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ABSTRACT GPU utilizes the wide cache-line (128B) on-chip cache to provide high bandwidth and efficient
memory accesses for applications with regularly-organized data structures. However, emerging applications
exhibit a lot of irregular control flows and memory access patterns. Irregular memory accesses generate many
fine-grain memory accesses to L1 data cache. This mismatching between fine-grain data accesses and the
coarse-grain cache design makes the on-chip memory space more constrained and as a result, the frequency
of cache line replacement increases and L1 data cache is utilized inefficiently. Fine-grain cache management
is proposed to provide efficient cache management to improve the efficiency of data array utilization. Unlike
other static fine-grain cache managements, we propose a dynamic multi-grain cache management, called
DyCache, to resolve the inefficient use of L1 data cache. Through monitoring the memory access pattern
of applications, DyCache can dynamically alter the cache management granularity in order to improve the
performance of GPU for applications with irregular memory accesses while not impact the performance
for regular applications. Our experiment demonstrates that DyCache can achieve a 40% geometric mean
improvement on IPC for applications with irregular memory accesses against the baseline cache (128B),
while for applications with regular memory accesses, DyCache does not degrade the performance.

INDEX TERMS Accelerator architectures, cache memory, fine-grain cache management, GPGPU

computing, irregular memory access, memory divergence, memory management.

I. INTRODUCTION

GPU utilizes the wide cache line (128B) on-chip cache to
provide high bandwidth memory accesses in order to satisfy
the demand of data for the massive parallel computing. For
each memory access instruction, the Load/Store (LDST) unit
in each CUDA core generates 32 memory requests simultane-
ously, due to the the single-instruction-multiple-data (SIMD)
architecture and the warp execution model. And if the threads
in each warp request continuous data in the same 128B cache
line, the LDST unit will combine these memory requests
into one 128B memory request to reduce the number and
overheads of memory accesses to on-chip cache. By coalesc-
ing memory requests, GPU can provides sufficient memory
bandwidth for each CUDA core when data structure of appli-
cations are well organized.

Currently, emerging applications [1], [2], such as Graph
Computing, Deep Learning, Neutral Network, etc., have been
researched extensively. And GPU has been used to accelerate
these applications in some scenarios. However, some of these
applications use more complex and irregular data structures
and exhibit irregular control flows and memory access pat-
terns. To be specific, for these irregular applications, accessed
data are scattered in a wide range of address space and the
LDST unit has to generate more than one memory request to
fetch all the demand data of one memory access instruction.
However, due to the lock-step design, GPU can continue exe-
cuting next instruction only when all the requests of a memory
access instruction are completed. If these requests have dif-
ferent access latencies, especially some requests cause cache
misses, we call this situation memory divergence. When all
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the active warps suffer the memory divergence, GPU has to
stall all the pipelines and its throughput drops dramatically,
even though GPU is latency-insensitive.

Besides, due to the memory divergence, the size of
accessed data becomes smaller than the wide cache line size
(128B), hence irregular memory accesses fetch many cache
lines with a lot of unwanted data. As a result, some words
in a certain cache line are never being read or written before
the cache line is evicted. In the other hand, since the number
of cache line allocated to each warp is very limited, memory
divergence will increase the cache miss rate and cause high
frequent cache line replacement, and then consume off-chip
bandwidth with the unwanted data.

Prior studies have shown that due to irregular memory
accesses, such as gather/scatter access, pointer chasing, etc.,
coarse-grained memory accesses waste a great portion of
bandwidth and degrade the efficiency of L1 cache [3]-[5].
Researches on increasing cache efficiency for fine-grain
memory accesses focus on implementing fine-grain cache
managements to improve the data array utilization of
cache. However, these prior works either only support
one small granularity, or use static cache managements,
which are not transparent to users. Moreover, consider-
ing the variety between and in applications, we need a
flexible fine-grain or multi-grain cache management to
make L1 cache much more efficient for all kinds of
applications.

In this paper, we introduce a dynamic multi-grain cache
management design, called DyCache. By splitting the wide
cache line into small chunks, DyCache can store small words
in non-continuous memory space in the same wide cache line.
And DyCache retains the wide cache line design to allow
applications with regular memory accesses to take advantages
of it. DyCache also supports multiple granularities in order
to dynamically find the most appropriate cache management
granularity for various applications and improve the cache
efficiency according to the memory access pattern. To fig-
ure out the memory access pattern, we profile memory access
patterns and cache statistics to evaluate the efficiency of
L1 data cache and memory divergence in the runtime, and
then choose an appropriate cache management granularity
based on the memory access pattern. To summarize our most
important contributions:

« This paper provides an analysis of memory divergence
and inefficient use of L1 data cache in GPU architec-
ture. We find that the mismatching between the size of
accessed data and wide cache line is the primary cause
of inefficient caching and poor performance for irregular
memory accesses.

o Unlike prior works on static fine-grain cache manage-
ments, we propose a dynamic multi-grain cache line
management that resolves inefficient use of L1 data
cache and improves the throughput of GPU for appli-
cations with irregular memory accesses.

« We demonstrate that DyCache does not degrade the per-
formance of applications with regular memory accesses,
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while improving cache efficiency and GPU throughput
for irregular applications.

Il. MOTIVATION

A. MEMORY DIVERGENCE AND INEFFICIENT
UTILIZATION OF L1 CACHE

For a regular memory access, the memory access instruction,
such as a load or store instruction, can fetch all the demand
data of the 32 threads in a warp by a single 128B memory
request, if all the threads access words which are in the
continuous 128B memory space. Moreover, the LDST unit
in GPU has a memory coalescing unit to combine memory
accesses. This greatly reduces memory access overheads and
improves the efficiency of memory bandwidth. However,
as applications become more and more various, data struc-
ture is increasingly complicated and irregularly organized.
This induces that LDST unit has to generate more than one
memory request to fetch all the demand data, because the
accessed data are non-continuous in memory space and in
different 128B cache lines. These memory requests have
different access latencies and even some of them may cause
cache misses. We call this situation memory divergence and
like branch divergence, memory divergence decreases GPU
throughput because GPU’s memory hierarchy can’t handle
these irregular accesses efficiently.

Since L1 cache is the first level storage to service memory
requests from CUDA cores, the efficiency of L1 cache uti-
lization determines the efficiency of the whole GPU memory
hierarchy. L1 cache can provide high bandwidth accesses
by using the wide cache line (128B), when 32 threads of a
warp request a 128B-data that is continuous in memory space.
However, when suffering memory divergence, GPU issues
fine-grain memory requests, which causes the inefficiency
that the demand data of a request is only a small fraction
words in the fetched cache line. Also, another impact is that
more than one cache line needs to be fetched for the diverged
memory access. Due to the limited cache lines allocated to
each warp, the possibility of being evicted of each cache line
increases and even worse, some cache lines are evicted before
they are referenced [6]. Therefore, memory divergence makes
L1 cache inefficient, due to the contradiction between fine-
grain demand data and coarse-grain cache line. Li et al. [5]
uses the ratio of the number of referenced 32B words to the
number of evicted 32B chunks to measure cache efficiency.
Their result shows that for all 32 benchmark the arithmetic
mean of cache efficiency is 58%. As the result of ineffi-
cient caching, a mass of memory requests are sent to off-
chip memory and memory channels are congested by these
requests.

B. FINE-GRAIN CACHE MANAGEMENT

Emerging applications, like graphics, have irregular mem-
ory access patterns. Modern GPU suffers the significant
inefficiency in cache and off-chip memory system. Fine-
grain cache management is a solution to eliminate the
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contradiction between the fine-grain demand data and the
coarse-grain cache line and improve the cache efficiency.
Fine-grain cache management uses extra bits to maintain
valid and dirty statuses for the fine cache granularity rather
than the whole cache line. Sector cache [7] splits each cache
line into multiple sectors (32B) so that words (32B) in con-
tinuous memory space can be stored. It provides extra valid
and dirty bits for each word to manage at the small granu-
larity. Based on Sector Cache, Seznec [8] and Rothman and
Smith [9] propose elastic mapping between sectors and tags
to reduce the miss rate. And Veidenbaum et al. [10] proposes
the adaptive line size cache that can alter the cache line size
gradually. Elastic-Cache is the most recently proposed fine-
grain cache management for GPU. It uses unused shared
memory to store tags for chunks of each cache line, so that
the cache size does not shrink. Also, it allows chunks to store
words (32B, 64B) from non-continuous memory space in the
same cache line, which is different from Sector Cache. Their
design shows great potential of fine-grain cache manage-
ments to make GPU L1 cache more efficient for application
with irregular memory accesses.

C. PROBLEMS OF STATIC FINE-GRAIN CACHE
MANAGEMENT

Although FElastic-Cache and other fine-grain cache man-
agements can improve the L1 Cache efficiency and GPU
throughput for applications with irregular memory accesses.
However, there are some problems to be solved before fine-
grain cache management becomes practical.

First, for a static fine-grain cache management, it depends
on the user who programs applications or configures GPU to
achieve the best performance. Due to the static configuration,
users should configure GPU or annotate in code to set up the
right cache granularity before running applications. There-
fore, users should not only know GPU architecture well, but
also get the full knowledge of memory access patterns for
each application. In this paper, we are pursuing a more flex-
ible cache management that automatically and dynamically
chooses cache granularity according to the runtime memory
access pattern.

Second, the memory access pattern of an application may
vary with computing phases. For example, an application
executes a matrix addition to get a matrix for data indexing
in the next phase. The access pattern to the matrix is regular
and coarse-grain. In the next phase, the application uses the
result matrix indexes to access other data. For index-based
indirect memory accesses, these accesses will be irregular and
fine-grain. Fig. 1 shows the variations of the ratio of memory
access requests accessing 32B, 64B and 128B data along with
time for two representative applications, Needleman-Wunsch
and StreamCluster. We find that for Needleman-Wunsch,
the distribution of accessed data sizes varies along with
application execution dynamically, while StreamCluster has
arelative stable distribution of accessed data sizes. These two
applications represent two memory access patterns. Static
fine-grain cache management can improve cache efficiency
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FIGURE 1. The distribution of accessed data sizes varies with time
differently between applications. (a) Needleman-Wunsch.
(b) StreamCluster.

for applications with access patterns like StreamCluster, but
it cannot work efficiently for those like Needleman-Wunsch.

Therefore, in this paper, we aim to find a dynamic multi-
grain cache management that can be flexible to adjust cache
granularity based on the memory access pattern.

Ill. DYNAMIC MANAGEMENT OF

MULTI-GRAINED CACHE

As we have discussed above, it is difficult to fully utilize
GPU’s massive parallel computing power for applications
with irregular memory accesses due to memory divergence.
One of the impact of memory divergence is that L1 data cache
performs much less efficiently than it does when GPU exe-
cutes the kernels using well-organized data structure. Also,
due to the high miss rate, L1 cache sends a mass of fine-grain
requests to lower-level memory, which puts a huge burden on
the off-chip memory and degrades throughput of the CUDA
core pipeline. Fine-grain cache is a good solution to improve
cache efficiency when application generates many fine-grain
memory requests due to memory divergence. In general, fine-
grain cache splits the 128B cache line into small chunks
(like 32B or 64B) statically and chooses fine or coarse mode
before application runs. Since the hardware configuration is
fixed for a fine-grain cache, it is not able to adjust the cache
granularity when current cache granularity is not suitable for
the memory access pattern any more. Given to these reasons,
we introduce a multi-grain cache design, called DyCache,
which not only supports both fine-grain and coarse-grain,
but also supports the dynamic switch between differ-
ent cache granularities according to the runtime memory
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FIGURE 2. Overview of GPU architecture design for dynamic multi-grain cache management.

access pattern. In this section, we first depict the architec-
ture overview of DyCache and hardware supports for the
dynamic multi-grain cache management, and then describe
the basic cache operations and cache granularity selec-
tion. Finally, we discuss cache coherence and replacement
policy.

A. DYNAMIC MULTI-GRAINED CACHE ARCHITECTURE

1) OVERVIEW

GPU consists of hundreds or thousands of CUDA cores.
These cores are grouped into SIMT clusters and for each
SIMT cluster, there is a shared common port to connect the
interconnection network. Each CUDA core has a LDST unit
and a private on-chip L1 data cache. LDST unit is responsible
for generating data requests, issuing requests to L1 cache
and writing back fetched data to registers. Fig. 2 shows the
architecture overview of DyCache. The multi-grain manage-
ment unit takes the responsibility for profiling memory access
pattern and selecting cache granularity for the next period.
The selected granularity is sent to the tag match controller.
To support multi-grain management, tags of each cache line
are split into two parts, which is very similar to Elastic-
Cache [5]. One part is called common-tag and the other is
chunk-tag. The tag match controller compares chunk-tags of
requested data with chunk-tags of chunks in each cache line.
In multi-grain mode, all the chunks in the same 128B cache
line must have the same common-tag. Moreover, the multi-
grain tag array uses both the common-tag and chunk-tags to
consider a memory request as a hit or a miss.

2) HARDWARE SUPPORTS FOR DYNAMIC MULTI-GRAINED
CACHE MANAGEMENT

Fig. 3 shows the detailed architecture supports for dynamic
multi-grain management. When receiving a memory access
instruction, LDST unit first tries to coalesce 32 data requests
of a warp according to the address of accessed data. And then,
LDST unit generates coalesced memory requests and puts
them at the end of request queue, waiting to be serviced by
L1 data cache.
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FIGURE 3. Detailed hardware supports for dynamic multi-grained cache
management.

By coalescing, if the accessed data of a warp are stored in
a single 128B cache line, a single memory request can fetch
all the requested data from memory. Otherwise, more than
one memory requests are generated. For every memory access
instruction, the profiling unit in the multi-grain management
unit records memory access information (such as data size
requested of each memory request, etc.) from LDST unit.
After running a certain number of cycles or memory instruc-
tions, the granularity selector calculates the assessed value
based on the recorded memory access information, compares
with the threshold value to decide which cache granularity
is the best for the profiled memory access pattern. At last,
it sends the control command with the calculated cache gran-
ularity to the chunk-tag match controller of L1 cache.

To support the multi-grain management, DyCache splits
the tag into two parts, called common-tag and chunk-tag
respectively. Assuming the full address space is 4GB and
DyCache uses 16KB cache with 32 128B sets, the default
address consists of a 20-bit tag, a 5-bit set-index and a
7-bit byte-index. To support the multi-grain cache granularity
management, Because the minimum accessible data is 32B,
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FIGURE 4. An example of address division. Assuming the cache is 16KB
and it has 32 4-way sets.

so the byte-index should be 5 bits and the rest of 2 bits
can be used as the chunk-tag. Moreover, for the size of
chunk-tag, Li et al. [5] compares different sizes of the
chunk-tag for fine-grain cache in and concludes that the
16-bit chunk-tag is the best choice for fine-grain cache.
In conclusion, the 32-bit address is split into a 6-bit
common-tag, which is the upper 6-bit of a 20-bit tag,
a 16-bit chunk-tag, which is comprised of the lower 14-
bit of a 20-bit tag and a upper 2-bit of byte-index,
a 5-bit set-index and a 5-bit byte-index. Fig 4 shows the
detailed address division for the example. DyCache uses both
the common-tag and the chunk-tags to consider a memory
request as a hit or a miss. For instance, when current L1 data
cache granularity is 32B and there is a 128B data request,
DyCache can consider this access as a hit only when the
common-tag is matched with one of the common-tags in the
indexed set and all the four chunk-tags match with those of
the cache line with the same common-tag.

Granularity(G) Chunk-Tag(T)
w,
> 8 5> 64 | 0 [+1]| 0 | +1 [—>
g® =
= S 128 0 | +1 [ +2 [ +3 — & =
= D
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X 2 4
2 g, —> 32 0 - 0 - (> 8‘ )
e
~@sr—64 0] -Jo]-
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o
S 128 0 | - |+2| - [—>

Data*Size(S) Cache Granularity(64B)

FIGURE 5. Hardware components of the chunk-tag match controller. Two
tables store tag masks for 32B cache granularity and 64B cache

o

granularity. “0", “+N" and “-” denote assignment, addition and void
operations on chunk-tags respectively.

Because it is a bit complicated to compare chunk-tags for
multi-grain cache, DyCache utilizes a chunk-tag match con-
troller to control the chunk-tag comparison. Fig. 5 shows the
structure of the controller and how it works. The main com-
ponents are two tables of tag masks for each fine-grain cache
granularity (32B and 64B). Each table has three tag masks
for each accessed data size(32B, 64B and 128B). When cache
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granularity is 128B, only the common-tag and the chunk-tag
of the first chunk need to be compared, therefore DyCache
don’t have the tag mask table for 128B. For each memory
access, its multi-grain management information, including
the current cache granularity, the accessed data size and
the chunk-tag of the data, is sent to the chunk-tag match
controller. Based on the current granularity and the accessed
data size, the controller looks up the table and fetches the tag
mask. The operations on the tag include three types, which
are assignment, offsetting and void denoted by “0”, “+N”
and ““-” respectively in Fig.4. Then, tag processor calculates
the final chunk-tags for chunk-tag matching, according to the
input chunk-tag and tag mask. Finally, the result chunk-tags
are stored in the mask buffer.

B. TAG MATCH

For DyCache, each cache line (128B) can store words
(32B or 64B) in non-continuous memory space. Therefore,
a memory access can be considered as a hit, only when
the common-tag of the accessed data is matched with one
of common-tags in the indexed set and chunk-tags are the
same with those in the cache line with the same common-tag.
Fig. 6 illustrates how DyCache processes a memory access.

R

e
4 I Addr(0x04000100), Size(1288) |
Chunk Tag Matching N N
"I (0x0000) H Controller H 0x0000 | [ oxo002 | |

Comparator (HIT) |

[ 0x0000 | 0x0001 [ 0x0002 [ 0x0003 |

0x00 —» 0x0010 [ 0x0011 | 0x1000 | Ox1001
0x01 —» 0x0000 | 0x0001 | 0x0002 | 0x0003
0x02 —» 0x0200 [ 0x0201 | 0x0024 | 0x0025
0x06 —» 0x0800 | 0x0801 | 0xc000 | Oxc001

Common Tag
(0x01)

19po2a( }senbay

Set Index

(0x02) Common

Tag Array

Chunk Tag Array

FIGURE 6. A case explains how DyCache processes tag match for a
memory access.

Assuming cache size is 32KB and current cache granular-
ity is 64B, a 128B data request with address (0 x 04000100)
is fetched from the top of the request queue of LDST unit.
First, the address of the 128B data request is decoded into
chunk-tag (0 x 0000), common-tag (0 x 01) and set-index
(0 x 02) by the request decoder. Then, common-tag (0 x
01) is compared with all the four common-tags in the set
indexed by set-index (0 x 02). If there is no match, DyCache
pushes this request to the miss queue and fetches another
memory request from the LDST unit. If the common-tag
matches with one of those common-tags in the set, then the
chunk-tags of the corresponding cache line are read out and
stored in the buffer. At the meantime, the chunk-tag (0 x
0000) of the request is sent to the chunk-tag match controller.
According to the structure of the chunk-tag match controller
showing in Fig. 4, the controller first selects the tag mask
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(0, -, +2, -) based on the cache granularity and the accessed
data size. Then, the tag processor of the controller calculates
the result chunk-tag array (0 x 0000, -, 0 x 0002, -) with
the tag mask (0, -, +2, -) and the chunk-tag (0 x 0000) and
stores the chunk-tag array (0 x 0000, -, 0 x 0002, -) in the
buffer. At last, the comparator compares the chunk-tags (0 x
0000, 0 x 0001, 0 x 0002, 0 x 0003) of the cache line with
the common-tag (0 x 01) and the calculated chunk-tag array
(0 x 0000, -, 0 x 0002, -). If chunk-tags are matched and
all the words are valid, this request is considered as a hit.
Otherwise, DyCache considers this request as a miss and puts
the request into the miss queue.

In the design of dynamic multi-grain cache management,
DyCache supports downward compatibility. That means
when cache granularity changes from big size to small one,
DyCache won’t invalidate data in the cache, because it main-
tains the chunk-tags and the chunk-statuses of the smallest
granularity (32B). Every time filling fetched data in cache,
the chunk-tag for each 32B word is updated simultaneously in
the chunk-tag array. But, when the cache granularity changes
from small size to big one, DyCache has to flush the cache
due to the cache coherency.

C. CACHE GRANULARITY SELECTION

The cache granularity selection of DyCache consists of sam-
pling characteristics of memory accesses, profiling the access
pattern and selecting an appropriate cache granularity by
comparing with the threshold. The multi-grain management
unit in LDST unit samples every memory access instruction
until the number of sampled memory requests reaches the
upper limits (such as 1000 memory requests). At the end
of sampling, the multi-grain management unit processes the
sampled raw data of memory accesses, including the size
of requested data per memory request, etc. After setting up
the new cache granularity, the multi-grain management unit
begins a new cycle of sampling.

To select an appropriate cache granularity, we should
answer two questions that whether DyCache is efficient at
current cache granularity for the memory access pattern of
the application and what cache granularity DyCache should
choose in the next period, if DyCache is inefficient. DyCache
solves the questions in two steps. First, DyCache evaluates
its efficiency from two dimensions, the cache miss rate and
the ratio of fine-grain data accesses (32B and 64B) to all the
data accesses. The ratio of fine-grain data accesses to all the
data accesses is calculated by the distribution of the accessed
data sizes of sampled memory accesses. The cache miss rate
reflects the spatial locality of data accesses and the ratio of
fine-grain data accesses to all the data accesses reflects the
proportion of fine-grain data access.

Therefore, memory access patterns are categorized into
four types, which is shown in Fig. 7. When memory accesses
have good locality, no matter the data access is coarse-
grain or fine-grain, DyCache will keep cache management
granularity unchanged. For example, assuming current cache
granularity is coarse-grain (128B) and the majority of data
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the two dimensions, memory access patterns are categorized into four
types. DyCache makes the decision of the change of cache management
granularity based on the type of memory accesses. “CG” and “FG” denote
coarse-grain cache management and fine-grain cache management
respectively and the arrow means the change of cache management
granularity.

access are fine-grain (say 32B), if these data access have good
locality, this means fine-grain data accesses benefit from
data prefetching of coarse-grain cache management. Hence,
DyCache continues using coarse-grain cache management.
When memory accesses have the poor locality, two cases
will cause the change of cache management granularity. One
case is when data access is coarse-grain and current cache
management granularity is fine-grain, poor locality will cause
frequent cache line replacement. Although fine-grain cache
management supports coarse-grain memory access, the over-
heads of cache coherence increases due to the frequent cache
line replacement. Therefore, Dycache switches cache man-
agement granularity from fine-grain to coarse-grain. Another
case is when data access is fine-grain and cache manage-
ment granularity is coarse-grain. Due to memory diver-
gence, coarse-grain cache management fetches a great deal
of unwanted data, which decreases cache efficiency. There-
fore, DyCache switches cache management granularity from
coarse-grain to fine-grain.

If DyCache decides to utilize the fine-grain cache manage-
ment, it will compare the number of 32B data requests and
64B data requests. If the number of 32B data requests is more
than that of 64B data requests, DyCache chooses 32B as the
new cache granularity. Otherwise, it chooses 64B.

D. SUPPORTED CACHE GRANULARITY

Currently, the cache granularities supported by DyCache are
32B, 64B and 128B. This is because modern GPU only can
issue 32B, 64B or 128B memory requests. Therefore, smaller
granularity (such as 16B, 8B, etc.) cannot benefit cache effi-
ciency and throughput. However, as new GPU applications
emerge, smaller granularity may become important in the
future as well.
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E. CACHE LINE REPLACEMENT POLICY AND CACHE
COHERENCE

For the cache line replacement in coarse-grain mode,
the whole cache line should be replaced when a request is
a miss. Hence, DyCache keeps using the default cache line
replacement policy (e.g. FIFO, LRU). While in multi-grain
mode, DyCache uses different policies to process a 128B
request miss and a fine-grain data (32B or 64B) request miss
respectively. For an 128B request miss in multi-grain mode,
DyCache can also use FIFO or LRU replacement policy
because DyCache maintains LRU information for the 128B
cache line. For a 32B or 64B data request miss, two cases
should be considered. One case is that when the common-
tag of a certain cache line is matched with the common-tag
of requested data in the indexed set. In this case, DyCache
needs to choose one or two chunks to evict. By comparing the
last access time of each chunk, DyCache will evict the least
recent used chunk. The other case is that there is no common-
tag of all cache lines in the indexed set matching with the
common-tag of the requested data. For this case, DyCache
just chooses a 128B cache line based on LRU policy to evict,
writes back all the dirty chunks and fills the fetched data in
the first 32B or 64B chunk.

For the multi-grain cache management, DyCache also
needs to consider the cache coherence problem. The cache
coherence problem happens when the size of accessed data
is bigger than the cache granularity. For example, when the
current cache granularity is 32B, if only the chunk-tag of the
first 32B word of a 64B data matches with a 32B chunk-
tag of a certain cache line in the indexed set with the same
common-tag, this causes a partial hit. In this partial hit case,
DyCache invalidates all the partial hit 32B chunks and writes
back the dirty ones. Then, DyCache reissues this 64B request
into memory pipeline.

IV. METHODOLOGY

We choose 19 representative applications from Rodinia [11]
and GraphBig [12]. For conventional general purpose com-
puting on GPU, Rodinia provides a collection of programs.
For emerging applications, GraphBig includes a broad scope
of graph computing applications. Table 1 shows the the abbre-
viation names and descriptions of all the applications.

We implement our idea on GPGPUSim-3.2.2 [13]. And
we use the default GTX-480 configuration for the simu-
lator. To compare with Elastic-Cache, we implement it on
GPGPUSim simulator as well. Table 2 shows the basic con-
figuration of the simulator.

V. EVALUATION

A. PERFORMANCE

The biggest advantage of DyCache is that DyCache is very
flexible to choose an appropriate cache granularity for appli-
cations in real time according to the memory access pat-
tern, while Elastic-Cache uses a static management policy
which is not able to change cache granularity for different
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TABLE 1. Benchmarks for evaluation.

Abbreviation | Description

BP Back propagation

BT B+tree search

BFS Breadth first search

CFD Computational Fluid Dynamics
GE Gaussian elimination

HW Heart wall

HP HotSpot

KC KMeans clustering

LUD LU Decomposition

NW Needleman-Wunsch

PF Particle filter

SRAD Speckle Reducing Anisotropic Diffusion
SC Streamcluster

BC Betweenness centrality

CC Connected component

DC Degree centrality

GC Graph coloring

SSSP SSSP

TC Triangle count

TABLE 2. Basic GPGPU-Sim configuration.

Number of SMs 15
Threads per SM 1536
Threads per warp 32
Warp scheduling policy GTO
L1 cache size 16KB
L1 cache association 4-way
L1 cache block size 128B

memory access patterns and only supports one small cache
granularity (32B or 64B). Fig. 8 shows the normalized IPCs
of Elastic-Cache and DyCache with different configurations
for the above 19 applications and the baseline is the basic
wide cache line cache. Elastic-Cache-32 and Elastic-Cache-
64 represents Elastic-Cache using 32B-chunk and 64B-chunk
as the cahce management granularity respectively. DyCache-
N means DyCache sets N% as the threshold of cache
miss rate and the ratio of fine-grain accessed data to dis-
tinguish good/poor locality and fine-/coarse-grain memory
access. In general, the geometrical mean normalized IPC of
the 19 applications for Elastic-Cache-32, Elastic-Cache-64,
DyCache-25, DyCache-50 and DyCache-75 are 1.12, 1.09,
1.12, 1.18, and 1.18 respectively. Moreover, the geometrical
mean performance for regular applications (BP, BC, BT, GE,
GC, HW, HP, LUD, NW and SRAD) are 0.92, 0.94, 0.92,
0.99 and 1.01 respectively, while for irregular applications
(BFS, CFD, CC, DC, KC, PF, SC, SSSP and TC) are 1.36,
1.25, 1.37, 1.40, 1.39. From these results, we can see that
DyCache improves the IPC by 40% for applications with
irregular memory accesses and doesn’t harm the performance
for applications with regular memory accesses at the mean-
time. Comparing with static cache management, DyCache
performs 9% and 4% better than Elastic-Cache for regular
and irregular memory accesses respectively.

Although DyCache can perform better than Elastic-Cache
for most of applications, however for a few applications,
Elastic-Cache outperforms DyCache. For example, BFS
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FIGURE 8. Normalized IPCs of Elastic-Cache and DyCache for all the 19 applications. Baseline is basic cache with wide cache line(128B).
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FIGURE 9. Miss rates of the baseline cache, Elastic-Cache and DyCache for all the 19 applications.

performs 20% better on Elastic-Cache-32 than on DyCache.
The reason is that BFS has two kernels which have different
memory access patterns. One kernel performs irregular mem-
ory accesses, while the memory access pattern of another ker-
nel is regular. Therefore, in this case, DyCache has to switch
cache granularity between fine- and coarse-grain frequently,
which degrades its performance dramatically.

For the dynamic cache management of DyCache, it evalu-
ates cache efficiency from two dimensions, miss rate and the
ratio of fine-grain memory accesses to all memory accesses,
which we have discussed in the section of cache granularity
selection. The threshold for miss rate and the ratio of fine-
grain is a key factor that directly affects the performance.
If the threshold is too low, DyCache may treat a coarse-grain
memory access pattern as a fine-grain memory access pattern
by mistake, which brings unnecessary overheads of the fine-
grain management. On the other hand, if the threshold is
too high, DyCache will be insensitive to the change of the
memory access pattern, which makes DyCache inefficient.
According to our results, thresholds between 50% and 75%
will be a good choice for most of applications.

Besides, another problem for DyCache is the overhead of
changing cache management granularity. Due to the down-
ward compatibility, there are nearly no overheads when cache
granularity changes from big size to small size, because the
management information of chunks is able to be inherited.
But, when cache granularity changes from small size to big
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one, all the information of the chunks will be invalided due
to the consideration of cache coherence. The performance
degradations of BFS, CFD and SC are caused by this prob-
lem. One solution is retaining the data whose size is equal
to or bigger than the new cache management granularity.
For example, if cache granularity changes from 32B to 64B,
DyCache retains all the 64B and 128B data and invalidates
all the 32B data.

Moreover, by using the dynamic multi-grain management,
DyCache decreases the cache miss rate and reduces the num-
ber of memory requests sent to the off-chip memory due to
the cache miss. Fig. 9 shows the cache miss rates of Baseline
(128B), Elastic-Cache, and DyCache. Obviously, DyCache
has the lowest cache miss rate for most of applications and
the miss rate goes down by 10% to 60%.

B. SENSITIVITY STUDY

1) CACHE VOLUME

For GTX 480, L1 cache and shared memory share the whole
64KB on-chip memory. There are two cache volume configu-
rations (16KB and 48KB) for L1 cache. Fig. 10 shows the nor-
malized IPCs of 16KB/48KB DyCache using two different
thresholds (50% and 75%) respectively. After increasing the
cache volume, the speedup of DyCache against the baseline
cache (128B) drops. This is because the data set we test is a
bit small relative to the 48KB cache volume, which induces
that the miss rate of baseline cache drops and the IPC of the
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FIGURE 11. Miss rates of the baseline cache drops when its volume
increases from 16KB to 48KB.

baseline increases by 24% on average. Fig. 11 shows the drop
of miss rate of the baseline cache (128B) after cache volume
increases to 48KB. However, as the practical data sets are
increasingly getting bigger, the 48KB on-chip memory is not
sufficient at all. Therefore, it’s still very important to explore
the high efficient cache management for GPU.

2) SAMPLING PERIOD LENGTH

The sampling period length is another factor that affects
the performance of DyCache. Fig. 12 shows the speedup
of two sampling period lengths (5K and 10K memory
access requests) against 1K memory access requests. On one
hand, longer sampling period length may harm performance,
because of the long adjustment interval. In other words,
when memory access pattern changes at the beginning of
the sampling period, DyCache can change the cache man-
agement granularity until the end of this sampling period.
However, on the other hand, longer sampling period length
can benefit performance for applications with frequent fluc-
tuation of memory access patterns, because longer sampling
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FIGURE 12. Speedups of using long sampling period length. The baseline
is DyCache with sampling period length of 1K memory access requests.

period length can diminish the frequency of changing cache
granularity back and forth. Therefore, an adjustable sampling
period length will be a good choice. At the beginning of
the application execution, DyCache can use a short sampling
period length to character the memory access pattern quickly.
Moreover, if the memory access pattern varies frequently,
DyCache can increase the sampling period length properly.

VI. RELATED WORKS

A. MEMORY ACCESS COALESCING

Memory access coalescing technique has been studied for
both CPU and GPU. To improving memory bandwidth for
CPU, Juan [14] studies the multi-porting and banking for
superscalar processors, while Davidson and Jinturkar [15]
uses wide memory requests by combining several requests.
For GPU, memory coalescer in LDST unit is responsible
for combining intra-warp requests that access continuous
128B-data in memory space. Kloosterman et al. [16] pro-
poses the inter-warp coalescing by merging requests across
warps. Yang et al. [17] and Baskaran er al. [18] use
compile techniques to improve the efficiency of coalesc-
ing. DyCache utilizes the multi-grain cache management to
improve L1 cache efficiency, which is orthogonal to memory
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access coalescing techniques. By using both DyCache and
memory access techniques, we can build a fine-grain memory
system for GPU to provide a high efficient on-chip data
storage and a high bandwidth off-chip data transfer.

B. FINE-GRAIN CACHE MANAGEMENT

Prior works propose fine-grain cache managements to
improve L1 cache efficiency. Some prior works explore split-
ting the coarse-grain cache line into small multiple sectors,
such as Sector Cache [7], Decoupled Sectored Cache [8]
and Pool-of-Subsector-Cache [9]. However, these works can
only store words in continuous memory space. DyCache
supports the multi-grain management and allows words in
non-continuous memory space to be stored in the same 128B
cache line. Elastic-Cache [5] explores a fine-grain manage-
ment to store words in non-continuous memory space and
stores chunk-tags in unused shared memory space without
shrinking L1 cache size. Different from the static fine-grain
management of Elastic-Cache, DyCache can adjust the cache
granularity based on memory access patterns. LAMAR [19]
utilizes a locality-aware hardware predictor to support the
adaptive adjustment of access granularity, while DyCache
chooses cache management granularity by profiling memory
access pattern and cache miss rate.

VII. CONCLUSION

We propose a dynamic multi-grain cache management for
GPU on-chip L1 cache to improve its efficiency for regular
and irregular memory accesses. Unlike other static cache
managements, DyCache is very flexible to switch among
different granularities. DyCache can split 128B-cache line
into three different sizes of chunks (128B, 64B and 32B)
dynamically, based on memory access patterns. DyCache
utilizes the cache miss rate and the ratio of fine-grain memory
accesses to all the data accesses to character the memory
access pattern and the cache efficiency. If memory accesses
are irregular and fine-grain and cache is inefficiently utilized,
DyCache chooses a fine-grain cache granularity according to
the distribution of the sizes of the accessed data to improve the
cache efficiency. Otherwise, DyCache utilizes coarse-grain
cache line (128B) to provide high efficient accesses for the
regular memory access pattern. Our experiment demonstrates
that DyCache can achieve a 40% geometric mean speedup
of IPC for applications with irregular memory accesses and
doesn’t impact the performance of applications with regular
memory accesses.
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