

{F}:,q =
1
√
M

[
1, e−j

2πq
M , · · · , e−j

2π (M−1)q
M

]T
. (7)

Recalling (4), we have

hu,k = FHEuβu,k , (8)

where Eu =
[
e(φu,1), e(φu,2), · · · , e(φu,Nc )

]
∈ CM×Nc and

βu,k =
[
βu,k,1, βu,k,2, · · · , βu,k,Nc

]T
∈ CNc×1 with βu,k,l =

αu,le−j2πdu,l/λce−j2πτu,l fsk/K . For a given AoD φu,l , the qth
element of antenna steering vector in the angular domain is
given by

{F}H:,qe(φu,l) =
1
M

M−1∑
p=0

ej
2πpq
M ej

2πd
λc

p sinφu,l

=
1
M

sin
(
πMψq,φ

)
sin
(
πψq,φ

) ejπ (M−1)ψq,φ , (9)

where ψq,φ =
q
M +

d
λc

sinφu,l .
sin(πMψq,φ)
sin(πψq,φ)

achieves the
maximum value 1 when ψq,φ = 0 and shows non-negligible
amplitude when

∣∣ψq,φ∣∣ ≤ 1
M , which indicates that the

path direction can be resolved by the qth angular basis vec-
tor when the AoDs φ satisfies

∣∣∣ qM + d
λc

sinφ
∣∣∣ ≤ 1

M . Due

to the randomness of βu,k , the qth element of hu,k is a
random variable. Specifically, the mean of {hu,k}q satisfies

VOLUME 6, 2018 18385



R. Zhang et al.: DCS Aided Sparse Channel Estimation in FDD Massive MIMO System

E
[
{hu,k}q

]
= E

[∑Nc
l=1{F}

H
:,qe(φu,l)βu,k,l

]
= 0. Then the

variance of {hu,k}q is given by

var
[
{hu,k}q

]
= E

[∣∣∣{hu,k}q∣∣∣2]− E
[
{hu,k}q

]2
= E

∣∣∣∣∣
Nc∑
l=1

{F}H:,qe(φu,l)βu,k,l

∣∣∣∣∣
2

=

Nc∑
l=1

∣∣∣{F}H:,qe(φu,l)∣∣∣2 E [∣∣βu,k,l ∣∣2]

=
1
M2

Nc∑
l=1

E
[∣∣βu,k,l ∣∣2]

∣∣∣∣∣ sin
(
πMψq,φ

)
sin
(
πψq,φ

) ∣∣∣∣∣
2

,

(10)

where the significant magnitude of hu,k is achieved when
φu,l ∈ �u,k,q, i.e.,

�u,k,q = {φu,l |
∣∣ψq,φ∣∣ ≤ 1

M
}. (11)

The above equation has an important implication: the magni-
tude of qth element in angular domain channel hu,k is usually
small and achieves a relative value only when the AoDs
satisfies (11). The support set of channel vector of u-th at the
k-th subcarrier is defined as

�u,k = {q ∈ [1 : M ]|
∣∣∣{hu,k}q∣∣∣ ≥ ε}, (12)

where ε is a constant to extract the significant elements in hu,k
and discard the negligible elements caused by power leakage.
In particular, the threshold ε is determined according to the
desired sparsity level of channel coefficients based on the
uplink observation. It can be known that S =

∣∣�u,k
∣∣
c � M ,

which illustrates channel vector hu,k is sparse.
Also, according to (12), for a given user u, the support

set of channel vector in angular domain is irrelevant with
the index of subcarriers in the frequency domain, since
the location of significant entries are only determined by
the scatterers environment, that is AoDs φu,l , instead of
the signal frequency within the system bandwidth [28].
The support information remains stationary among differ-
ent subcarriers since it is uncorrelated with the subcarrier
frequency. In other words, although the non-zeros indices
of virtual channel vector change with the location of users,
the different subcarriers share the common support infor-
mation which varies simultaneously, which is referred as
spatially common sparsity [28] [32]:

�u,1 = �u,2 = · · · = �u,K . (13)

This sparse property can be interpreted in Fig. 1, where
there are only limited number of scatterers between the BS
and uth user. For the channel vector in the angular domain,
a large number of entries in hu,k are either zeros or close
to zero. In the frequency domain, the indices of non-
zeros remains unchanged within the system bandwidth due
to the similar propagation characteristics among different
subcarriers.

FIGURE 1. The scatter environment of signal transmission between BS
and uth user, and the associated the channel supports in different
subcarriers are also illustrated below.

C. TIME-VARYING SUPPORT
In practice, there are several communication frames between
the BS to the users, where a sequence of channels are required
to estimate [36]. During the consecutive frames, the channel
statistics may change with a slow rate, which is manifested
by the appearance and disappearance of scatterers, or move
from a visible region to another visible region. This channel
property has been modelled as a birth-death evolution in
terms of scatterers in [27]. The birth-death of scatterers incurs
the variation of support set in angular domain channel, that
is the indices of non-zeros change with time in a slow rate.
Specifically, in the frame t , the channel vector of a given user
can be represented as

h(t)k = {F}:,�(t)
k
{h

(t)
k }�(t)

k
, (14)

where the user index u in h(t)k ,�(t)
k , hk is omitted for notations

simplification, �(t)
k is the support set at the frame t , which

slightly changes from the previous frame t − 1. Denote the
maximum number of non-zeros which are newly added in
frame t to the support in previous frame t − 1 as Sn, then
we have ∣∣∣�(t)

k \�
(t−1)
k

∣∣∣
c
≤ Sn, (15)

where �(t−1)
k are the support set at the previous frame t − 1.

(15) reveals that there are at most Sn indices of non-zero
elements that belong to support set �(t)

k but not belong to
�

(t−1)
k . On the other hand, the the slight change of support

set between two consecutive frames means

Sn �
∣∣∣�(t−1)

k

∣∣∣
c
, (16)
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where �
(t−1)
k = {1, 2, · · · ,M} \ �(t−1)

k is the complement
set of�(t−1)

k at the frame t − 1. (15) and (16) reflect the slow
variation of propagation environment between the BS and a
specific user. It should be noticed that this slow variation is
shared by different subcarriers, since the support set change
is caused by the appearance and disappearance of scatterers,
which is uncorrelated with the frequency band, as illustrated
in Fig. 2.

FIGURE 2. The support variation of channel vector in angular domain
from frame t − 1 to frame t . The support variation property is shared by
different subcarriers.

III. DISTRIBUTED COMPRESSED SENSING AIDED
CHANNEL ESTIMATION
A. DOWNLINK CHANNEL PROBING
During the information transmission, the whole process
includes channel training and data transmission. The fewer
training period used means that more channel uses can be
available for the downlink signal transmission. The pilot sig-
nal with length T is used to probe the channel at the tth frame.
According to (2), the received signal at the kth subcarrier
during the tth training frame can be given by

y(t)k =
√
ρ
(
h(t)k
)T

X(t)
k + z(t)k

=
√
ρ
(
h
(t)
k

)T
FTX(t)

k + z(t)k . (17)

Since the angular channel vector hk is sparse, the required
pilot period can be reduced. Furthermore, when the sup-
port information �(t)

k of hk is known at the receiver, then
length of pilot training can decrease to T ≥ S, instead of
T ≥ M . In this case, the pilot matrix can be constructed as
X(t)
k = {F}:,�(t)

k
X
(t)
k , where {F}

:,�
(t)
k
∈ CM×S is the sub-matrix

extracted from DFT matrix based on�(t)
k , X

(t)
k ∈ CS×T is the

pilot sequences. Then the angular channel vector hk can be
estimated in a LS manner with only T ≥ S training length.
On the other hand, due to the unknown support set �(t)

k in
practice, the channel estimation problem becomes an under-
determined problem when T < M , which is difficult to effec-
tively obtain the channel station information h(t)k . Fortunately,
thanks to the sparse property of angular channel, the CS has
been extensively applied to reduce the pilot overhead [16].

Specifically, the problem can be formulated as

argmin
h
(t)
k

∥∥∥h(t)k ∥∥∥0
s.t. y(t)k =

√
ρ
(
h
(t)
k

)T
FTX(t)

k + z(t)k . (18)

The sparse vector h
(t)
k can be recovery with high probabil-

ity with T = O(S log(M/S))via sparse recovery solvers
when the measurement matrix X(t)

k satisfies restricted isom-
etry property (RIP) [37]. The above formulation is a single
measurement vector (SMV) problem. To effectively reduce
the pilot overhead, the joint sparse property can be exploited
according to (13). Since the different pilot signals are used
to probe the channel at every subcarrier, the channel esti-
mation problem can be further formulated as a generalized
multiple measurement vectors (GMMV) [28] problem, which
is a generalization of multiple measurement vector (MMV)
problem in [38] by diversifying the measurement matrix. The
formulation can be given as follows:

argmin
h
(t)
k ,∀k

(
K∑
k=1

∥∥∥h(t)k ∥∥∥20
)1/2

s.t. y(t)k =
√
ρ
(
h
(t)
k

)T
FTX(t)

k + z(t)k and (13). (19)

When the sparse channel vectors in different subcarriers share
the common support, the channel support recovery probabil-
ity can be further promoted.

B. TRAINING CONSTRUCTION
However, the above CS based approach exploits the common
sparsity either in frequency domain or several consecutive
frames, the time varying support has not been exploited. The
support in previous frame t − 1 can be regarded as the prior
support information. The support set in previous frame�(t−1)

k
can be used to effectively perform channel probing in current
frame based on the channel model with time varying support
elaborated in II-C. Specifically, the angular domain channel
to be estimated at current frame t can be decomposed into two
sub-vectors based on the prior support �(t−1)

k , i.e.,

h
(t)
k,d = I

�
(t−1)
k ,:

h
(t)
k , (20)

and

h
(t)
k,s = I

�
(t−1)
k ,:

h
(t)
k , (21)

where I ∈ CM×M is the identity matrix, h
(t)
k,d ∈ CSn×1 is

expected to be a dense vector with most of elements being
non-zeros, which is non-sparse due to

∣∣∣supp (h(t)k,d)∣∣∣c ≥ S −

Sn, h
(t)
k,s ∈ C(M−Sn)×1 is expected to be the sparse part of angu-

lar domain channel due to the slow variation of channel statis-
tics, i.e.,

∣∣∣supp (h(t)k,s)∣∣∣c ≤ Sn. To explain this, we consider the
channel vector h

(t−1)
k in the angular domain at the previous

frame t − 1. The elements of h
(t−1)
k indexed by �(t−1)

k are all
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non-zeros, while the elements of h
(t−1)
k indexed by�

(t−1)
k are

all zeros or approximately zeros. Then at the current frame
t , where the channel statistics changes and incurs to the slow
variation of support, the majority elements in h

(t)
k,d are still

non-zeros and the entries become zero or approximately zeros
only at most Sn indices. Correspondingly, the vector h

(t)
k,d is a

dense vector, instead of sparse vector, since h
(t)
k,d is a vector

extracted from the support �(t−1)
k in previous frame. h

(t)
k,s is

a sparse vector containing at most Sn significant elements in
dimension T − S.

The pilot should be designed to exploit the slow variation
of support set in consecutive frames, which is illustrated
in (20) and (21). The channel vector to be estimated in current
frame t can be divided into two parts. Consequently, the pilot
can be decomposed into two parts to adaptively probe the
unknown CSI for a given subcarrier k . Specifically, the pilot
is constructed as

X(t)
k =

[
X(t)
k,d X(t)

k,s

]
, (22)

where X(t)
k,d ∈ CM×S is the first part of pilot and

X(t)
k,s ∈ CM×(T−S) denotes the second part, which are uti-

lized to probe the angular domain coefficients h
(t)
k,d and h

(t)
k,s,

respectively. Since the former part h
(t)
k,d is a dense vector, the

associated pilot X(t)
k,d is constructed as

X(t)
k,d = {F}:,�(t−1)

k
X
(t)
k,d , (23)

whereX
(t)
k,d ∈ CS×S is the orthonormal matrix which satisfies

X
(t)
k,d

(
X
(t)
k,d

)H
= ρI. For the pilot of latter part which is

utilized to estimate sparse vector h
(t)
k,s, it can be designed as

X(t)
k,s = {F}:,�(t−1)

k

(
8

(t)
k,s

)T
, (24)

where 8(t)
k,s ∈ C(T−S)×(M−S) is the measurement matrix

satisfying the RIP to guarantee the successful recovery of
sparse vector. Denote the index set for pilot subcarrier as5 =
{ξ1, ξ2, · · · , ξKP}. As shown in the left part of Fig. 3, when
the channel sparsity fails to be exploit, the pilot overhead is
Ptotal1 = KPT1 with T1 ≥ M [10]. For the pilot placement
in [28], the non-orthogonal pilot are investigated, where the
BS antennas occupy the identical placement of frequency-
domain subcarriers. The associated time-frequency resource
consumption of pilot is Ptotal2 = KPT2. The time slots
T2 mainly dependent on the sparsity level S with a loga-
rithm coefficient log(M/S). The proposed pilot structure is
the hybrid version between the conventional time-orthogonal
pilot placement and non-orthogonal pilot, the associated time
slots assigned are S and T − S, respectively. The T − S is
mainly determined by the varying sparsity Sn with a logarithm
coefficient log((M − S)/Sn), which is shown in the right part
of Fig. 3. It should be noted when number of subcarriers is
K = 1, the proposed training construction scheme reduce

FIGURE 3. (a) Orthogonal pilot in time-domain, (b) Non orthogonal
pilot [28], (c) Proposed hybrid pilot structure.

to the case in [26], where a narrowband channel was con-
sidered. By contrast, the proposed training construction can
effectively probe the frequency selective channel in practical
wideband massive MIMO systems, in which the diversity
property of measurement matrix among multiple subcarriers
can be further exploited. On the other hand, when the prior
support sparsity level S = 0, the required time slots for chan-
nel training is T , which reduces to the case in [28]. Therefore,
the proposed training construction is a generalization of cases
in [26] and [28].

C. PRIOR INFORMATION ESTIMATION VIA UPLINK PILOT
The pilot design requires the prior information related to
support set in the previous channel block, which is vital
to both the downlink channel estimation and pilot design.
Instead of assuming that it can be known in advance via off-
line channel measurement in [24] or obatained according to
the downlink estimation in the first block [26], we propose
to exploit the angular reciprocity to obtain this information.
Specifically, we consider the UL channel between the user
and BS, which is given as

hULk =
Nc∑
l=1

αULl e−j2πdl/λ
UL
c eUL(φl)e−j2πτl fsk/K , (25)

where UL denotes the notation of uplink transmission.
αULl ∼ CN (0, 1) is the channel attenuation in the UL trans-
mission and independent with the attenuation in the DL chan-
nel. φu,l is the AoAs seen by the BS, λULc = c/f ULc denotes
the signal wavelength. eUL(φl) ∈ CM×1 is the antenna array
vector at the BS side along with the direction of φu,l and is
given by

eUL(φl) =
1
√
M

[
1, e

j 2πd
λULc

sinφl
, · · · , e

j 2πd
λULc

(M−1) sinφl
]T
.

(26)

Express the UL channel into angular domain by utilizing the
DFT matrix F, then we have

h
UL
k = FHEULβUL

k , (27)

where EUL
=
[
eUL(φ1), eUL(φ2), · · · , eUL(φNc )

]
∈ CM×Nc

and βUL
k =

[
βULk,1 , β

UL
k,2 , · · · , β

UL
k,Nc

]T
∈ CNc×1 with

βULk,l = α
UL
l e−j2πdl/λ

UL
c e−j2πτl fsk/K . Due to the zero mean of
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E
[
{h

UL
k }q

]
, the variance of {h

UL
k }q is given by

var
[
{h

UL
k }q

]
= E

[∣∣∣{hULk }q∣∣∣2]− E
[
{h

UL
k }q

]2
= E

∣∣∣∣∣
Nc∑
l=1

{F}H:,qe
UL(φl)βULk,l

∣∣∣∣∣
2

=
1
M2

Nc∑
l=1

E
[∣∣∣βULk,l ∣∣∣2]

∣∣∣∣∣∣
sin
(
πMψUL

q,φ

)
sin
(
πψUL

q,φ

)
∣∣∣∣∣∣
2

,

(28)

whereψUL
q,φ =

q
M+

d
λULc

sinφl . Similar to the DL transmission,

sin
(
πMψUL

q,φ

)
sin
(
πψUL

q,φ

) achieves significant amplitude when
∣∣∣ψUL

q,φ

∣∣∣ ≤
1
M . In other words, the path direction can be resolved by
the qth angular basis vector when the AoAs φ satisfies∣∣∣ qM + d

λULc sinφ

∣∣∣ ≤ 1
M . Under this condition, the elements of

h
UL
k can achieve significant magnitude. Accordingly, the sup-

port set of channel vector in the UL at the k-th subcarrier is
defined as

�UL
k = {q ∈ [1 : M ]|

∣∣∣{hULk }q∣∣∣ ≥ ε}. (29)

It can be observed that the UL support is also determined
by the AoAs φ, which is identical with that in the DL chan-
nel. Further, with the increase of number of BS antennas,
the intervals

∣∣∣ψUL
q,φ

∣∣∣ ≤ 1
M become narrower and the number

of intervals increases. The resolution of the angular domain
is able to resolve the angles AoDs/AoAs finely by the large
antenna array at the BS, which leads to the common spatial
structure and is treated as the angle reciprocity in the angular
domain [28], [30], [33]. The identical AoAs/AoDs manifest
the same indices of nonzeros elements in angular domain
channel between UL and DL, i.e., supp(h

UL
k ) = supp(hk ).

For the UL training, the received signal at the BS always has
high dimension and contains large number of measurements
from the perspective of CS due to M � TUL , where TUL is
the number of time slots for UL pilot signal. In other words,
by exploiting the high dimension received signal, the UL
training can be used to reduce large amount of pilot overhead
if we use the UL training to obtain the support information
that is identical with the DL channel. Then the prior support
set can be obtained with much less UL pilot overhead due
to the constraint of supp(h

UL
k ) = supp(hk ). This is different

from the prior support acquisition in [24], which assumes
the support set is known in advance by off-line channel
measurement. And in [26], the initial support set is obtained
by performing channel probing and performing the downlink
estimation, which consumes large amount of pilot overhead
and has inferior performance.

To obtain the prior support information via UL channel
training, the user transmits the UL pilot xULk ∈ C1×TUL

to the
BS through the kth subcarrier. The orthogonal pilot satisfies

xULk
(
xULk

)H
= TUL. Accordingly, the received signal at the

BS is expressed as

YUL
k =

√
ρULhULk xULk + ZUL

k

=

√
ρULFh

UL
k xULk + ZUL

k , (30)

where YUL
k ∈ CM×TUL

, ρUL is the UL transmit power, and
ZUL
k ∈ CM×TUL

is the associated noise matrix with elements
distributed by i.i.d CN (0, 1). At the BS side, the channel is
estimated via

ĥULk =
1√

ρULTUL
YUL
k

(
xULk

)H
= hULk +

1√
ρULTUL

zULk , (31)

where zULk ∈ CM×1 is the normalized Gaussian white noise
vector. The channel vector in the angular domain can be
acquired by

ĥ
UL
k = FH ĥULk . (32)

Once (32) is obtained by the UL training, the support can
be calculated by the evaluating the magnitude of elements

in ĥ
UL
k , i.e.,

�̂UL
k = {q ∈ [1 : M ]|

∣∣∣∣{̂hULk }q∣∣∣∣ ≥ ε}. (33)

Only the entries withmagnitude exceeding a certain thresh-
old are labelled as the non-zeros elements, the indices of
which construct the support set. The channel coefficients
within support set dominate the total energy of channel
vector in angular domain. In essence, the reason why UL
training can reduce pilot overhead is that at a certain time
slot, the received UL signal at the BS is an M × 1 vector,
while the received DL signal at the user side is a 1 × 1
scalar (only 1 antenna at the user side). To elaborate the
benefit of UL training, we can consider an extreme case,
when only 1 training slot is available, BS has M measure-
ments to estimate the channel. By contrast, the user only has
1 measurement to estimate anM dimensional channel, which
is impossible to obtain a satisfactory channel estimation.
Therefore, the UL training can alleviate the required number
of time slots for channel estimation when compared to the
DL training.

D. PROPOSED DISTRIBUTED COMPRESSED SENSING
AIDED CHANNEL ESTIMATION SCHEME
Based on the proposed training construction, which exploits
the prior support information in the previous channel block,
at the user side, the received training signal in the kth subcar-
rier of frequency domain also includes two parts, i.e.,

y(t)k =
[
y(t)k,d , y(t)k,s

]
, (34)
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where y(t)k,d ∈ C1×S , y(t)k,s ∈ C1×(T−S), and can be respectively
expressed as

y(t)k,d =
√
ρ
(
h(t)k
)T

X(t)
k,d + z(t)k,d

=
√
ρ
(
h
(t)
k

)T
FT {F}

:,�
(t−1)
k

X
(t)
k,d + z(t)k,d

=
√
ρ
(
h
(t)
k,d

)T
X
(t)
k,d + z(t)k,d , (35)

and

y(t)k,s =
√
ρ
(
h(t)k
)T

X(t)
k,s + z(t)k,s

=
√
ρ
(
h
(t)
k

)T
FT {F}

:,�
(t−1)
k

(
8

(t)
k,s

)T
+ z(t)k,s

=
√
ρ
(
h
(t)
k,s

)T (
8

(t)
k,s

)T
+ z(t)k,s. (36)

For the first dense part, the h
(t)
k,d can be estimated from y(t)k,d

via

ĥ
(t)
k,d =

1
√
ρ

(
y(t)k,s

(
X
(t)
k,d

)H)T
= h

(t)
k,d +

1
√
ρ

(
X
(t)
k,d

)∗ (
z(t)k,s

)T
, (37)

where ĥ
(t)
k,d ∈ CS×1 is the angular channel estimation of h

(t)
k,d

at the subcarrier k . The same processing method is repeated
by the received signal at other subcariers.

The estimation of second part h
(t)
k,s can be formulated as a

sparse recovery problem by utilizing CS since h
(t)
k,s is a sparse

vector. Instead of recovering the sparse channel vector h
(t)
k,s

separately, the common sparsity shared by the subchannels
associated with different subcarriers can be further exploited,
so that the pilot overhead to estimate the channels with at
most Sn non-zeros can be reduced. Consequently, the CSI
acquisition for the sparse part at different subcarriers k ∈ KP
can be formulated as the following optimization:

argmin
h
(t)
k,s,∀k

(
K∑
k=1

∥∥∥h(t)k,s∥∥∥20
)1/2

s.t. y(t)k,s =
√
ρ
(
h
(t)
k,s

)T (
8

(t)
k,s

)T
+ z(t)k,s and (13). (38)

The above formulation can be solved by a DCS [29]
method, which is summarized in the Algorithm 1. According
to the received training signal during T − S time slots among
KP subcarriers, the common support set can be jointly deter-
mined with higher probability. The first step is to initialize the
parameters used in the iterations, including residual vector r0k ,
the support set 00, channel coefficients in the angular domain
αk = 0. The superscript denotes the iteration index. Then the
algorithm enters the iteration stage. In each iteration, the dis-
tributed correlation is calculated for different subcarrier k .
Based on the correlation between residual vector and training
signal, the index of coefficients in angular domain is obtained
by jointly choosing the maximum correlation value among

Algorithm 1 DCS Channel Estimation Method at Frame t

Input: Received training signal y(t)k,s, training signal 8(t)
k,s,

k = 1, 2, · · · ,KP
1: Initialization: residual r0k =

(
y(t)k,s

)T
∈ C(M−S)×1,

support set00
= φ, estimation coefficients in the angular

domain αk = 0 ∈ C(M−S)×1, iteration index i = 1;
2: repeat

3: Distributed correlation: cik =
(
8

(t)
k,s

)H
ri−1k ;

4: Index of maximum correlation among all subcar-
riers: γ = argmax

1≤q≤M

∑K
k=1

∣∣{cik}q∣∣2;
5: Update support set: 0i = 0i−1 ∪ γ ;
6: Distributed least square: {α̂

i
k}0i =(

{8
(t)
k,s}

H
:,0i
{8

(t)
k,s}:,0i

)−1
{8

(t)
k,s}

H
:,0i

(
y(t)k,s

)T
;

7: Distributed residual update: rik =
(
y(t)k,s

)T
−

8
(t)
k,sα̂

i
k , i = i+ 1;

8: until i > Sn
Output: Channel coefficients ĥ

(t)
k,s =

1
√
ρ
α̂
i
k for all subcar-

rier k = 1, 2, · · ·KP.

all KP subcarriers. Then the estimated index in step 4 is
stored into the support set at step 5. The channel coefficients
with corresponding support set at subcarrier k is calculated
at step 6 using LS and update the residual vector in a dis-
tributed way. The residual at each subcarrier is distributed
updated in step 7 and is input to the next iteration. Different
from the traditional CS-based channel estimation method,
the proposed method divides the unknown sparse channel
into two parts, which are dense part and sparse part. Instead
of estimating the whole channel vector in angular domain,
the Algorithm 1 only estimates the sparse part of channel
vector, which characters more sparse property according to
the slow variation of channel statistics in (16).

After obtaining the estimation of dense part ĥ
(t)
k,d and sparse

part ĥ
(t)
k,s at the current frame t , the estimation of the whole

channel in the angular domain is acquired by

ĥ
(t)
k = I

:,�
(t−1)
k

ĥ
(t)
k,d + I

:,�
(t−1)
k

ĥ
(t)
k,s, (39)

and the estimated channel vector can be further obtained by

ĥ(t)k = F̂h
(t)
k . (40)

To summarize, the proposed DCS-aided downlink channel
estimate algorithm is listed in Algorithm 2, which contains
4 steps. Specifically, according to the �(t−1)

k , the first step
divides the received signal into two parts, which contain
the dense part and sparse part of angular domain channel,
respectively. Then, the two parts of channel coefficients are
estimated by the LS method in (37) and DCS method in
Algorithm 1, respectively. The finial channel estimation is
obtained via (39) in step 4. In summary, the Algorithm 2 is
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Algorithm 2 DCS-Aided Downlink Channel Estimation
Algorithm
Input: The received training signal from different subcar-

riers at current frame t , training matrix, prior support
information �(t−1)

k ;
1: Divide the received signal into two parts based on (34);
2: Estimate the dense part of angular domain channel coef-

ficients according to (37);
3: Estimate the sparse part of angular domain channel coef-

ficients according to Algorithm 1;
4: Combine the channel vector according to (39) for all

subcarriers;

Output: The estimate channel in angular domain ĥ
(t)
k .

FIGURE 4. The diagram for exploiting the spatially common sparsity and
slow variation of channel support in angular domain.

actually a hybrid algorithm, which combines the LS and DCS
method together.

For the time-varying channel estimation, the support set in
previous frame can be used to reduce the training overhead,
which is illustrated in Fig. 4. When the support tracking
fails or at the beginning of communication, the prior infor-
mation is performed via the UL observation to acquire the
accurate CSI with reduced pilot overhead. Then, this frame-
work enters the channel estimation phase, where the support
set information in previous frame is exploit to construct
the DL training. The training construction can effectively
probe the channel in current frame by exploiting the support
information in previous frame. The received signal is directly
feedback to the BS [22], and the DCS-aided channel estima-
tion algorithm can be used to acquire the channel estimate
and support information with less training overhead. In fact,
the proposed channel estimation formulation is a combina-
tion of LS and GMMV based methods, which provides a
general framework for FDD massive MIMO channel estima-
tion. Specifically, when the number of subcarriers K = 1,
the channel estimation formulation reduces to the SMV case,
which is considered in [26]. On the other hand, when the

sparsity variation Sn = S, the proposed channel estimation
scheme reduces to the case in [28], where only the com-
mon sparsity is exploited. This means the cases considered
in [26] and [28] are the special cases of our proposed channel
estimation scheme.

IV. PERFORMANCE ANALYSIS
In this section, the performance analysis of the proposed
scheme is provided, which includes the hybrid pilot design,
the error bound and the complexity analysis.

A. HYBRID PILOT DESIGN
According to the analysis in section III-B, the training signal
in current frame t consists of two parts to probe the dense part
and sparse part, respectively. For the first part of the training
signal, the orthonormal pilot can be employed in each sub-

carrier, which satisfies X
(t)
k,d

(
X
(t)
k,d

)H
=

(
X
(t)
k,d

)H
X
(t)
k,d = I.

For the second part, the sparse channel contains at most Sn
non-zero elements and enables to reduce to pilot overhead
for channel estimation. Due to 8(t)

k,s ∈ C(T−S)×(M−S) with
(T − S) � (M − S), to guarantee the stable recovery of the
sparse part, the pilot signal 8(t)

k,s should satisfy the following
RIP condition.
Definition 1 (RIP [38]): A measurement matrix ϒ satis-

fies s-order RIP with constant δs (0 < δs < 1) if

(1− δs) ‖x‖22 ≤ ‖ϒx‖22 ≤ (1+ δs) ‖x‖22 (41)

holds for all s sparse vector x ∈ 6M ,s = {z : z ∈ CM ,

‖z‖0 ≤ s}.
It has been shown that the matrix with elements generated by
independent identically distributed (i.i.d.) Gaussian distribu-
tion satisfies the RIPwith overwhelming probability [38]. For
8

(t)
k,s, the (a, b)th element (1 ≤ a ≤ T − S, 1 ≤ b ≤ M − S)

is generated by

{8
(t)
k,s}a,b = ej2πaθb,k , (42)

where θb,k is generated from i.i.d uniform distribution [0, 1].
In this case, {8(t)

k,s} is a non-equispaced Fourier matrix [39],
which also satisfies the RIP. Denote the common support
set of h

(t)
k,s as 3

t
s = supp(h

(t)
k,s) with

∣∣3t
s

∣∣
c = Sn. For the

measurement in each subcarrier k , the noiseless form of (36)
can be given as(

y(t)k,s
)T
=
√
ρ8

(t)
k,sh

(t)
k,s

=
√
ρ{8

(t)
k,s}:,3t

s
{h

(t)
k,s}3t

s
, (43)

where k ∈ 5. If the pilot matrix 8(t)
k∗,s at the k

∗th subcarrier
is chosen as the bridge, there must be full rank matrices 9k
with k ∈ 5 \ k∗, satisfying 8(t)

k,s = 9k8
(t)
k∗,s, and

(9k)
−1
(
y(t)k,s

)T
=
√
ρ{8

(t)
k∗,s}:,3t

s
{h

(t)
k,s}3t

s
=
√
ρ8

(t)
k∗,sh

(t)
k,s.

(44)
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TABLE 1. Complexity of Algorithm 1 in iteration i .

Then, for the jointly channel estimation in (36) at different
subcarrires, it can be re-formulated as

Y(t)
s =
√
ρ8

(t)
k∗,sH

(t)
s , (45)

whereY(t)
s =

[
(91)

−1
(
y(t)1,s

)T
, · · · ,

(
y(t)k∗,s

)T
· · · ,

(
9KP

)−1(
y(t)KP,s

)T]
, H

(t)
s =

[
h
(t)
1,s, · · · ,h

(t)
k∗,s, · · · ,h

(t)
KP,s

]
. According

to the Theorem 1 in [28], we have

2 Sn < spark(8(t)
k∗,s)− 1+ rank(Y(t)

s ), (46)

where the spark(8(t)
k∗,s) denotes the smallest number of

columns of matrix8(t)
k∗,s that are linearly dependent. Accord-

ing to (46), for the fixed Sn, the number of number of mea-
surements can lead to rank(Y(t)

s ) increasing, which can reduce
the number of time slots for estimating H

(t)
s .

B. ERROR BOUND
In this subsection, the mean square error (MSE) of chan-
nel estimation error by using the proposed scheme is ana-
lyzed. Although there are at most Sn support newly added
to the channel vector of frame t , the support variation
is assumed to be exactly Sn for the convenience. Denote
the support set for dense part as 3t

d = supp(h(t)k,d ) with∣∣3t
d

∣∣
c = S − Sn. Specifically, the MSE at kth subcarrier is

defined as

MSEk = E
[∥∥∥h(t)k − ĥ(t)k

∥∥∥2
2

]
, (47)

then we have

MSEk

= E

[∥∥∥∥Fh(t)k − F̂h
(t)
k

∥∥∥∥2
2

]
= E

[∥∥∥∥h(t)k − ĥ
(t)
k

∥∥∥∥2
2

]

= E

[∥∥∥∥I:,�(t−1)
k

(
h
(t)
k,d − ĥ

(t)
k,d

)
+ I
:,�

(t−1)
k

(
h
(t)
k,s − ĥ

(t)
k,s

)∥∥∥∥2
2

]

= E

[∥∥∥∥(h(t)k,d − ĥ
(t)
k,d

)∥∥∥∥2
2

]
+ E

[∥∥∥∥(h(t)k,s − ĥ
(t)
k,s

)∥∥∥∥2
2

]
.

(48)

For the first term, according to (37), it can be further
expressed as

E

[∥∥∥∥(h(t)k,d − ĥ
(t)
k,d

)∥∥∥∥2
2

]

= E

[∥∥∥∥{h(t)k,d − ĥ
(t)
k,d }:,3t

d

∥∥∥∥2
2

]

= E

[∥∥∥∥ 1
√
ρ
{

(
X
(t)
k,d

)∗ (
z(t)k,d

)T
}:,3t

d

∥∥∥∥2
2

]

=
1
ρ
E
[
trace

((
z(t)k,d

)∗ (
X
(t)
k,d

)T (
X
(t)
k,d

)∗ (
z(t)k,d

)T)]
=

S − Sn
ρ

. (49)

Then, the second term can be calculated according
to the output of Algorithm 1, where the support is
assumed to be exactly estimated. In this case, the esti-
mate of the channel coefficients at kth subcarrier can
be obtained via the step 6 in Algorithm 1, i.e., ĥ

(t)
k,s =

1
√
ρ
(IM−S ):,3t

s
({8(t)

k,s}
H
:,3t

s
{8

(t)
k,s}:,3t

s
)−1{8(t)

k,s}
H
:,3t

s

(
y(t)k,s

)T
, then

the second term can be expressed as

E

[∥∥∥∥(h(t)k,s − ĥ
(t)
k,s

)∥∥∥∥2
2

]

=
1
ρ
E
[∥∥∥∥(IM−S ):,3t

s

(
{8

(t)
k,s}

H
:,3t

s
{8

(t)
k,s}:,3t

s

)−1
·{8

(t)
k,s}

H
:,3t

s

(
z(t)k,s

)T ∥∥∥∥2
2

]
=

1
ρ
trace

(
({8(t)

k,s}
H
:,3t

s
{8

(t)
k,s}:,3t

s
)−1
)
. (50)

Further, we have

trace
(
({8(t)

k,s}
H
:,3t

s
{8

(t)
k,s}:,3t

s
)−1
)
=

Sn∑
s=1

1
λs
, (51)

where λs is sth eigenvalue of {8
(t)
k,s}

H
:,3t

s
{8

(t)
k,s}:,3t

s
. According

to the Definition 1, the pilot matrix8(t)
k,s satisfies the RIP with

constant δSn , then the eigenvalues of 8
(t)
k,s have the following

bound:

(1− δSn ) ≤ λs ≤ (1+ δSn ). (52)

Then the second term in (48) can be written by

Sn
ρ(1+ δSn )

≤ E

[∥∥∥∥(h(t)k,s − ĥ
(t)
k,s

)∥∥∥∥2
2

]
≤

Sn
ρ(1− δSn )

, (53)

and consequently, the MSE can be bounded as

1
ρ

(
S −

δSnSn
1− δSn

)
≤ MSEk ≤

1
ρ

(
S +

δSnSn
1− δSn

)
. (54)

It can be seen that the MSE performance is related to
the SNR ρ, total sparsity level S, the support variation Sn.
In addition, the decrease of Sn leads to the decrease of
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1
ρ

(
S + δSnSn

1−δSn

)
, since the constant δSn also decreases with the

order Sn. This reflects that fact the upper bound of estimation
error increases when a large number of supports is shared by
the consecutive frames. Also, support estimation accuracy3t

s
estimated by Algorithm 1 elevates with the number of subcar-
rires, incurring to better channel estimation performance.

C. COMPLEXITY ANALYSIS
In this subsection, the computational complexity of proposed
DCS-aided channel estimation algorithm is analyzed. The
computational complexity of Algorithm 1 in ith iteration is
firstly investigated. Specifically, the distributed correlation
in step 3 consumes O (2 KP(T − S)(M − S)) complex addi-
tions and multiplications. In step 4, the index is calculated
according to the correlation of all the subcarriers and the
complexity is O (KP(M − S)). The complexity of support
update is O (1). The distributed LS in step 6 consumes
O
(
i3 + 2i2(T − S)+ iKP(T − S)

)
. The complexity of resid-

ual update in step 7 is O (2 iKP(T − S)). Then, the over-
all complexity of ith iteration is O ((T − S) (KP(M − S)+
2i2 + iKP

))
. After Sn iterations, the total computational

complexity for Algorithm 1 is O ((T − S)(SnKP(M − S+
Sn+1
2 )+ Sn

3 (2S
2
n + 3Sn + 1))

)
. For the sake of convenience,

the computational complexity for Algorithm 1 is listed
in Table 1. While for the proposed Algorithm 2, the complex-
ity for step 1 and step 2 can be omitted. The step 4 consumes
O (M) complexity since it is a combination of sparse and
dense part channel coefficients. Therefore, the overall com-
plexity of proposed DCS-aided algorithm mainly depends on
the complexity of Algorithm 1. It can be known the complex-
ity linearly increases with training frames T − S, number of
subcarriers K , and the number of antennas M .

V. SIMULATION RESULTS
The simulation are conducted to investigate the performance
of the proposed algorithm. The BS employs ULA with
M = 128 antennas. S = 40 and the support variation between
consecutive frame is Sn = 3. K = 2048 and the number
of subcarriers for pilot is KP = 4. The number of users is
U = 1 since the channel support variation is investigated
between a specific user and the BS. The channel coefficients
in the angular domain are generated from complex Gaus-
sian distribution with mean 0 and unit variance accroding
to [22]. In addition, the benchmark algorithms are adpoted
as follows: Joint OMP (JOMP) in [22] is considered as a
benchmark algorithm to individually estimate the channel
from each subcarrier; Distributed sparsity adaptive match-
ing pursuit (DSAMP) algorithm [28] jointly estimate the
channel of different subcarriers. Static LS only exploits the
static prior support information, which remains unchanged
during the following frames. The support information can
be inaccurate in the following frame due to the variation of
channel statistics. Random LS is also employed as the bench-
mark algorithm, where the random means that the orthog-
onal pilots are randomly generated to probe the channel.

FIGURE 5. The NMSE performance versus length of training signals T ,
SNR = 20 dB, S = 40, Sn = 3, M = 128.

For JOMP and DSAMP algorithms, the pilot matrix is
designed to only satisfy the RIP, while the pilot matrix sat-
isfies the orthogonality for Static LS and Random LS. This is
different from the proposed scheme, which is a combination
of RIP-based and orthogonality-based pilot structure. The
CS-Aided approach in [26] also adopts the hybrid pilot con-
struction and is considered as a baseline scheme. Oracle LS
indicates that the true support information is exactly known
and the channel estimation is performed based on the support
via LS method. This method is served as the lower bound
of channel estimation. To evaluate the channel estimation
performance, the normalized mean square error (NMSE) is
considered as the performance metric and given by

NMSE =

∑K
k=1

∥∥∥̂h(t)k − h(t)k
∥∥∥2
2∑K

k=1

∥∥∥h(t)k ∥∥∥22
. (55)

The normalized beamforming gain E

[ ∣∣∣(h(t)k )H ĥ(t)k
∣∣∣2∥∥∥h(t)k ∥∥∥22∥∥∥̂h(t)k ∥∥∥22
]
is also

calculated for different algorithms. 1000 independent exper-
iments are computed by Monte Carlo simulation.

Fig. 5 compares the NMSE performance under various
length of training signals when SNR = 20 dB. It can be
observed that with the increase of training length, the perfor-
mance of all the algorithms improves. However, the JOMP
algorithm performs worst, since the sparsity level is not low
enough and the JOMP algorithm fails to effectively recover
the channel coefficient. DSAMP performs much better than
that of JOMP, which indicates that the channel performance
can be significantly improved by exploiting the spatially
common sparsity in the frequency domain. An equivalent
result is that the length of pilot can be reduced to achieve
a desired NMSE level. Since the prior support information
is exploited by the Static LS method, the NMSE of Static
LS is even lower than that of DSAMP. By contrast, Random
LS is agnostic to the prior information, so a satisfactory
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FIGURE 6. The normalized beamforming gain performance versus length
of training signals T , SNR = 20 dB, S = 40, Sn = 3, M = 128.

FIGURE 7. The NMSE performance versus SNR, T = 60, S = 40, Sn = 3,
M = 128.

NMSE can be achieved when training length is large enough.
The CS-Aided approach much better performance than the
aforementioned algorithms, since it utilizes the prior infor-
mation and the slow variation of support information based
on CS approach. Despite of this, it still performs inferiorly
to the proposed scheme. The proposed DCS-aided algorithm
not only exploits the slow variation of channel statistics,
but also exploits the spatially common sparsity, which can
significantly improve the successful rate of support variation
and achieve more accurate channel estimation. Compared
to the CS-Aided method, the proposed algorithm further
reduces the required training length and performs closely
to the lower bound of NMSE. Accordingly, Fig. 6 presents
the normalized beamforming gain of different algorithms.
It can be observed that the better performance of NMSE leads
to the higher beamforming gain. Among this, the proposed
algorithm achieves higher gain when given a fixed training
length and asymptotically approaches the optimal Oracle LS
approach.

Fig. 7 illustrates the relationship between NMSE and
SNR, where the length of training T = 60. The CS-based

FIGURE 8. The normalized beamforming gain performance versus SNR,
T = 60, S = 40, Sn = 3, M = 128.

algorithms including JOMP and DSAMP algorithm perform
worsewhen SNR is low. Even in high SNR regime, theNMSE
performance is poor. This is due to the fact that the length of
training signals is limited. By contrast, the LS-based algo-
rithms, e.g., Static LS and Random LS algorithms perform
better with the increase of SNR. However, for Static LS, there
is a constant NMSE gap in high SNR regime, the reason
of which is that the Static LS is agnostic to the support
variation, and fails to adapt the support information in current
frame. The proposed DCS-aided algorithm is a hybrid of
DCS and LS method, which can adapt the channel variation
by dividing the channel training into two parts. Moreover,
for the recovery of sparse part, the received signals from
different subcarriers can be combined to improve the NMSE
performance by exploiting the spatially common sparsity.
It can be observed that the proposed algorithm outperforms
both the CS-based algorithm and LS-based algorithm in high
SNR regime. There are three main reasons that the proposed
DCS-aided algorithm achieves almost the same performance
as Oracle-LS with the increase of SNR. Firstly, the algo-
rithm not only exploits the slow variation of channel support,
but also exploits the spatially common sparsity. Secondly,
the training length is set T = 60, which is enough for the pro-
posed DCS-aided algorithm to achieve accurate support esti-
mation. Note in Fig. 5, when training length T is not enough,
i.e., T ∈ [40, 48], there is a big gap between the proposed
algorithm and Oracle-LS algorithm. Thirdly, the exact size of
support variation is provided for the proposed algorithm and
other algorithms. The case of support variation mismatch will
be investigated in Fig. 10. The normalized beamforming gain
with various SNR is illustrated in Fig. 8. It can be seen that
the proposed DCS-aided approach can achieve near optimal
beamforming gain compared to the Oracle LS method. The
performance gain is due to the fact that the algorithm not
only exploits the slow variation of channel support, but also
exploits the spatially common sparsity. The performance gain
of spatially common sparsity also can be observed when
comparing DSAMP and JOMP algorithm.
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FIGURE 9. The NMSE performance versus the size of support variation Sn,
T = 60, S = 40, SNR = 20 dB, M = 128.

FIGURE 10. The NMSE performance versus unknown size of support
variation, T = 60, S = 40, exact support variation Sn = 3, SNR = 20 dB,
M = 128.

Fig. 9 shows the NMSE performance when the size
of support variation changes. The NMSE of JOMP and
DSAMP algorithms remains almost unchanged regardless of
the change of support variation level, since these CS-based
algorithms are designed without considering the variation
of channel statistics. The Random LS also experiences this
trend it fails to adapt the channel statistics. It should be
noted that the CS-Aided approach is sensitive to the increase
of support variation. By contrast, the proposed algorithm is
much more robust although the channel statistics has a more
severe fluctuation. This can be attributed to the exploitation
of spatially common sparsity.

The previous simulations assume that the size of support
variation is exactly known, while Fig. 10 investigates the
robust of algorithms when the estimated size of support vari-
ation Sen is different with the exact Sn. In this experiment,
the exact support variation is set as Sn = 3, while the esti-
mated variation ranges from 1 to 10. It can be observed that

FIGURE 11. The NMSE performance versus length of training signals for
estimating the initialized channel via UL and DL training, S = 40,
M = 128, SNR = 5 dB, 20 dB, respectively.

proposed algorithm significantly outperforms both JOMP,
Static LS and Random LS in terms of NMSE, although the
mismatch of support variation occurs. When the estimated
size of support variation exactly matches the true variation,
i.e. Sen = Sn, the proposed algorithm achieves the lowest
NMSE. In the case of Sen < Sn, the performance of pro-
posed algorithm degrades significantly, and even worse than
that of DSAMP when Sen = 1. By contrast, when Sen >

Sn, the performance gradually deteriorates with the increase
of mismatch. But the degradation of proposed algorithm is
marginal when support variation is overestimated. The robust
of the proposed algorithm owes to both the hybrid train-
ing construction and the exploitation of spatially common
sparsity. The important implication is that the overestimated
support variation leads to marginal performance degradation
but the underestimated support variation significantly deteri-
orates the NMSE performance.

We now examine the performance of prior information
acquisition via UL training, where the prior support infor-
mation is to be estimated. The benchmark schemes include
the JOMP, DSAMP and DL channel estimation via Random
LS method in [26]. Since the prior support is unavailable,
the Static LS and CS-Aided algorithm can not be applied.
By exploiting the angular reciprocity, the prior information
can be obtained via the UL training. In Fig. 11, the same
training overhead is used for channel estimation for vari-
ous algorithms. The difference is that the proposed training
method employs UL training while the other methods adopt
the DL training to performance channel estimation. It can
be seen the proposed channel estimation via UL observation
can significantly outperform the counterparts. When SNR
= 5 dB, to achieve NMSE = −10 dB, the proposed scheme
only utilizes T = 3 training slots, while the counterpart
algorithms can not achieve the goal even when T = 80.
When SNR = 20 dB, the proposed scheme can achieve
−20 dB NMSE by using only T = 1 training slot, while
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the DSAMP consumes T = 80 training slots to attain the
target NMSE. This demonstrates the effectiveness of prior
information acquisition via UL observation.

VI. CONCLUSION
ADCS-aided channel estimation approach has been proposed
for FDD massive MIMO system, which fully exploits the
slow variation of channel statistics in consecutive frames
and spatially common sparsity within multiple subchannels,
resulting to the significant pilot reduction for channel esti-
mation. Specifically, a hybrid training structure is firstly pro-
posed to probe the channel in the current frame based on
the support information in previous frame, which exploits the
slow variation of the channel statistics. Then, a DCS-aided
channel estimation algorithm can be applied to estimate the
channel vector in the current frame, which consists of dense
part and sparse part from the angular domain. The two parts
of channel among multiple subcarriers can be jointly esti-
mated by the LS method and DCS method, respectively,
to reduce the training overhead. For the prior support informa-
tion, a prior information estimation method via UL training
is proposed by exploiting the UL-DL angular reciprocity.
Simulation results demonstrate that the proposed approach
can estimate the channel with significant training overhead
reduction.
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