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ABSTRACT Adaptive navigation is the process of modifying a vehicle’s direction or motion path based
on measurements taken while moving. When exploring a scalar field, such as the temperature or the
concentration level of a pollutant across a region of interest, adaptive navigation may allow the identification
of locations of interest—like the maximum temperature or the source of the pollutant—without exhaustively
mapping the entire region. Adaptive navigation has been hailed as a powerful capability, and significant
work has been performed to explore how such techniques can be used to find the local extreme points and
follow contour levels in a field. Our own prior work in this field has matured to experimentally verifying and
validating such capabilities through field demonstrations. Beyond extrema-finding and contour following,
however, little to no prior work has been performed on moving to/along other critical features in a scalar
field, such as down ridges, up trenches, and to saddle points; performing such maneuvers can be valuable
for a number of applications. In this paper, we provide and verify via simulation new multirobot adaptive
navigation controllers for moving with respect to these new features. We also present a multilayered control
architecture that unifies the execution of all of our multirobot adaptive navigation control primitives: extrema
finding, contour following, ridge/trench following, and saddle point positioning. In addition, we review
several considerations related to the performance of these controllers within unknown scalar fields. Finally,
we review ongoing and future work to experimentally verify our new controllers, improve and extend their
performance, and apply them to real field applications.

INDEX TERMS Adaptive navigation, adaptive sampling, gradient-climbing, differential control, multirobot
formations, formation control, cluster space control.

I. INTRODUCTION
In a conventional navigation scenario, a vehicle is provided
with a series of waypoints; the trajectory between these paths
may also be prescribed. In contrast, Adaptive Navigation
(AN) is the process of determining or modifying the vehicle’s
direction or path through a region based on measurements
taken while moving through that region.

In the simplest form of AN, the destination is explicitly
specified with alterations to the path permitted. A common
example of this is rerouting an automobile trip in order
to avoid traffic [1]. For robotic vehicles, a common exam-
ple of this is to avoid obstacles or adjust a route due to

challenging terrain. For wheeled robots, this has been
achieved by modifying artificial potential field methods with
fuzzy logic approaches in order to move safely through
dynamic and unstructured environments [2]. Fuzzy logic has
also been applied to adaptive navigation for legged robots
which handle obstructions differently than wheeled robots
given their ability to climb over some obstacles [3]. For
next generation Mars missions, multiple capabilities such
as identifying physical obstacles, estimating wheel slippage
probabilities throughout the region, and creating dynamic
predictions of path-following performance are integrated to
incrementally plan a route to a desired location [4].
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FIGURE 1. Critical Points within a Scalar Field: (left) 3D view of scalar surface, (right) overhead view of equivalent contour map.

In a second form of AN, the destination may not be spec-
ified at all. Examples of this include techniques to evade
enemies in a pursuit scenario [5] and to manage evacuation
routes during disasters [6].

A third form of AN consists of moving to or along defined
conditions of interest within a region without knowing their
explicit location a priori, such as navigating to the location
of maximum temperature or pollutant concentration level.
In such scenarios, AN can dramatically reduce time and/or
energy compared to a conventional approach of identify-
ing interesting features once a region has been exhaustively
mapped; furthermore, AN can be used when the region’s
characteristic of interest is time-varying, a condition that can
render conventional mapping approaches useless. In general,
the required AN motion decisions to move to/along features
of interest are based on some knowledge of the structure
of or a critical characteristic of the local scalar field; such
knowledge is generated through direct measurement by the
vehicle(s) as it/they move through the field.

A. SCALAR FIELDS
The most prevalent version of the third class of AN, and
the focus of this paper, involves navigation through scalar
fields, which are fields that associate a single scalar value
with each location within the field. For a planar region, the
scalar value is often depicted as the altitude of a surface at the
sampled point in a plane, as depicted in Figure 1. Scalar fields
are often used to represent environmental parameters such as
temperature or light levels, barometric pressure, radiation or
pollutant concentration measurements, and so on.

Interesting features in a scalar field include the minimum
and maximum values, contours of specific value, ridges and
trenches within the field, and saddle points. In such fields,
extreme points might represent the location of important
features such as a heat or pollution source or perhaps the
center of an anoxic region. Contours define the location
of specific values or concentrations and are important in
defining the extent of a feature, specifying safety thresholds,

etc. Ridges (trenches) define maximum (minimum) signal
paths from (to) critical points in a field; they also serve as
divides (accumulators) for other processes that flow with
respect to gradients (e.g., water flows away from ridges
and gathers in streams, etc.). Finally, saddle points serve as
minimum energy gateways for movement between adjoining
maxima (minima) (e.g., travelers in mountainous regions
move through saddle point ‘‘passes’’ in mountainous regions
when journeying between adjoining peaks or valleys). Alto-
gether, these features are the critical elements of a scalar
field; all are of interest for a wide range of applications,
and being able to navigate to/along all of these provides a
robust set of primitive capabilities for an adaptive navigation
system.

B. SINGLE VEHICLE SCALAR FIELD AN
Avariety of techniques have been proposed to navigate single
vehicle systems with respect to a scalar field.

Bio-inspired techniques are often intuitive but lack for-
mality, typically requiring significant verification via simula-
tion or experimentation. Such techniques have been explored
primarily for plume tracing, in which a well-defined scalar
field ridge exists and the objective is to find and move up
the ridge to the source. In cases where directional or flow
measurements are possible, a sensor array can be used to
sense the local upstream direction and compute a gradient in
gas concentration, mimicking the manner in which in which
moths sense the direction of pheromone plumes [7]. Moth
behavior also inspired a successful field demonstration of
plume tracing using an autonomous underwater vehicle with
a behavior-based control scheme; once the plume is sensed,
this controller drives the vehicle perpendicular to the flow and
repeatedly in and out of the plume, turning upstream each
time it passes through the plume [8].

When only point measurements are possible (or when field
changes at the scale of the robot are too small and/or noisy to
support differential sensing), single vehicles may take sev-
eral measurements in order to compute a field gradient. For
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example, a sliding mode controller has been demonstrated in
simulation in order to drive a single robot to extreme points
without the use of gradient estimation [9].

Experimentally, the underwater robotic vehicle the
Autonomous Benthic Explorer (ABE) used a bio-inspired
approach consisting of periods of random spatial motion,
similar to the chemotaxis behavior of E. coli, to generate
a local distribution of altitude measurements; this allowed
the vehicle controller to compute a bathymetric gradient and
to navigate to a specific location in a lake with respect to
the lakebed’s topology [10], [11]. Other experimental work
included adding a sinusoidal perturbation or some other
spatial dither to a vehicle’s path in order to gather enough
local spatial information to compute the field gradient and
then move accordingly [12], [13].

With respect to following contours (or similarly, level sets,
boundaries, etc.), a sliding mode control approach for mov-
ing a non-holonomic vehicle along a time-varying contour
without gradient information has been verified both in sim-
ulation [14] and in a hybrid experiment using a real vehicle
navigating with respect to a simulated (computed, not sensed)
field in an indoor ∼7m2 region [15].

C. MULTIROBOT SCALAR FIELD AN
Single vehicle approaches can suffer from the costly
maneuvers associated with sensing the local gradient [16].
Multi-vehicle systems, on the other hand, are able to gather
distributed spatial information instantaneously, eliminating
the need for spurious motions that cause delays and which
are detrimental in time-varying fields. Furthermore, multi-
vehicle systems can better compensate for vehicle failures,
can change their distributed aperture size and shape in
response to varying spatial frequencies within the field, and
can employ spatially-distributed sensing approaches other
than gradient-sensing, such as differential sensing across
the distributed aperture or the execution of decentralized
approaches. There have been a number of studies of Multi-
robot Adaptive Navigation (MAN), although few have been
demonstrated experimentally and almost none have been
implemented in the field.

A bio-inspired multirobot plume tracing capability was
demonstrated via simulation in [17]. This approach consisted
of a lead robot attempting to follow the plume using a single-
robot movement strategy but with two other robots flanking
the leader; as the leader moved out of the plume, one of the
flankers would presumably still be in the plume and become
the new leader.

With respect to more general extrema-finding, a swarm
approach has been demonstrated in simulation in which indi-
vidual robots repel at short distances but are attracted to those
with higher field readings over longer distances, thereby
moving the swarm to a local maximum [18]. An alternate
decentralized approach aligns robots laterally and bases the
forward speed of each robot on the local field reading in
order to advance a group to an extreme point; this has been
done in simulation for up to 8 robots and has been performed

experimentally with two robots using the variation of light
level over a distance of a few feet [19].

In [20], a group of robots successfully climbed a gradient,
but this is done by a single robot using a spatial dither to
compute the gradient and move towards the field maxima
while also serving as the leader in a leader-follower forma-
tion. In [21], a robot group shared distributed measurements
to compute a very low resolution estimate of the gradient,
but then only a single vehicle would act, or the single vehicle
would ascend the gradient while commanding other vehicles
to move in the same direction. Demonstrated experimentally
using small-scale lab equipment, the implementation used
only binary ‘‘in plume’’ or ‘‘out of plume’’ data; neverthe-
less, it showed 25-40% time reductions in plume tracking
compared to using only a single vehicle, with most of the
performance gain occurring with the use of only three robots.

In [22], a probabilistic gradient estimation technique is
demonstrated in simulation and shown to be robust to noise;
by using an ample number of mobile sensors (more than
3 times the minimal number for an idealized planar gradient
estimate), this approach is able to accommodate significant
deformations in the loosely controlled group’s geometry.
In [23], a minimal multirobot gradient estimation technique
(3 robots for planar gradient estimation) is proposed along
with a coordinated navigation policy for the robot group
to climb or descend the gradient. This work is matured
in [16] with the introduction of a provably stable adaptive
navigation strategy that decouples the formation keeping
task from the gradient-ascent/descent task. This strategy was
later evolved and evaluated via detailed simulations using an
archive of real underwater robot temperature data, leading to
the development of constraints for the specific vehicles used
in that project, the assessment of specific formations, and
the conclusion that gradient-based navigation would be feasi-
ble if implemented experimentally [24], [25], although such
experimental implementation has yet to be accomplished.
Experimental demonstration performed by [26] used three
robots in a table top light-sensing scenario; this work demon-
strated a centralized gradient estimation approach as well as
a distributed technique appropriate for instances of limited
communication among the mobile platforms. Other exper-
imental demonstrations of gradient-based extrema finding
includes our own work with wheeled robots responding to the
signal strength of a radio frequency field, performed within
a ∼1500 m2 outdoor testbed [27].
With respect to tracking/following contours (level sets,

boundaries), a number of research teams have used multi-
robot strategies in which the contour seeking/following func-
tionality is executed largely on an individual basis but with
loose interaction among robots to achieve certain capabilities.
In one such study, simulation was used to show individual
robots already stationed around a time-varying elliptical con-
tour move independently to maintain their position on the
contour; they then share their location to collectively generate
an estimate of the elliptical [28]. In [29], robots individually
moved toward and track a contour but shared information
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to establish efficient spatial spreading among the robots in
order to save energy in route to the contour given the ultimate
objective of collectively circumnavigating the contour; this
was demonstrated in simulation, and a single robot version
was demonstrated experimentally by tracking illumination
level within a∼1.25 m2 field. In [30], multiple vehicles track
a colored tape over a∼3m2 field in order to track a boundary;
similar experiments are performed by [31] using vehicles
driving over colored mats within a∼50 m2 workspace. These
systems used simple, single robot wall/tape following thresh-
old controllers to follow the contour, with periodic interac-
tion to avoid collision and/or promote convoy-like behavior
between robots.

A number of studies have explored tighter interaction
among multirobot groups in order to collectively navigate
to/along contours. In one such study, a swarm of robots within
a boundary use gradient information to move outward to find
the desired contour but interact with each other to evenly
space themselves around the field. This work exploited the
‘‘snake algorithm’’ approach for image segmentation func-
tions in image processing. Verified in simulation, this work
evolved in several steps to the point at which it can accom-
modate noisy sensor data and asynchronous communica-
tion [32], [33]. Another team further extended the use of the
snake algorithm approach to show simulations of multirobot
groups following moving two- and three-dimensional level
sets/surfaces [34]. Alternatively, in [35], simulations were
used to demonstrate the use of a cooperative filter using
Hessian information to move a robot group along noisy level
curves; active formation shaping was used to minimize errors
in gradient estimation. This work was extended in [36] to
enable a group of six robots to move along three-dimensional
level set surfaces in order to track the principal lines of the
surface’s curvature.

To our knowledge, the only field-grade experimental use
of MAN is our own work, conducted with non-holonomic
autonomous surface vessels in Lake Tahoe, CA and Stevens
Creek Reservoir, CA in order to ascend/descend bathymetric
gradients and to follow bathymetric contours; these opera-
tions were performed in regions of interest on the order of
∼75,000 m2 [37].

D. OTHER RELATED TECHNIQUES
MAN has similarities to potential field based navigation,
which has been explored by many research teams [38]–[41].
A typical potential field-based navigation scenario involves
navigation between two established points with the vehicle
‘‘descending’’ a field that is artificially created by placing
a sink at the destination, peaks at the location of sensed
obstacles, optional trenches along a desired trajectory, and
so on.

The MAN scenario is significantly different. To begin, the
destination, the desired path and the scalar field itself are all
unknown a priori. In addition, the scalar field represents a real
environmental phenomenon rather than artificially imposed
navigation construct. Furthermore, characteristics of the local

scalar field are estimated based on sensed environmental
data rather than having the desired velocity or applied force
be computed based on an explicitly defined potential field
function. Finally, while potential fields are typically used to
direct the desired velocity or force on a vehicle ‘‘down’’ the
surface of the composite field, once the local field is sensed in
MAN, multiple field characteristics (e.g., scalar value, gradi-
ent, differential offsets, etc.) may be applicable and they may
be used in a range of ways (move along or opposite to, move
perpendicular to, specify a net or differential stimulus, etc.).

If anything, the techniques are complimentary; in fact,
we note that MAN field implementations may include poten-
tial field-based collision avoidance, which we have demon-
strated at the level of both an individual vehicle as well as
at the multirobot formation level [42], [43]. In addition, some
researchers use potential field constructs to enable formation-
keeping [44] as an inner loop for or independent of the MAN
layer of the overall multirobot control system [16].

MAN is also different than work on scalar field estimation,
which has the objective of estimating the entire field; adaptive
motion control for that application usually has the objective
of determining where to sample the field in order to establish
the best field estimate [45]–[47]. MAN, on the other hand,
seeks to adaptively move to/along specific features of interest
in order to support the needs of specific applications, uncon-
cerned with estimating the field in the vicinity of features that
are not of interest.

E. CURRENT FOCUS
As a summary of the described prior work, it can be seen that
MAN is a powerful technique given its ability to efficiently
locate and/or move along scalar field features of interest. It is
a field, however, that is still in its infancy. While outstanding
analytic and simulation work has been accomplished for
a wide range of MAN approaches, this work has focused
completely on extrema-finding and contour following; little
to no work has been done on techniques to navigate to/along
other scalar field features, such as down a ridge, up a trench,
or to a saddle point in a field. In addition, very little work
has been done to experimentally verify any of the developed
techniques, with most experiments being performed with
indoor testbeds having severe constraints on the size of the
field, the capability of the robotic vehicles, and the nature
of the field itself. To our knowledge, the only field-grade
experimental use of MAN is our previously mentioned work
with autonomous surface vessels [37].

The primary contribution of this article is in the presenta-
tion and simulation-based verification of new control prim-
itives for descending ridges, climbing trenches, and locating
saddle points within a scalar field. These primitives use amin-
imal number of robots and simple, reactive, differential con-
trol laws that use currently sensed data; as such, they provide
an initial proof-of-concept of these capabilities. An additional
contribution is the use of a multilayered control framework
to unify the execution of these new control primitives with
our previously developed primitives for extrema finding and
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FIGURE 2. The Adaptive Navigation Layered Control Architecture: In the lowest layer (right), individual robots execute closed loop velocity
commands. A formation control layer (middle) issues robot-level velocity setpoints in order to maintain a specified cluster geometry and to
drive the cluster as commanded. Finally, an adaptive navigation layer (left) provides cluster geometric setpoints and drive commands based
on scalar field measurements and the selected navigation mode.

contour following. A summary of these previously developed
gradient-based controllers is included in order to 1) show how
control architecture unification is achieved, 2) compare the
behavior of all of these control primitives in the context of
a single scalar field example, and 3) highlight the compre-
hensive nature of our collection of MAN control primitives
which collectively support navigation to/along every critical
feature in a scalar field. Furthermore, we discuss several
considerations and performance constraints relating to the use
of these control primitives. Finally, we describe ongoingwork
in experimentally demonstrating the new ridge/trench/saddle
point primitives, improving their performance, applying them
to specific field applications, and extending this work to more
complex fields.

Section II of this paper reviews the layered control archi-
tecture used for our MAN work. Because performance of
the primitives is a function of the relative position of the
robots, the adaptive navigation control layer issues directives
to a lower level formation controller that enforces the spatial
geometry of the robot group; this formation controller, in
turn, issues drive commands to each robot. Throughout the
paper, in order to focus on the adaptive navigation control
primitives, we assume ideal formation-keeping and holo-
nomic motion behaviors at the formation and robot level.
In Section III of the paper, we briefly review our three-robot,
gradient-based controllers for extrema-seeking and contour
following, and we illustrate their behavior via simulation
through the use of a notional scalar field; we also show a
simple case of contour following for a time-varying scalar
field. Section IV presents our minimal five-robot differential
approach for ridge descent, trench ascent, and saddle point
positioning. These primitives are demonstrated via simula-
tion using the same notional scalar field used in Section III.
Section V discusses performance considerations for our suite
of controllers, and Section VI highlights ongoing and future
extensions of this work. Finally, Section VII summarizes the
work performed and draws conclusions.

II. THE LAYERED CONTROL ARCHITECTURE
Central to our adaptive navigation technique is the ability
to sense, compute, and move with respect to spatial

characteristics of a scalar field. We do this with a mini-
mal number of robots, each with the ability to sample the
field and share information. Motion of the robots is spec-
ified by a formation controller that maintains the relative
position of the robots to ensure the collection of scalar
field data in all spatial dimensions and at an appropriate
spatial resolution. At a higher level, the adaptive naviga-
tor ingests realtime scalar field samples from the robots,
computes relevant field characteristics (such as the gradient
or differential offsets), and determines appropriate motion
commands for the multirobot formation using a reactive
control policy. This layered control approach is pictured
in Figure 2.

A. CLUSTER SPACE CONTROL LAYER
For formation control, we adopt a cluster space control strat-
egy. The cluster space technique is an operational space
control approach that treats the multirobot formation as
a full degree-of-freedom, articulating virtual mechanism.
This virtual mechanism can move through its environ-
ment while changing its shape and size as demanded by
any task. The controller accepts specifications and com-
putes compensations in the cluster space, converting to/from
robot-specific state variables through the use of kinematic
transforms [48].

In this technique, the pose of the robot cluster is repre-
sented by the location and orientation of the cluster frame (the
location of which is defined by the user as some function of
robot positions), the relative orientations of each robot with
respect to the cluster frame (which are not typically freely
specified due to robot nonholonomic constraints), and a set
of variables representing the spatial geometry of the robots.
These pose variables, defined by EC, and their derivatives
define the cluster state space. For a cluster of n robots each
withm degrees of freedom, nonlinear kinematic transforms of
the form shown in Eq. (1) are used to relate these cluster pose
variables to conventional robot pose variables, defined by ER.
The velocity relationship between spaces is a linear (although
pose-dependent) transform represented by a Jacobian matrix,
J, of the form shown in Eq. (2), where {G} represents a fixed
Global frame of reference. The inverse relationships may also
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be found.

ĖC =


c1
c2
...

cmn

 = KIN
(
GER
)
=


g1(r1, r2, · · · , rmn)
g2(r1, r2, · · · , rmn)

...

gmn1(r1, r2, · · · , rmn)


(1)

ĖC = GJ
(
GER
)
G ĖR (2)

Within the cluster control layer, robot space state infor-
mation is converted to cluster space state values through
the forward kinematic functions, KIN and J , as shown in
Figure 2. Cluster space errors are computed by subtracting the
computed cluster space state from the cluster space setpoints
provided by the adaptive navigation control layer. An error-
driven resolved rate control law computes cluster velocity
compensation commands, and these commands are converted
to robot-specific velocity setpoints via the inverse Jacobian
transform.1 Although not used for the simulations performed
in this article, this control architecture can accommodate
potential field collision avoidance capability either at the
level of the individual robot or for the aggregate cluster.
In addition, Lyapunov stability has been characterized for
arbitrary cluster space command trajectories (such as those
that will be generated by the adaptive navigation layer), with
or without the collision avoidance options [43].

Use of the cluster space formation control layer allows the
desired cluster geometry and motion goals to be specified and
monitored in the cluster space, a capability that significantly
eases supervision by a human operator and provides a con-
venient abstraction layer for higher level controllers such as
the adaptive navigation control layer. In addition, computing
control compensations in the cluster space typically leads
to well-behaved geometric motion even if individual robot
motion is highly complex.

For our prior implementations of MAN extrema find-
ing and contour following, a three robot cluster was
used [27], [37]. For our new controllers for ridge descent,
trench ascent and saddle point positioning, we introduce a
new five-robot cluster, which is described in Section IV of
this paper.

B. ADAPTIVE NAVIGATION CONTROL LAYER
The primary function of the adaptive navigation control layer
is to direct the motion of the robot formation in order to
execute the selected navigation objective. This is a feedback
process given that the control law is a function of scalar
field measurements taken by each of the spatially-distributed
robots.

In particular, the Feature Estimation block within the adap-
tive navigation layer shown in Figure 2 estimates parameters
relating to the nature of the scalar field based on the realtime

1Full dynamic control is possible through the use of a controller that
computes force/torque compensations, in which case a Jacobian transpose
transform is used to convert these compensations to robot-specific force and
torque inputs. For details, see [49].

sensor measurements from each robot in the cluster. In our
prior work focused on extrema finding and contour following,
the role of this block was restricted to gradient estimation.
Given the new control primitives proposed in this paper for
ridge descent, trench ascent, and saddle point positioning,
we have expanded the role of this function to be the location
in the control architecture where estimates of scalar field
parameters are generally computed. This includes gradient
estimates (bgrad ) for extrema finding and contour following
as well as differential fieldmeasurements (dij) between robots
in the cluster and the scalar field value at the origin of the
cluster frame (zc).
Within the Adaptive Navigator block, specification of the

navigation mode (e.g., which control primitive to invoke)
leads to the use of the appropriate scalar field parameter
estimates generated by the Feature Estimation block, and the
selection of the relevant MAN control laws. As is described
in Section III, for extrema-finding and contour following,
the robot cluster is controlled to move in a particular direction
with respect to the field gradient. As described in Section IV,
ridge/trench following is achieved by using the differential
field measurements to move the cluster such that it strad-
dles the ridge/trench while also moving in the appropriate
direction along the feature; saddle point positioning generally
occurs at the end of a ridge/trench maneuver if/when the
cluster motion settles.

Ultimately, an additional role of the adaptive navigation
layer is to specify the shape and size of the multirobot cluster
to ensure that viable estimates of the field gradients and/or
differential measurements are computed given the spatial
frequencies within the field, the magnitude of the gradient,
noise, and mission parameters. For this study, a fixed geom-
etry appropriate for the given mission and scalar field is
assumed in order to focus on the aggregate motion control
strategies; modulating the geometry of the cluster, however,
is an important area for future work. The adaptive naviga-
tion layer can also be used to specify a holonomic or non-
holonomic style of aggregate cluster motion; in this paper,
holonomic cluster motion is assumed, but details on how to
accommodate both options can be found in [37].

III. ADAPTIVE NAVIGATION FOR EXTREMA FINDING
AND CONTOUR FOLLOWING
In prior work, we experimentally implemented both extrema
finding and contour following through navigation policies
that steer the robot cluster based on the direction of the local
scalar field gradient. In this Section, we include a summary of
this work in order to provide a single article summarizing our
full suite of MAN controllers, to illustrate the comparative
behavior of all of these controllers within a prototypical
scalar field, and to provide the proper context for showing the
unification of all of the MAN controllers in the multilayered
control architecture shown in Figure 2.

An estimate of the gradient can be established through the
use of measurements of the scalar field taken by each of the
three distributed robots, as shown in [37]; this estimate uses
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an assumption that the three measurements establish a local,
planar approximation of the scalar field. Given this, the role
of the multirobot adaptive navigation policy is to direct the
motion of the aggregate robot cluster with respect to the
gradient given the objective of either moving toward a local
field maximum, a local field minimum, or along a specific
field contour.

A. EXTREMA-SEEKING CONTROL PRIMITIVE
Movement to a local maximum is achieved by driving the
cluster in the direction of the gradient, bgrad . Conversely,
movement to a field’s local minimum is achieved by driving
the cluster in the direction opposite of the gradient, bgrad +π
radians. Although other speed-setting policies are possible,
in practice we have used a policy in which a constant cluster
speed, sc, is adopted while the direction of travel is modified
in order to perform the adaptive navigation task of interest; we
discuss this choice in Section V. Given this policy, extrema-
seeking is performed by using the following set-points for the
cluster-level motion controller:

(ẋc)des = sc
[
cos

(
bgrad + dπ

)]
(3)

(ẏc)des = sc
[
sin
(
bgrad + dπ

)]
(4)

where d = 0 for gradient ascent and d = 1 for gradient
descent. In the simplest possible implementation, the clus-
ter is driven as per Eqs. (3)-(4) while maintaining a con-
stant shape, size and orientation appropriate for the field
being explored; the relative robot headings are generally not
specified independently for non-holonomic vehicles and are
allowed to vary in order for the individual robots to maneu-
ver as required to achieve the specified cluster-level motion
and geometry. We note that, given a holonomic cluster-level
motion strategy, the cluster heading setpoint

(
θ̇c
)
des is arbi-

trary; for this work, however, it was set to the bearing of the
gradient, (bgrad ).

B. CONTOUR FOLLOWING CONTROL PRIMITIVE
Contour-oriented navigationmay be performed by driving the
cluster in a direction perpendicular to the gradient, bgrad ±
π/2 radians, for counterclockwise (CCW) vs. clockwise
(CW) circumnavigation of the local maximum, respectively.
However, because in application we often wish to follow a
contour with a designated scalar value, we have adopted a
path-following approach for the contour following behavior.
Accordingly, we specify a bearing setpoint that is equal to the
desired contour bearing (the steady state solution) plus a cor-
rective term proportional to the scalar error, (zdes−zc), thereby
steering the cluster toward the desired contour; the corrective
term is limited to±π/2 radians, orienting the direction of the
cluster’s travel up or down the gradient in the direction of the
desired contour for large deviations. Mathematically:

bcf = bgrad + d{sgn (zdes − zc)

×min [Kct × ‖zdes − zc‖ , π/2]− (π/2)} (5)

where d = 1 for CW navigation and d = −1 for CCW
navigation, and Kct is the scalar error correction gain. This
path-following approach is strategically similar to that used
for an operational single boat system that follows paths in
order to perform bathymetric mapping applications [50]. The
value zc is the estimate of the scalar field value at the cluster’s
location, which is defined as the location of the origin of
the cluster frame. If no robot is physically at that location,
the value is estimated based on an interpolation of the mea-
sured values given the local planar estimate of the field.

Using the same constant cluster speed policy as previously
discussed, contour-following is performed by using the fol-
lowing set-points for the cluster-level motion controller:

(ẋc)des = sc
[
cos

(
bcf
)]

(6)

(ẏc)des = sc
[
sin
(
bcf
)]

(7)

As before, for this initial implementation, the cluster is
controlled to maintain constant shape, size and orientation
appropriate for the field being explored, and the relative robot
headings are not independently specified.

C. ILLUSTRATION OF EXTREMA FINDING AND CONTOUR
FOLLOWING CONTROL PRIMITIVES
To demonstrate these policies via simulation, consider the
scalar field shown in Figure 1, which covers a 600 m by
600 m square area and which has several localized minima
and maxima; the scalar value ranges from approximately
65 units at the tallest peak to -20 units at the deepest abyss,
and it approaches a value of 0 units at edges of the spatial
field. The mathematical function used to generate this field is
given in Appendix A. For both extrema finding and contour
following, the field is explored by a 3-robot cluster moving at
1 m/s in an equilateral triangle with 5 m sides; the cluster has
a steering time constant of 1 sec. These physical parameters
are similar to the characteristics of the physical multirobot
systems currently being implemented and operated by the
authors; this includes Pioneer-class or ATV-style wheeled
robots for land-based operation and custom-built automated
kayaks for marine surface operations. As previously stated,
in order to focus on the behavior of the adaptive navigation
control primitives, we assume ideal formation-keeping and a
holonomic motion behavior at the formation level. We note
that cluster level motion commands can easily be verified to
ensure against saturation by checking the robot space velocity
commands computed by the inverse Jacobian function in the
cluster space controller; although we have not implemented
that here, we have demonstrated its capability in other work.

For the described scenario, Figure 3 shows the paths taken
by the 3-robot cluster for the extrema finding behavior. Sev-
eral different initial positions in the field are used, and initial
cluster bearing angles are set perpendicular to the initial
gradient in order to cause a transient in the cluster steering
behavior. The simulation Paths A and B show gradient ascent,
and path C shows gradient descent. As can be seen in all cases,
the cluster is able to appropriately ascend/descend the scalar
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FIGURE 3. Gradient Ascent/Descent Examples: Paths A and B ascend the local gradient, with Path A ending at the global maximum and
Path B ending on a local maximum. Path C descends the gradient, ending at the global minimum: (left) 3D view of scalar surface, (right)
overhead view of equivalent contour map.

field with a cluster-level steering policy that drives the cluster
in the direction of (Paths A and B) or opposite to the direction
of (Path C) the local gradient. Steering control performance
for Path B is shown in the time response plot in Figure 4; this
plot shows the error in the cluster’s direction of travel given
an instantaneous setpoint established by the computed field
gradient.

FIGURE 4. Time History of Gradient-Following Capability for Path B from
Figure 3: The red line indicates the instantaneous bearing of the local
gradient while the blue line indicates the actual direction of travel of the
robot cluster. As expected, the cluster tracks the gradient.
At approximately 170 sec, the cluster reaches the local peak. With no
motion termination condition, the cluster moves back and forth in the
vicinity of the peak.

Using the same field, Figure 5 shows paths taken by the
3-robot cluster for the contour-following control primitive.
Several different initial positions in the field are used.
Simulation Paths A and B show CCW contour following
with initial positions below and above the desired contour,

respectively; Path C shows CW contour following with an
initial location below the desired contour. As can be seen in all
cases, the cluster is able to travel to and follow the appropriate
contour in the designated direction. As an example of steering
control performance, Figure 6 shows the PathA time response
of the scalar field error as well as the error in the cluster’s
direction of travel given the instantaneous bearing setpoint
established by Eq. (8).

D. TIME-VARYING SCALAR FIELD
For single robot gradient-based navigation using spatial
dithering, the robot must cycle through a spatial pattern
each time a gradient is computed. For a time-varying field,
this results in computational delay that distorts the gradient
estimate, potentially to the point that the field cannot be
navigated. The multirobot strategy does not suffer from this
problem due to its ability to instantaneously sample the field
and compute a realtime gradient.

As a simple demonstration of the ability of a multirobot
cluster’s ability to track a moving contour, Figure 7 shows
results from a case using the same prototypical field and robot
formation. In particular, a field of constant shape translates
at a constant velocity that is 50% of the speed of the clus-
ter, and the cluster is commanded to track a contour value
of 45 units. Figure 7 shows the cluster’s ability to track the
specified contour in a frame fixed to the moving scalar field.
Figure 7 also shows the cluster’s motion in the global frame
with a contour overlay showing the initial position of the
field; the field moves to the right in the positive ŷG direction.
Figure 8 provides a time history of the cluster’s scalar value,
showing a small steady state scalar offset that leads or lags the
desired contour as the cluster rotates around it; we note that a
more sophisticated controller using integral or feed-forward
control could be used to lower this error.
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FIGURE 5. Contour-Following Examples: Paths A and B move CCW about the local peak(s), with Path A ascending the scalar field to its
contour level setpoint and Path B descending to its contour level setpoint. Path C moves CW about the local peak and ascends to its
contour level setpoint: (left) 3D view of scalar surface, (right) overhead view of equivalent contour map.

FIGURE 6. Time History of Contour-Following Capability for Path A from Figure 5. (a) Time history of the robot cluster’s scalar value as it moves
to the desired contour level of 45 units. (b) Time history of bearing control, showing how the robot cluster’s heading tracks the desired contour
bearing given the contour-following setpoint generation policy.

IV. ADAPTIVE NAVIGATION FOR RIDGE/TRENCH
FOLLOWING AND SADDLE POINT STATION KEEPING
In addition to the control primitives described in Section III,
we desire primitives to navigate down ridges / up trenches
as well as to hold position on or identify the location of a
saddle point. In the context of this work, a descending ridge /
ascending trench is a continuous path on the virtualized scalar
surface with a monotonically decreasing / increasing eleva-
tion and composed of points which are a surface maximum /
minimum in a crossing axis. Alternatively, a saddle point is a
location on the virtualized scalar surface which is a stationary
point that is a relative minimum in one direction but a relative
maximum along a crossing axis.

To our knowledge, little to no work has been done on
adaptive navigation techniques specific to these capabilities.
Ridge descent is important for applications such as following
plumes downstream to locate their impact zones, identifying

departure paths that provide maximum parameter ‘‘service
levels’’ as a function of distance from the source (e.g., for
extended wireless communications, etc.), locating ‘‘divides’’
in an environment for processes that are driven by param-
eter gradients (such as gravity driven flows with respect
to terrain), and so on. Trenches serve as accumulators for
gradient driven processes and also represent paths of minimal
exposure for approaching a set of dangerous sources. Saddle
points often serve as passageways for minimum energy or
exposure paths between adjacent peaks or valleys.

We note that while a gradient ascent/descent approach
works for ridge ascent / trench descent, the opposite –
descending ridges and ascending trenches – cannot be
achieved through such strategies. This is because the gradi-
ent in the vicinity of these features often diverges from the
alignment of the feature of interest. Accordingly, we need a
new strategy to descend a ridge and ascend a trench.
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FIGURE 7. Contour Following on a Moving Scalar Field: A cluster executes contour following Scenario A from Fig. 7, moving up to and then
following the desired contour, but in this case, the scalar field is moving in the positive Y direction: (left) overhead view of cluster’s path
in the moving field frame; (right) overhead view of the cluster’s path in the non-moving global frame, with the scalar field contour shown
for a time of t = 0 sec. A supplemental file associated with this article shows an animation of this behavior.

FIGURE 8. Time History of the Cluster Scalar Value while Contour
Following on a Moving Scalar Field: Once transient motion has settled,
the cluster exhibits a small steady-state error which lags the desired
contour level in the direction of its travel; this lag, however, results in the
cluster’s scalar value alternating between having a lower then higher
value than the desired scalar value.

As will be described, differential sensing can be used to
generate control signals that adjust the lateral position of
a cluster that straddles a ridge/trench and orient a cluster
properly as it travels down/up a ridge/trench.

A. DIFFERENTIAL SENSING AND CONTROL STRATEGY
Consider the rectangular five-robot cluster shown in Figure 9.
The cluster space definition assumed for formation control
purposes is detailed in Appendix B. The desired motion for
this cluster is to move down the ridge, represented by the
dotted line in the contour field shown in Figure 9, while
straddling it laterally and maintaining rotational alignment
with it. When straddling the ridge, differential scalar field
measurements can be generated both laterally and longitudi-
nally across the cluster. These differential signals can be used
to generate cluster velocity commands that will produce the
control motion to maintain a straddling pose with respect to
the ridge.

FIGURE 9. Differential Drive Compensation Signals for Ridge Following:
The cluster is straddling the ridge but has both a lateral and rotational
offset. Longitudinal scalar differences indicate the desired direction of
travel along the ridge. Additionally, lateral scalar differentials can be used
in a differential drive strategy to align the cluster laterally and rotationally.

More specifically, consider the differential scalar field sig-
nals shown in Figure 9:
• Longitudinal differentials (z2 − z4) and (z3 − z5) point
in the desired direction of travel with respect to the
cluster frame’s x̂ dimension in order to drive down the
ridge;

• The average of the lateral differentials (z2 − z3) and
(z4 − z5) points in the desired direction of travel with
respect to the cluster frame’s ŷ dimension in order to
correct for lateral displacement;

• The difference of the lateral differentials (z2 − z3) and
(z4 − z5) can be used to establish the sense of cluster
rotation required to correct for angular displacement.

For trench following, we note that the differential arrows
in Figure 9 would be drawn in the opposite directions of those
shown; accordingly, the sign of corrective motions will be the
opposite of those used for ridge following.

Given the assumption that the cluster is straddling the
ridge, the differential signals generated by Robots 2-5 contain
the critical information for guiding the cluster properly along
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FIGURE 10. Ridge/Trench-Following Examples: Paths A and C move down ridges, while Path B moves up a trench: (left) 3D view of
scalar surface, (right) overhead view of equivalent contour map.

the ridge. Robot 1 is not used in the creation of these differ-
ential signals. Instead, Robot 1 is used to verify that assump-
tion that the cluster is, in fact, straddling the ridge. Given a
well-conditioned ridge/trench, if [(z1 > z2) and (z1 > z3)] /
[(z1 < z2) and (z1 < z3)], then Robots 2 and 3 are straddling
the ridge/trench and the assumption holds. If this is not the
case, the cluster may or may not be straddling the ridge/trench
and a different control strategy may be necessary.

B. RIDGE/TRENCH FOLLOWING CONTROL PRIMITIVE
Given the use of longitudinal and lateral scalar field differen-
tials generated by combinations of robot sensor data, we can
now specify the motion control primitives for ridge/trench
following.

(ẋc)des = d × vx {sgn [(z2 − z4)+ (z3 − z5)]} (8)

(ẏc)des = d × vy {sgn [(z2 − z3)+ (z4 − z5)]} (9)(
θ̇c
)
des = d × ωz {sgn [(z4 − z5)− (z2 − z3)]} (10)

where vx , vy, and ωz are the constant velocity setpoints for
each velocity component, and d = 1 for ridge following
and d = −1 for trench following; the longitudinal and
lateral scalar field differentials are used only to establish the
sign of these discrete velocity commands. The reason for
using discrete values for velocity components is discussed in
Section V.
To demonstrate this policy via simulation, we continue to

use the scalar field shown in Figure 1. This field is explored
by a five-robot rectangular cluster with a length of 5 m (in the
direction of motion) and a width of 10 m. The component
velocity setpoints used in Eqs. (11)-(13) are vx = 1m/s, vy =
1 m/s, and wz = 0.4 rad/s, values that are consistent with
the capabilities of the physical robots available to the authors
given the size of the cluster. For this scenario, Figure 10 shows
the paths taken by the five-robot cluster for three cases.

Simulation Paths A and C show motion down two different
ridges, and Path B shows movement up a trench. As can be
seen in all cases, the cluster is able to travel successfully along
the appropriate feature in the designated direction.
As an example of lateral control performance, Figure 11

shows the time response of both lateral scalar differentials:
the ‘‘front’’ lateral differential, z4 − z5, as well as the ‘‘rear’’
lateral differential, z2− z3. After the initial transient dies out,
the steady state offset for both differential values settles to
within ±0.005 scalar units; for this particular scenario, this
is equivalent to a settling value for the rotational alignment
error of approximately 0.2 degrees.

FIGURE 11. Lateral Differentials for Ridge Following Example: As the
cluster moves down the ridge along Path A, the lateral differential scalar
values settle to within +/−0.005 scalar units.

C. SADDLE POINT KEEPING CONTROL PRIMITIVE
The control primitive for moving to and holding position at a
saddle point is identical to the primitive used for ridge/trench
following, as provided by Eqs. (8)-(10). This is convenient
since saddle points are generally arrived at by descending
ridges or ascending trenches.
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FIGURE 12. Saddle Point Positioning: Paths A and C move up a trench and settle at the saddle point, while Path B moves down a ridge
and settles at the saddle point: (left) 3D view of scalar surface, (right) overhead view of equivalent contour map.

To demonstrate this via simulation, we continue to use the
scalar field shown in Figure 1, the control velocities pre-
scribed by Eqs. (8)-(10), and the velocity setpoints used in the
ridge/trench following examples. Figure 12 shows the paths
taken by the five-robot cluster for three cases. Simulation
Paths A and C show the five-robot cluster moving up two
different trenches and coming to rest at the field’s saddle
point. Similarly, Path B shows the cluster moving down a
ridge and coming to rest at the same saddle point.

For the trench scenario, Figure 13 shows the time response
of the scalar differentials, the two lateral differentials as
well as the two longitudinal differentials. As expected,
the two lateral differentials rapidly converge, settling to
within ±0.01 scalar units as the cluster aligns itself later-
ally during the climb up the trench. The longitudinal dif-
ferentials are negative for the majority of the motion as the
cluster moves up the trench (longitudinal differentials cause
motion along the feature, and for trenches this differential
is negative); however, near the end of the run as the clus-
ter approaches the saddle point, these differentials converge
causing the cluster to terminate its motion at the saddle point,
with the differential values settling to within ±0.001 scalar
units.

V. DISCUSSION
We have described a family of simple, minimal, reactive
control primitives for navigating to/along critical features
within a planar scalar field. The performance of each control
primitive is a function of robot operating parameters, clus-
ter configuration, and the characteristics of the scalar field.
In this section, we review several implications of the interplay
between these values.

A. CLUSTER SIZE IMPACT ON GRADIENT FOLLOWING
The gradient-based controllers in this paper compute the local
gradient with the assumption that the virtual plane created by

FIGURE 13. Lateral and Longitudinal Differentials for Trench Following
with Settling at a Saddle Point: As the cluster moves up the trench along
Path A, the lateral differential scalar values settle to within ±0.01 scalar
units. The longitudinal differential scalar values are negative as the
cluster ascends the trench, but then they converge to within is
±0.001 scalar units as the cluster nears and then stops at the saddle
point.

the three robots is tangential to the local scalar field. As the
size of the cluster increases relative to the size of the field’s
spatial features, however, this assumption becomes less valid.
To visualize this, consider a three robot cluster positioned
in field defined by a one-dimensional spatial sine wave as
shown in Figure 14. Clearly, as the size of the cluster increases
relative to the spatial wavelength, the slope of the cluster-
defined plane diverges from the slope of the field.

Figure 15 characterizes this relationship in the form of an
amplitude response, plotting the ratio of the estimated slope
to the real slope as a function of the ratio of the cluster’s size
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FIGURE 14. Gradient Estimation Accuracy as a Function of Cluster Size:
Three triangular 3-robot clusters of varying length are shown on a scalar
field that has the shape of a sine wave. As the size of the cluster
increases, the slope of its planar estimate of the field deviates more and
more from the local slope of the scalar field.

FIGURE 15. Gradient Estimate Amplitude Response: As the ratio of the
cluster’s length to wavelength increases, the fidelity of the cluster’s
ability to estimate the gradient of the field decays.2

to the field’s wavelength. This figure implies a low pass filter
behavior such that the gradient estimation ‘‘signal’’ is best
passed for features with a relatively large spatial wavelength;
alternatively, the gradient estimate is severely attenuated for
features with a relatively small wavelength.

This relationship has an impact on appropriate cluster siz-
ing. Clusters that are too big will filter out spatial frequencies
of interest, thereby missing important application-specific
features. Clusters that are too small, on the other hand, may
pass noise that will corrupt the gradient estimate. Noise
sources include traditional sensor and data acquisition noise
as well as low amplitude, high frequency ‘‘spatial noise’’ that
may exist within the scalar field.

Ideally, clusters should be small with respect to the feature
sizes of interest but large compared to wavelengths char-
acteristic of noise contributions. For example, based on the
Figure 15 scenario, a mission designer might choose to limit

2Although not detailed here, we note that the gradient response function
depends the location of the cluster in the wavelength as well as where the
cluster frame is defined within the cluster geometry. The amplitude response
shown in Fig. 15 is specific to the triangular base being located at a location
of π± 2π and the cluster’s frame located on the triangle’s base.

cluster size to no more than ∼20% the size of the smallest
spatial wavelength of interest (to achieve ∼80% fidelity in
gradient estimation for that wavelength) while also ensuring
that cluster size was at least 40% the size of the largest
spatial wavelength attributable to noise (to limit the impact
of noise to < 10% variation in the gradient estimate). With
respect to noise, a prior simulation demonstrated improved
turning performance of a gradient-following cluster as a func-
tion of increasing cluster size as well as the gradient value
itself (a steeper field lowers the impact of noise on a slope
computation) [37]. Furthermore, as a real world example,
a previous MAN mission in Lake Tahoe, CA involving the
exploration of bathymetric formations focused on features
that were larger than 50 meters in size and ‘‘noise’’ on the
order of one meter (which was the resolution of the sonar
sensors as well as the maximum size of small rocks and
boulders we wished to ignore). A triangular cluster with sides
on the order of 15-25 meters was used to successfully follow
contours and ascend/descend gradients.

B. CLUSTER SIZE IMPACT ON RIDGE/TRENCH
TRACKING BOUNDS
The ridge/trench following primitives are designed to drive a
multirobot cluster along these features within a scalar field.
As previously described, lateral differential scalar signals
for a ridge/trench following five-robot cluster are computed
between the ‘‘rear’’ pair of robots (Robots 2 and 3) and the
‘‘front’’ robots (Robots 4 and 5) in order to compute the
corrective velocities given in Eqs. 12 and 13. It was also noted
that the role of Robot 1 was not to contribute to any of the
differentials but to provide an instantaneous verification that
the cluster was straddling the ridge/trench.

Given this, consider Figure 16, showing a cross-section of
an idealized symmetric ridge and the placement of Robots 1-3
(the three robots aligned laterally in the rear of the cluster).
In the left scenario, the cluster is not properly following the
ridge by straddling it. In the middle scenario, the rear of
the cluster is, in fact, properly straddling the ridge; however,
the scalar measurements cannot be used to guarantee this
given that Robot 1’s measurement is less than the measure-
ment from one of the other robots. Only the right scenario,
when Robot 1’s measurement is the maximum value, ensures
that the cluster is straddling the ridge (given our previous

FIGURE 16. Ridge Following Verification: The left scenario shows a lateral
cluster position that is not straddling the ridge. The middle scenario
shows a lateral position that straddles the ridge, but measurements are
unable to confirm this. Only in the right scenario does the cluster straddle
the ridge in a manner that can be confirmed by sensor data. We require
this in order to execute the ridge following control primitive. A similar
requirement is used for trench following such that the middle robot’s
sensor reading is less than that for robot’s 2 and 3.
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assumption of a ‘‘small’’ cluster given the size of scalar field
features).

Therefore, the acceptable tracking performance is bounded
by a maximum allowable offset from being perfectly posi-
tioned on the ridge. For a symmetric ridge, this offset is
p = d/2, or 1

4 the lateral width of the cluster, as derived in
Appendix C; furthermore, perfect straddling will result in a
zero steady state offset of the center robot with respect to the
ridgeline. These values are for the idealized and symmetric
ridge assumptions. Although not detailed in this paper, rela-
tionships that accommodate noise and/or asymmetric ridge
models can be developed as well.

C. SPEED CONSIDERATIONS
Because field characteristics can vary so dramatically,
we have used velocity commands in our control primitives,
with the gradient and/or differential computations only used
to specify the direction of these velocities. Without this,
the nature of the field would play the role of a highly variable
gain, demanding faster responses when the cluster is posi-
tioned on steeper features. As a result, this strategy allows
the control primitive to be appropriate over a broader range of
spatial frequencies. More aggressive velocity policies are of
interest in order to reduce navigation times; this will require
consideration of robot dynamics as well as formal Lyapunov
stability constraints.

Another speed-related issue arises when considering the
ability to follow a ridge/trench that curves. Given the speed
policies in Eq. 11 and 13, the cluster is limited in the radius
of curvature it can follow to r = vx/ωz, where vx is the
forward velocity of the cluster andωz is its allowable turnrate.
As a result, it is possible for a cluster to lose track of a
ridge/trench if its forward velocity is too fast for the features
being followed; given the desire to follow these features with
specific radii of curvature, the forward and turn velocities can
be adjusted accordingly.

VI. FUTURE WORK
Multirobot adaptive navigation is a compelling capability,
and the full suite of scalar field control primitives presented in
this paper provides a foundation for a number of ongoing and
future research initiatives. Acknowledging that the control
primitives presented here constitute a simple, minimal, reac-
tive approach to scalar field navigation, there is great potential
for work that will refine these primitives. To begin, we are
particularly interested in improved and extended performance
through the incorporation of a) temporal filtering at several
levels (robot-level sensor data, cluster-level field character-
istic estimates, phased array filtering of sensors across the
cluster, etc.), b) adaptive modification of cluster shape and
size (for noise filtering, tuning the cluster to spatial frequen-
cies of interest, etc.), c) more sophisticated controllers beyond
the simple proportional and discrete strategies used here, d)
additional robots and formation constructs, and so on.

From a verification perspective, we have started work to
refine the primitives through more detailed simulation that

includes cluster and robot level dynamics and through exper-
imental demonstration using relevant land rover and marine
surface vessel testbeds [27], [51]. We have also started to
extend the primitives to navigation within three-dimensional
scalar fields; this work is currently being verified in simu-
lation and will be explored experimentally with our aerial
and underwater multirobot testbeds [52], [53]. We are also
exploring the use of an application-oriented state machine
that sequences control primitives in order to methodically
achieve certain tasks within a scalar field; initial scenarios
that have been demonstrated in simulation include search-
ing for a field’s global maximum by sequentially trekking
between adjoining local peaks, and moving between way-
points while ensuring that a minimum level of service is
available (or maximum level of exposure is assured).

There is also work to be performed to compare navi-
gation performance from a time and energy perspective to
more conventional approaches, to develop stability guaran-
tees, to address aliasing, etc. Other interesting extensions
include the accommodation of turbulent scalar fields and the
application of MAN approaches to vector fields. Finally, we
are actively working with industry partners to implement
our techniques in field grade multirobot systems in order to
perform compelling, professional applications.

VII. SUMMARY AND CONCLUSIONS
We have presented and demonstrated via simulation new
differential-based MAN control laws for scalar field nav-
igation down ridges, up trenches, and to saddle points.
These complement existing gradient-based control primitives
for finding extreme points and following contours, which
together establish a comprehensive suite of controllers that
address all critical features in a scalar field. We have also
described a multilayered control framework that unifies the
execution of these control laws. This architecture uses a
formation-keeping layer in order to maintain a spatial distri-
bution of the robots appropriate for estimating the gradient or
differential measurements used by the control laws. We also
discuss several implementation considerations such as the
impact of cluster size and velocity on MAN performance.

Our proposed controllers are admittedly simple, reactive,
and minimal in size; even in their current form, however, they
are capable of demonstrating a comprehensive suite of critical
MAN behaviors. Our ongoing and future research activities
are targeted to mature these controllers, to verify and validate
them experimentally and in field applications, and to extend
these MAN techniques to three dimensional fields and vector
fields.

APPENDIX A
SCALAR FIELD EQUATION
The scalar field (S) used for the simulations is formed by
the summation of six feature fields: two maximums and a
minimum (M1, M2, and M3), two ridges (R1 and R2) and
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a trench (T1).

S =M1 +M2 +M3 + R1 + R2 + T1 (A-1)

The equation for a maximum (hill) or minimum (valley) is
given by:

M =
mheight

mrolloff
(
(x − xm)2 + (y− ym)2

)
+ 1

(A-2)

For these equations mheight is the height of the maximum or
minimum, mrolloff is a coefficient that controls how quickly
the feature rolls off (and thus how wide it is), and xm and
ym provide the location of the extremum. The three max-
imum/minimum components for the simulated scalar field
used the values shown in Table 1.

TABLE 1. Maximum/ minimum feature parameters used in simulation.

The linear ridge (R1) descending from the global maxi-
mum is given by the equation:

R1=
r1 height((

r1 end rolloff dy
)4
+1
) (
r1 rolloff

(
r1 rolloff xdx+dy

)2
+1
)

(A-3)

where dy = y − yr1 and dx = x − xr1. For these equations
r1 height is the height of the ridge feature, r1 end rolloff is a
coefficient that determines the roll off at the end of the ridge
feature (and thus its length), r1 rolloff specifies how quickly
the sides of the ridge roll off, r1 rolloffx modifies how the steep
the ridge falls off in the x direction, xr1 is the x value of the
center of the feature and yr1 is the y value of the center of
the feature. The values used for the simulated scalar field are
provided in Table 2.

TABLE 2. Ridge feature parameters used in simulation.

The curved ridge (R2) descending from the local maximum
is given by the equation:

where dy = y−yr2 , dx = x−xr2 , dyc = y−yr2c , dxc = x−
xr2c , r2 height is the height of the ridge feature, r2 end rolloff is a
coefficient that controls how quickly the end of the ridge rolls
off (and thus how long the ridge is), yr2 is the y coordinate for
the center of the ridge, xr2 is the x coordinate for the center of
ridge 2, r2 rolloff is a coefficient controlling how quickly the
sides of ridge two roll off, yr2c specifies the y coordinate of
the center of the circle defining ridge 2, xr2c specifies the x
coordinate of the center of the circle defining ridge 2, and rr2
is the radius of the circle defining the curved ridge. The values
used for the simulated scalar field are provided in Table 3.

TABLE 3. Curved ridge feature parameters used in simulation’.

The trench equation is given by:

T =
theight((

tend rolloff dx
)4
+ 1

) ((
trolloff dt

)2
+ 1

) (A-5)

where dx = x − xt and dt is the distance from the trench line
given by:

dt =

∣∣tdyx − tdxy+ tx2ty1 − ty2tx1∣∣(
t2dy + t

2
dx

).5 . (A-6)

The parameters tdx and tdy are the x and y displacements
between the two points (tx1, ty1) and (tx2, ty2) specifying the
line along which the ridge is formed:

tdx = tx2 − tx1 (A-7)

tdy = ty2 − ty1 (A-8)

The values used for the aforementioned variables are shown
in Table 4.

TABLE 4. Trench feature parameters used in simulation.

R1 =
r2 height((

r2 end rolloff
(
dx2 + dy2

)0.5)4
+ 1

)(
r2 rolloff

((
dxc2 + dyc2

)0.5
− rr2

)2
+ 1

) (A-4)
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FIGURE 17. Five Robot Cluster Pose Definition: Cluster space pose
variables for a five robot cluster with the cluster frame assigned to the
rear-center robot and the position of the other robots defined serially
within two different chains of the virtual mechanism.

APPENDIX B
CLUSTER SPACE DEFINITION OF THE FIVE
ROBOT CLUSTER
In Section IV, the five-robot cluster in a rectangular configu-
ration is used, as shown in Figure 17.3

The cluster parameters used to demonstrate the ridge/trench
following and saddle point positioning MAN primitives

d1 = d2 = d3 = d4 = 5m

β3 = β4 = β5 = 0◦

APPENDIX C
LATERAL OFFSET CONSTRAINT FOR RIDGE FOLLOWING
Section V discussed the lateral offset permitted when follow-
ing a ridge, referring to the scenarios in Figure 16. Assuming
a symmetric ridge described by the function g(x) and with a
maximum value zmax = g(0), the constraint for p, the max-
imum permitted lateral deviation of Robot 1 from the top of
the ridge, may be found, given that we require z1 > z3.

z1 > z3 (C-1)

g(−p) > g(d − p) (C-2)

p < d − p (C-3)

p < (d/2) (C-4)

Eq. C-4 provides our constraint, which is that the allowable
lateral offset in following the ridge is half the size of the

3Given our work with land, sea, air and space robots, we have adopted a
standard aerospace frame for vehicles with x̂i pointing out the front of each
vehicle, ẑi pointing down, and ŷi oriented to complete a right hand Cartesian
frame. Our global frame is orientedwith x̂G orientedNorth, ẑG pointed down,
and ŷG pointed East such that when a vehicle is located at the origin with 0◦

of pitch/roll/yaw, the vehicle frame aligns with the global frame.

FIGURE 18. Ridge Following Lateral Offset for a Symmetric Ridge: When
z1 is the maximum scalar reading for Robots 1-3 we know that the cluster
straddles the ridge. Given this, the lateral offset of Robot 1 from the top
of the ridge is p, and p is bounded by the quantity d/2.

distance d, as defined in Figure 18. As a result, this maximum
allowable lateral offset is 1

4 the lateral size of the overall five-
robot cluster.
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