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ABSTRACT In recent years, chaos-based image encryption algorithms have aroused extensive research
interest. However, some image encryption algorithms still have several security defects, and the research on
cryptanalysis is relatively inadequate. This paper performs the cryptanalysis of a newly proposed color image
encryption scheme using RT-enhanced chaotic tent map. By using chosen-plaintext attacks, the equivalent
keys of the cryptosystem are successfully broken, so that the target ciphertext image can be decoded. Based
on the cryptanalysis, we then proposed an improved encryption algorithm. A new logistic-tent map is
proposed and applied to the improved encryption algorithm, and a parameter related to the SHA-3 hash
value of the plaintext image is introduced as a secret key parameter so that the improved algorithm can resist
chosen-plaintext attacks. The security analysis and experimental tests for the improved algorithm are given in
detail, which show that the improved algorithm can significantly increase the security of encryption images
while still possessing all the merits of the original algorithm.

INDEX TERMS Chaotic cryptography, cryptanalysis, image encryption, logistic-tent map (LTM).

I. INTRODUCTION
The transmission of media information from the Internet has
become very common in modern times. Consequently, it is
important to ensure the security of the information trans-
mission. In modern network communication, the commonly
used information security technologies include data encryp-
tion [1], digital signature [2], trusted routing strategy [3], and
so on. Among them, information encryption is the most basic
technical means to protect information. Therefore, researches
on encryption algorithms are particularly important. Image
is a widely used information media on various occasions.
However, Image encryption cannot be done in exactly the
same way as text encryption. In image encryption, one need
to consider some intrinsic characteristics of images [4], such
as large amount of data, high data redundancy, and high
correlation between adjacent pixels. Due to the good features
of chaotic systems, such as the extreme sensitivity to initial
conditions and control parameters, ergodicity and random-
like behaviours, chaos has become an ideal tool for image

encryption. As a result, chaos-based image encryption algo-
rithm has become an attractive research area in recent years,
and many image encryption algorithms have been pro-
posed [5]–[12].

In different encryption schemes, a variety of strategies
and different chaotic systems are adopted. Wu et al. [13]
designed a high speed symmetric image encryption scheme
by using a three-dimensional (3D) chaotic cat map.
Wang et al. [14] proposed a fast image encryption scheme by
using 3D chaotic baker maps. Chai [15] constructed an image
encryption algorithm by using a new one-dimensional (1D)
chaotic map, and simulate the Brownian motion of parti-
cles to confuse bit planes of the plain image. Huang [16]
designed an image encryption algorithm by using chaotic
Chebyshev generator. Wang et al. [17] proposed an image
encryption scheme by using an intertwining logistic map
and the PWLCM map. Ye [18] proposed an efficient
symmetric image encryption algorithm based on an inter-
twining logistic map. Zhu [19] proposed a novel image
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encryption scheme based on improved hyperchaotic
sequences, which can achieve high key sensitivity and high
plaintext sensitivity through only two rounds diffusion oper-
ation. Liu and Wang [20] proposed a color image encryption
scheme, in which the piecewise linear chaoticmap (PWLCM)
and the Chebyshev maps.are used to generate the key stream
sequence. the system parameter of PWLCM is modified
by the perturbation sequence generated by the Chebyshev
maps, and the initial condition of PWLCM is generated by
the MD5 hash value of the mouse-position from entropy.
However, the MD5 is not secure, which is cracked by Prof.
Wang Xiaoyun at Tsinghua university. In [21], a color image
encryption scheme is proposed by using spatial bit-level
permutation and high-dimension chaotic system, which can
achieve good encryption result and can resist common attack.
But bit-level permutation and high-dimension chaotic system
will increase the time overhead of the algorithm. In [22],
an image encryption scheme by using DNA complementary
rule and chaotic maps is proposed. The introduction of DNA
coding principle into image encryption is a novel method, but
DNA coding will also increase the time overhead of the algo-
rithm. In [23], a chaotic image encryption system with a per-
ceptron model is proposed, in which high-dimension Lorenz
chaotic system and perceptron model within a neural network
are used to enhanced the security of the cryptographic system.
In [24], An image encryption scheme based on rotationmatrix
bit-level permutation and block diffusion is proposed, which
has the suitability for a parallel mode and the robustness
against noise attack. In [25], A double optical image encryp-
tion scheme is proposed by using discrete Chirikov standard
map and chaos-based fractional random transform, which can
achieve complete encryption for optical image. But fractional
random transform increases the complexity of computing.
In [26], a color image encryption scheme based on chaotic
tent map (CTM) was proposed by C. Li et al, which only
involves the diffusing phase, and the confusing phase has
been omitted. As a result, there are some security defects in
the pure CTM-based scheme. Very recently, a color image
encryption scheme based on the rectangular transform and the
CTM was proposed by Wu et al. [27], which is an enhanced
CTM-based color image encryption scheme. Wu’s scheme
consists of two phases including confusion and diffusion,
which are controlled by an improved 2D Arnold transform
and the chaotic tent map, respectively. These works on the
design of encryption schemes belong to the research category
of cryptography, which is one of the branches of cryptology.

Compared with cryptography, cryptanalysis is the science
of deciphering secret keys or plaintext [28]–[30], which
is another branch of cryptology. Some recent studies have
shown that there are security vulnerabilities in some chaos-
based image encryption algorithms. Li et al. [28] devel-
oped the ciphertext-only attack, known-plaintext attack and
chosen-plaintext attack on the Ye’s scheme [18]. Li et al. [29]
developed known-plaintext attack on the Zhu’s scheme [19].
Wang et al. [30] cracked Huang’s algorithm [16] by using
chosen-plaintext attack. For some other examples, several

chaos-based image encryption schemes that were cracked are
mentioned in [31]. Cryptanalysis can not only reveal weak-
nesses in encryption algorithms, but also help the design-
ers to improve the security of encryption algorithm. If the
security bugs in encryption algorithms are not find out, then,
the application of insecure algorithms to secure communi-
cations will bring serious security risks and losses to both
sides of communications. Hence, works on cryptanalysis are
of vital significance to promote the progress of cryptology.

As a typical color image encryption algorithm, Wu’s
encryption algorithm [27] has the merits of simple structure,
fast encryption speed and fine cryptographic performance.
As a consequence, it has advantages in dealing with large
number of data and lessening redundant information, com-
paredwith the conventional image encryption algorithms. But
some defects can also be found in Wu’s encryption scheme.
The present paper re-evaluates the security of the encryp-
tion algorithm proposed in [27], and discovers the following
security problems: (1) it can’t resist chosen-plaintext attack;
(2) the encrption algorithm is also insensitive to all the chaotic
secret keys; (3) the first pixel in the cipher image can not be
decrypted in the decryption process; (4) there is an additional
restriction on the parameter selection of the inverse rectangu-
lar transform system. To fix the security defects, we proposed
an improved color image encryption algorithm.

The rest of this paper is organized as follows. Section II
describes briefly the Wu’s algorithm. Detailed cryptanalysis
and attacks on theWu’s algorithm are presented in Section III.
An improved encryption scheme was proposed in Section IV.
Some experimental results and analysis for the improved
scheme are given in Section V. Finally, concluding remarks
are given in Section VI.

II. DESCRIPTION OF THE ORIGINAL ENCRYPTION
ALGORITHM
The plaintext images to be encrypted in Wu’s algorithm are
color images with size of m× n× 3, which can be expressed
by a matrix P = [P(i, j, k)],P(i, j, k) ∈ {0, 1, . . . , 255}, i =
1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, 3. A color image
P consists of R(Red), G(Green) and B(Blue) component
images, and the red, green and blue component images can
be expressed by RP = [RP(i, j)], GP = [GP(i, j)], and
BP = [BP(i, j)]. Where, RP(i, j) = P(i, j, 1),GP(i, j) =
P(i, j, 2),BP(i, j) = P(i, j, 3). Wu’s algorithm includes two
processing stages: (1) Confusion process, i.e. to permutate
pixel positions. (2) Diffusion process, i.e. to encrypt pixel val-
ues. The main ideas of the Wu’s algorithm can be redescribed
briefly as follows.

A. THE CHAOTIC MAP AND SECRET KEYS
The chaotic system used in the Wu’s algorithm to generate
chaotic random sequence is the chaotic tent map (CTM),
which is defined as{

xi+1 = µxi, if xi < 0.5,
xi+1 = µ(1− xi), else.

(1)
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where xi ∈ (0, 1). Note that when the parameter µ ∈ (0, 2]
and the initial value x0 ∈ (0, 1), the tent map is chaotic and
transforms an interval (0, 1) into itself [26].

The 2D rectangular transform used in the Wu’s algorithm
to permutate pixel positions is the improved 2D Arnold trans-
form, which is defined as(

x ′

y′

)
=

[(
a b
c d

)(
x
y

)
+

(
rm
rn

)]
mod

(
m
n

)
(2)

where (a, b, c, d) are the elements of the transform matrix,
(x, y) and (x ′, y′) are the position of a pixel in the original
image and its new position in the permutated image respec-
tively, while m and n are the height and the width of the
plain image respectively. The 2D rectangular transform has
an inverse operation when the following condition is met, i.e.,

p = gcd(m, n), pm = p/m, pn = p/n,
gcd(a, pm) = 1, gcd(d, pn) = 1,
(b mod pm) = 0 or (c mod pn) = 0,
gcd(ad − bc, p) = 1.

(3)

Then the inverse transform to Eq.(2) is expressed as(
x
y

)
=

(
a b
c d

)−1 ( x ′ − rm
y′ − rn

)
mod

(
m
n

)
(4)

The secret keys of the Wu’s algorithm are (µ1, µ2, µ3, x10,
x20, x30) for the chaotic tent map and (a, b, c, d , rm, rn, t)
for the improved 2D-RT. Where (µ1, µ2, µ3) and (x10, x20,
x30) are the control parameters and initial values of the CTM
systems respective, and t is the iteration round number for
permutation.

B. THE WU’S ALGORITHM
In order to describe theWu’s algorithmmore clearly, we draw
the flow chart of the algorithm, which is as shown in Fig.1.
The encryption process consists of two phases, i.e., permutate
pixel positions and encrypt pixel values. In cryptanalysis,
an encryption scheme is like an encryption machinery. The
dashed rectangle box in Fig.1 is equivalent to the encryption
machinery of the Wu’s algorithm.

We can explain the overall process of the encryption
machinery briefly as follows. In the input port of the encryp-
tion machinery, a color plaintext image with size of m ×
n × 3 is input. In the output port of the encryption machin-
ery, the encrypted color image with size of m × n × 3 is
output. The encryption machinery includes confusion and
diffusion processing stages. In the confusion process, firstly,
the color plaintext image is transformed into a gray image.
secondly, the gray image is permutated by the 2D Arnold
transform. In the diffusion process, firstly, the permutated
gray image is transformed into three color images. Secondly,
three color images are encrypted by using CTM. Thirdly,
the three encrypted color component images are merged into
a color image, then the encrypted image is obtained.

The specific steps can be redescribed briefly as follows:
Step (1): Choose the secret keys (a, b, c, d , rm, rn, t) and

(µ1, µ2, µ3, x10, x20, x30).

FIGURE 1. The flow chart of the Wu’s algorithm.

Step (2): Read the m × n × 3 sized color plaintext image
Pm×n×3 = [P(i, j, k)]. Let N = m × n, and denote the
three components of Pm×n×3 as RPm×n = [RP(i, j)], GPm×n
= [GP(i, j)] and BPm×n = [BP(i, j)], respectively. Where
i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, 3.
Step (3): Stitch the three components RPm×n, GPm×n and

BPm×n together to form a gray image PSm×3n = [PS(i, l)],
where i = 1, 2, . . . ,m, l = 1, 2, . . . , 3 n.
Step (4): Permutate the gray image PSm×3n = [PS(x, y)]

by using Eq.(2) for t rounds, and get a permutated image as
PRTm×n = [PRT(x ′, y′)]. Where, PRT(x ′, y′) = PS(x, y).
Step (5): Split PRTm×3n into three matrices RRTm×n,

GRTm×n, and BRTm×n with size of m × n. Then further
convertRRTm×n,GRTm×n, andBRTm×n to three 1D vectors
RN×1, GN×1, and BN×1. Where N = m× n.
Step (6): Iterate Equation (1) for N + 1000 times with the

parameters (µ1, x10), (µ2, x20) and (µ3, x30) respectively, and
take the final N values to form three chaotic sequences X1,
X2, X3 of length N .

Step (7): Calculate three key-streams S1, S2, S3 with X1,
X2, X3 by


S1 =

⌊
X1× 1010

⌋
mod 256,

S2 =
⌊
X2× 1010

⌋
mod 256,

S3 =
⌊
X3× 1010

⌋
mod 256.

(5)

Step (8): Encrypt RN×1, GN×1, and BN×1 to obtain their
corresponding ciphertext images R′ = [R′(i)], G′ = [G′(i)],
and B′ = [B′(i)] asR

′(i) = ((R(i)+G′(i−1)+B′(i−1)) mod 256)⊕S1(i),
G′(i) = ((G(i)+R′(i−1)+B′(i−1)) mod 256)⊕S2(i),
B′(i) = ((B(i)+R′(i−1)+G′(i−1)) mod 256)⊕S3(i),

(6)

Where i = 1, 2, . . . ,N . When i = 1,R′(i − 1), G′(i − 1)
and B′(i−1) are replaced by three parameters R′0, G

′

0, and B
′

0
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respectively, which are calculated by

R′0 = (

∑i=m×n
i=1 R(i)
m× n

+ δ) mod 256,

G′0 = (

∑i=m×n
i=1 G(i)
m× n

+ δ) mod 256,

B′0 = (

∑i=m×n
i=1 B(i)
m× n

+ δ) mod 256.

(7)

and

δ =
⌊
(P̄−

⌊
P̄
⌋
)× 1010

⌋
mod 256. (8)

and

P̄ =

∑i=m
i=1

∑j=n
j=1

∑k=3
k=1 P(i, j, k)

m× n× 3
. (9)

Step (9): Reshape three 1D vectors R′, G′, B′ to three
matrices RCm×n, GCm×n, BCm×n, and use these three com-
ponents to compose the final color cipher image C.
The decryption algorithm is the reverse operation of the

encryption algorithm. Here, the two key operation steps of
the decryption algorithm are briefly described as follows.

First, in the reverse diffusion process, the formula for
recovering R, G, and B from R′, G′, and B′ is as R(i) = (R′(i)⊕ S1(i)−G′(i−1)−B′(i−1)) mod 256,

G(i) = (G′(i)⊕ S2(i)−R′(i−1)−B′(i−1)) mod 256,
B(i) = ((B′(i)⊕ S3(i)−R′(i−1)−G′(i−1)) mod 256.

(10)

Where i = 1, 2, . . . ,N . When i = 1,R′(i − 1), G′(i − 1)
and B′(i − 1) are replaced by the three parameters R′0, G

′

0,
and B′0, respectively. It is worth noting that the first pixel
values of R(1), G(1) and B(1) can not be decrypted because
the values of R′0, G

′

0 and B
′

0 are unknown. These values need
to be calculated by pixel values of the plain image.

Second, in the reverse confusion process, the formula for
the recovery of the un-permutated gray image PSm×3n from
the permutated gray image PRTm×3n is Eq.(4). As a result,
the conditions expressed by the formula (3) must be satisfied.

C. MAIN DEFECTS OF THE ORIGINAL ALGORITHM
There are four main defects in the Wu’s algorithm, which are
summarized as follows:
(1) The secret keys used inWu’s algorithm are irrelevant to

the plaintext image to be encrypted, and thereforeWu’s
algorithm can not resist chosen-plaintext attacks.

(2) When any one of the parameters (µ1, µ2, µ3, x10, x20,
x30) changes, it only changes one of the sequences (S1,
S2, S3). As a result, Wu’s algorithm is insensitive to all
the secret keys.

(3) In the decryption process, R′0, G
′

0 and B
′

0 are unknown
and can’t be calculated. As a result, the first pixel can’t
be decrypted.

(4) In the reverse confusion process, Wu et. al. adopted
the inverse 2D Arnold transform, and it requires the
parameters (a, b, c, d) to meet the restrictive conditions
expressed by Eq.(3).

III. THE CRYPTANALYSIS AND CHOSEN-PLAINTEXT
ATTACKS
According to Kerchoff’s principle [32], when analyzing an
encryption algorithm, a hypothesis is that the cryptanalyst
knows exactly the design and working of the cryptosystem
except for the secret keys. Namely, the attacker knows all the
working mechanisms of the cryptosystem, but does not know
the secret keys. There are four classical types of attacks:

(1) Ciphertext only attack: the opponent possesses only the
target ciphertext.

(2) Known plaintext attack: the opponent possesses a string
of plaintext, and the corresponding ciphertext.

(3) Chosen-plaintext attack: the opponent has obtained
temporary access to the encryption machinery. Hence,
he or she can choose any plaintext, and obtain the
corresponding ciphertext.

(4) Chosen-ciphertext attack: the opponent has obtained
temporary access to the decryption machinery. Hence,
he or she can choose any ciphertext, and obtain the
corresponding plaintext.

Actually, in the confusion process of Wu’s algorithm, the t
rounds 2D rectangular transform can be equivalently replaced
by a position traversing matrix T = [T (x, y)], where x =
1, 2, . . . ,m; y = 1, 2, . . . , 3 × n; T (x, y) = 1, 2, . . . ,m ×
3× n. If a pixel at the coordinate position (x, y) in the image
PS is transformed to the coordinate position (x ′, y′) in the
image PRT, namely, PRT(x ′, y′)= PS(x, y). Then we let T (x,
y) = (y′ − 1) × m + x ′. Here, T (x, y) represents the one-
dimensional ordinal number of the pixel PS(x, y) in the image
PRT according to the order of column priority. Conversely,
y′ = dT (x, y)/me, x ′ = T (x, y) − (y′ − 1) × m. It is worth
noting that T is determined by parameters (a, b, c, d , rm, rn,
t) and has nothing to do with the plaintext image. Therefore,
T can be used as the equivalent key of the secret keys (a, b,
c, d , rm, rn, t). Similarly, In the diffusion process of Wu’s
algorithm, the three key-streams S1, S2 and S3 are exactly
equivalent to the secret keys (µ1, µ2, µ3, x10, x20, x30) and
not related with the plaintext image.

Just because of the above reasons, the attacker can select
some special plaintext images to encrypt and obtain the cor-
responding ciphertext images. Then he or she can uncover
the keys S1, S2, S3 and T by using the chosen-plaintext and
its corresponding ciphertext. Finally, the attacker can utilize
the cracked equivalent keys S1, S2, S3 and T to decrypt the
target ciphertext image without having to know the original
keys (µ1, µ2, µ3, x10, x20, x30; a, b, c, d , rm, rn, t). Here we
have three steps to implement the chosen-plaintext attacks on
Wu’s algorithm, each of the attacks is described separately
in the following sub Sections A, B and C. In the following
description, we use U to represent a chosen-plaintext image,
and V to represent the ciphertext image corresponding to U.

A. RECOVER THE ENCRYPTION KEY STREAMS
Choosing a plaintext image U consisting of all zero ele-
ments and obtain its corresponding ciphertext image V by
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the encryption machinery. The 1D vectors corresponding to
the permutated image of U are R, G and B. The 1D vectors
corresponding to V are R′, G′ and B′. Thanks to the permu-
tating process that does not change the pixel values of the
plaintext image, the pixel values in R, G and B are all zeros.
Correspondingly, the values of R′0,G

′

0 and B
′

0 can be obtained
by formula (7) and R′0 = 0, G′0 = 0, B′0 = 0. According to
Eq.(6), then one can recover the key streams S1, S2 and S3
as S1(i) = R′(i)⊕ ((G′(i− 1)+ B′(i− 1)) mod 256),

S2(i) = G′(i)⊕ ((R′(i− 1)+ B′(i− 1)) mod 256),
S3(i) = B′(i)⊕ ((R′(i− 1)+ G′(i− 1)) mod 256).

(11)

Where i = 1, 2, . . . ,N , and in the case of i = 1,R′(0) =
R′0 = 0, G′(0) = G′0 = 0, B′(0) = B′0 = 0.

B. RECOVER THE POSITION TRAVERSING MATRIX
A color image with size of m × n × 3 has (3mn) pixels,
and each pixel value is an integer ranging from 1 to 255.
If (3mn)≤255, then only one chosen-plaintext image is
required to recover the position traversing matrix T, so that
each pixel in the chosen-plaintext image has a different value
in the set {1, 2, . . . , 255}. If (3mn)>255, then the number
of chosen-plaintext images required to recover the position
traversing matrix T is d3mn/255e, so that any selected image
have 255 pixels with different values ranging from 1 to 255,
and the rest pixels have the same value zero.

For the case of (3mn)>255, we let the 2D gray image PS
derived from the I -th chosen-plaintext image U satisfies

PS(i, j) = (j− 1)× m+ i,
if (j− 1)× m+ i ∈ [(I − 1)× 255+ 1, I × 255],
PS(i, j) = 0,
if (j− 1)× m+ i /∈ [(I − 1)× 255+ 1, I × 255].

(12)

Where PS is the m × 3n gray image corresponding to U,
and I = 1, 2, . . . , d3mn/255e. By using the I -th chosen-
plaintext image and its corresponding ciphertext image as
well as the key streams S1, S2 and S3 obtained previously,
we can recover the I -th permutated image PRT. Then we
can recover at most 255 values of elements in matrix T by
comparing the I -th chosen-plaintext image matrix PS and
its corresponding permutated gray image matrix PRT. With
d3mn/255e chosen-plaintext images and their corresponding
ciphertext images, all of the (3mn) elements in T can be
solved.

C. RECOVER THE TARGET PLAIN IMAGE
In sub Section A, we obtained the chaotic key streams S1,
S2 and S3, which are only related to the secret keys (µ1,
µ2, µ3, x10, x20, x30) and unrelated to the plaintext image.
In sub Section B, we also obtained the whole permutation
matrix T, which is only related to the secret keys (a, b, c, d ,
rm, rn, t). Therefore, we can break any other ciphertext image
C encrypted by the same encryption machinery which has the

same parameters (µ1,µ2,µ3, x10, x20, x30; a, b, c, d , rm, rn, t).
The decryption process to recover P from C is as follows:

Step (1): Reshape the color cipher image C to three com-
ponents of 1D vectors R′, G′ and B′.
Step (2): For i = 1, 2, . . . ,N , by using Eq.(10) to recover

the three components of 1D vectors R, G and B except for
R(1), G (1) and B(1). Because the values of R′0, G

′

0 and
B′0 are unknown, therefore, R(1), G(1) and B(1) can not be
recovered. For simplicity, we let R(1) = R′(1), G(1) = G′(1),
B(1) = B′(1).

Step (3): The three components of 1D vectors R, G and B
of size (m× n)× 1 are merged into a gray scale image matrix
PRT of size m× 3n.
Step (4): For every pixel position (x, y) in PRT, do inverse

permutation operations by using T to obtain PS as follows:

y′ = dT (x, y)/me , x ′ = T (x, y)− (y′ − 1)× m.

(13)

PS(x, y) = PRT (x ′, y′). (14)

Where x = 1, 2, . . . ,m; y = 1, 2, . . . , 3n; x ′ = 1, 2, . . . ,m;
y′ = 1, 2, . . . , 3n. (x, y) and (x ′, y′) are coordinates of the
same pixel in PS and PRT, respectively.

Step (5): Splitm×3n sized matrix PSm×3n into threem×n
sized matrices, i.e. RPm×n, GPm×n, BPm×n.

Step (6): Combine the three components of RPm×n,
GPm×n and BPm×n, and the final deciphered color image P
is obtained.

D. AN EXAMPLE OF THE ATTACKS
In this example, the color plaintext image Baboon with size
of 256×256×3 is encrypted by Wu’s algorithm. The secret
keys of the encryption machinery are (µ1 = 1.9, µ2 = 1.7,
µ3 = 1.6, x10= 0.201, x20= 0.301, x30= 0.401; a= 1, b= 3,
c = 5, d = 16, rm = 4, rn = 7, t = 5). The plaintext image and
the ciphered image are shown in Figs. 2(a) and 2(b) respec-
tively. The recovered image is the one in Fig. 2(c), which
coincides with the original plain image in Fig. 2(a). It takes
about 12 minutes to break the color ciphertext image with
size of 256×256×3 by our desktop PC. The cost of this
time is acceptable. Therefore, the Wu’s algorithm can not
resist chosen-plaintext attacks, and it can’t be used for secure
communications with high security requirements.

IV. THE IMPROVED SCHEME
The improved scheme retains the main advantages of Wu’s
algorithm, but overcomes its security defects mentioned
above.

A. THE NEW CHAOTIC SYSTEM AND ITS BASIC DYNAMIC
BEHAVIORS
Chaotic systems play an important role in chaos-based image
encryption algorithms. The performance of a chaotic system,
such as the uniformity and randomness of the distribution of
state values, and the size of parameter intervals that gener-
ate chaotic characteristics, can help to improve the security
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FIGURE 2. The experimental results of the chosen-plaintext attacks.
(a) The plaintext image Baboon. (b) The ciphered image. (c) The recovered
image.

of encryption schemes. Tent map can only produce chaotic
behavior in a small parameter interval, and the distribution
of its state values are not uniform. In order to improve the
chaotic performance of tent map, we propose a new chaotic
system by combining Logistic map and tent map, which has
the following mathematical models:xi+1= f1(xi)= (4−µ)xi(1−xi)+

µ

2
xi, if xi<0.5,

xi+1= f2(xi)= (4−µ)xi(1−xi)+
µ

2
(1−xi), if xi≥0.5.

(15)

When µ = 0, the new system degenerates into the Logistic
map, and when µ = 4, the new system degenerates into the
tent map.We named the new system (15) as Logistic-tent map
(LTM).
Proposition 1: If µ ∈ (0, 4) and xi ∈ (0, 1), then system

(15) is a map f : xi ∈(0, 1)→ xi+1 ∈ (0, 1).
Proof Function f1(x) can be converted into a standard

quadratic function form as: f1(x) = (µ− 4)x2 + (4−µ/2)x.
Forµ < 4, (µ−4) < 0, hence, function f1(x) has a maximum
value at xm = (4 − µ/2)/(8 − 2µ) = 1/2 + µ/(16 −
4µ) > 1/2. Therefore, when x < 0.5 < xm, function
f1(x) is monotonically increasing. Namely, f1(x < 0.5) <
f1(x = 0.5) = (2 − µ/4) − (4 − µ)/4 = 1, f1(x > 0) >
f1(x = 0) = 0.

Similarly, function f2(x) can be converted into a
standard quadratic function form as: f2(x) = (µ − 4)x2 +
(4− 3µ/2)x+µ/2. For µ < 4, (µ− 4) < 0, hence, function
f2(x) has a maximum value at xm = (4− 3µ/2)/(8− 2µ) =
1/2 − µ/(16 − 4µ) < 1/2. Therefore, when x ≥ 0.5 > xm,
function f2(x) is monotonically decreasing. Therefore, f2(x ≥
0.5) < f2(x = 0.5) = (4− 3µ/2)/2− (4−µ)/4+µ/2 = 1,
and f2(x < 1) > f2(x = 1) = 0. To sum up, we come to the
following conclusions: If xi ∈(0, 0.5), then xi+1 = f1(xi) ∈

TABLE 1. The NIST-800-22 test results of LTM.

(0, 1). If xi ∈ [0.5, 1.0), then xi+1 = f2(xi) ∈(0, 1). The proof
is complete.

To compare the chaotic characteristics of the new system
and the tent map system, the chaotic dynamic behaviors of the
two systems are described by using bifurcation and Lyapunov
exponent diagrams. Figs. 3(a) and 3(b) are the bifurcation
and Lyapunov exponent diagram of tent map respectively.
Figs. 3(c) and 3(d) are the bifurcation and Lyapunov exponent
diagram of the LTM respectively. From Fig. 3, one can see
that tent map has positive Lyapunov exponents and is in a
chaotic state when µ in the range of (1, 2], and the range is
very small. Furthermore, the distribution of state values of
chaotic sequence {xi} in the range of [0, 1] is very uneven.
However, the new LTM system has positive Lyapunov expo-
nent and is in a chaotic state when µ in the range of
(0, 4), and the range of µ value is much larger than that of the
tent map. Furthermore, the distribution of state values {xi} of
the proposed new LTM system is more uniform in the range
of [0, 1].

Furthermore, to evaluate whether the random numbers
generated by the LTM system are proper for encryptions,
the NIST test is performed. The NIST SP800-22 test suite
consists of 15 statistical tests. Each test calculates a P-value
and compares it with a given significance level to determine
whether the sequence is random. When applying the NIST
test suite, a significance level α = 0.01 is chosen for testing.
If all the P-value > α, then the sequence is considered to
be random. We generate three sequences by using LTM and
turn them into three binary sequences of length 1000000, 15
indicators were tested by using the NISTSP800-22 suite, and
the minimum P-values of these sequences are listed in Table
1. From Table 1, we can see that the minimum P-value
results are greater than the significance level α, indicating
that the tests meet the requirements of SP800-22 randomness.
Therefore, the random numbers generated by the LTM system
are proper for encryptions.

B. THE IMPROVED ENCRYPTION ALGORITHM
In the improved image encryption algorithm, the SHA-3 hash
value of the plaintext image is adopted and a new secret key
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FIGURE 3. The bifurcation and Lyapunov exponent diagram of tent map
and Logistic-tent map. (a) bifurcation diagram of tent map. (b) Lyapunov
exponent diagram of tent map. (c) bifurcation diagram of Logistic-tent
map. (d) Lyapunov exponent diagram of Logistic-tent map.

is added to the key set, which is related to the SHA-3 hash
value. As a result, the key-streams (S1, S2, S3) are related to

the plaintext image to be encrypted. The operation steps are
as follows.

Step (1): Choose the secret keys {a, b, c, d , rm, rn, t , µ1,
µ2, µ3, x10, x20, x30}.

Step (2): Read the m × n × 3 sized color plaintext image
Pm×n×3 = [P(i, j, k)] (i = 1, 2, . . . ,m, j = 1, 2, . . . , n,
k = 1, 2, 3), and convert the 3D matrix Pm×n×3 into a 2D
matrix to get the gray image PSm×3n = [PS(i, l)], where i =
1, 2, . . . ,m, l = 1, 2, . . . , 3 × n. The operation methods are
the same as step (2) and (3) of theWu’s encryption algorithm.

Step (3): Use the SHA-3 hash algorithm to generate a 256-
bit hash valueH of the plaintext image, which can be divided
into 32 blocks with the same size of 8-bit. Namely, H =
h1h2 . . . h32, and hi ∈ [0, 255], i = 1, 2, . . . , 32. Calculate
the parameter δ by using the hash value H as

δ = (
∑i=32

i=1
hi)/(32× 256), (16)

and δ is also used as a secret key.
Step (4): Modify the initial values (x10, x20, x30) as x10 = (x10 + δ)/2,

x20 = (x20 + δ)/2,
x30 = (x30 + δ)/2.

(17)

Hence, the updated parameters (x10, x20, x30) are related to
the content of the plaintext image Pm×n×3.

Step (5): Permutate the gray image PSm×3n to get a per-
mutated image PRTm×3n. The specific operation method is
as follows: For any position (x, y) of a pixel in PSm×3n,
by iterating Eq.(2) for t times to get the position (x′, y′)
of the pixel in PRTm×3n. Therefore, we obtain PRT(x′, y′)
as PRT(x′, y′) = PS(x, y). After the pixels in all positions
are processed, the permutated image PRTm×3n is obtained.
Then split PRTm×3n into three matrices RRTm×n, GRTm×n,
and BRTm×n with size of m×n. Further, convert RRTm×n,
GRTm×n, andBRTm×n to three 1D vectorsRN×1,GN×1, and
BN×1 with size of N × 1. Where N = m× n.
Step (6): Calculate the three parameters R′0, G

′

0, and B
′

0 as
R′0 =

⌊
(
∑i=N

i=2 R(i))/(N − 1)
⌋
,

G′0 =
⌊
(
∑i=N

i=2 G(i))/(N − 1)
⌋
,

B′0 =
⌊
(
∑i=N

i=2 B(i))/(N − 1)
⌋
.

(18)

Step (7): Iterate the new chaotic system Eq.(15) for
N+1000 times with the parameters {µ1, µ2, µ3} and mod-
ified values {x10, x20, x30} respectively, and take the final N
values to form three chaotic sequences X1, X2, X3 of length
N .
Step (8): Calculate three key-streams S1, S2, S3 with X1,

X2, X3 by Eq.(5).
Step (9):Modify the key streams S1, S2, and S3 as S1 = S1⊕ [(S2+ S3) mod 256],

S2 = S2⊕ [(S3+ S1) mod 256],
S3 = S3⊕ [(S1+ S2) mod 256].

(19)
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Step (10): Encrypt the three components {R(i), G(i), B(i)}
for each pixel to obtain their corresponding cipher values
{R′(i), G′(i), B′(i)} as

R′(i) = [(R(i)+ G′(i− 1)) mod 256]
⊕[(S1(i)+ B′(i− 1)) mod 256],

G′(i) = [(G(i)+ B′(i− 1)) mod 256]
⊕[(S2(i)+ R′(i− 1)) mod 256],

B′(i) = [(B(i)+ R′(i− 1)) mod 256]
⊕[(S3(i)+ G′(i− 1)) mod 256].

(20)

When i = 1, R′(i − 1), G′(i − 1) and B′(i − 1) are replaced
by three parameters R′0, G

′

0, and B
′

0 respectively, which are
calculated by Eq. (18). By using Eq. (20), we make the
relationship between ciphertext and plaintext more complex.

Step (11):Reshape three 1D vectorsR′N×1= [R′(i)],G′N×1
= [G′(i)], and B′N×1 = [B′(i)] to three matrices RCm×n,
GCm×n, BCm×n, and use these three components to compose
the final color cipher image Cm×n×3.

C. THE IMPROVED DECRYPTION ALGORITHM
The decryption procedure is similar to that of the encryption,
whereas with the reverse operational orders.

Step (1): Receive the secret keys, i.e. parameters set {a, b,
c, d , rm, rn, t , µ1, µ2, µ3, x10, x20, x30, δ}.
Step (2): Receive the color cipher image Cm×n×3, and

decompose the 3D matrix Cm×n×3 into three 2D component
matrices denoted as RCm×n, GCm×n, BCm×n, respectively.
Step (3):Modify the initial parameters {x10, x20, x30} with

δ by using Eq.(17).
Step (4): Iterate the new chaotic system Eq.(15) for

N+1000 times with the modified initial values {x10, x20, x30}
and system parameters {µ1, µ2, µ3} respectively, and take
the final N values to form three chaotic sequences X1, X2,
X3 of length N .

Step (5): Calculate three key-streams S1, S2, S3 with X1,
X2, X3 by using Eq.(5) respectively, and modify S1, S2, S3
by using Eq.(19) respectively.

Step (6): Reshape the three 2D matrices RCm×n, GCm×n,
BCm×n to three 1D vectors R′mn×1, G

′

mn×1, B
′

mn×1 respec-
tively.

Step (7): Inversely diffuse R′mn×1, G
′

mn×1, B
′

mn×1 and
obtain partially three decrypted vectorsRmn×1,Gmn×1,Bmn×1
as

R(i) = [R′(i)⊕ [(S1(i)+ B′(i− 1)) mod 256]
−G′(i− 1)] mod 256,

G(i) = [G′(i)⊕ [(S2(i)+ R′(i− 1)) mod 256]
−B′(i− 1)] mod 256,

B(i) = [B′(i)⊕ [(S3(i)+ G′(i− 1)) mod 256]
−R′(i− 1)] mod 256,

(21a)

Where i = N ,N − 1, . . . , 2.
Step (8): Because now {R(2), R(3), . . . ,R(N )}, {G(2),

G(3), . . . ,G(N )}, and {B(2),B(3), . . . ,B(N )} are known,
therefore, we can calculate the values of (R′0,G

′

0, B
′

0) by using
Eq.(18).

Step (9): Decrypte the first pixel values of {R(1), G(1),
B(1)} as

R(1) = [R′(1)⊕ [(S1(1)+ B′0) mod 256]
−G′0] mod 256

G(1) = [G′(1)⊕ [(S2(1)+ R′0) mod 256]
−B′0] mod 256

B(1) = [B′(1)⊕ [(S3(1)+ G′0) mod 256]
−R′0] mod 256

(21b)

Step (10):ReshapeRmn×1,Gmn×1,Bmn×1 to three matrices
RRTm×n,GRTm×n,BRTm×n, then stitch them to form a gray
image PRTm×3n.
Step (11): Inversely permutate the gray image PRTm×3n

to get the un-permutated gray image PSm×3n. Different from
Wu’s method, here we still use the improved 2D Arnold
transform Eq.(2) instead of the inverse transform Eq.(4). The
specific operation method is as follows: For any position
(x, y) of a pixel in PSm×3n, by iterating Eq.(2) for t times to
get the position (x′, y′) of the pixel in PRTm×3n. Therefore,
we obtain PS(x, y) as PS(x, y) = PRT(x′, y′). After the pixels
in all positions are processed, the un-permutated gray image
PSm×3n is obtained.

Step (12): Split PSm×3n into three matrices, i.e. RPm×n,
GPm×n, and BPm×n.

Step (13): Finally, the decrypted color image Pm×n×3
can be composed by its three components RPm×n, GPm×n,
BPm×n.

D. THEORETICAL ANALYSIS OF THE IMPROVED SCHEME
According to the processing principle, the improved scheme
can overcome the following weakness of Wu’s scheme.

1) The new combined chaotic system, Logistic-tent map
(LTM), has better chaotic performance than tent map.

2) By introducing a parameter related to the SHA-3 hash
value of the plaintext image as a secret key, the key-
streams are associated with the image to be encrypted
so that the improved algorithm can resist chosen-
plaintext attacks.

3) By improving the method of generating parameters R′0,
G′0, and B

′

0, then these parameters can be accurately
calculated on the decryption end so that the image can
be completely decrypted.

4) By improving the method of generating key-streams
S1, S2, and S3, make the improved algorithm more
sensitive to each initial key in (µ1, µ2, µ3, x10, x20,
x30).

5) By improving the encryption formula in diffusion pro-
cess, we make the relationship between ciphertext and
plaintext more complex.

V. TEST AND ANALYSIS FOR THE IMPROVED SCHEME
In our experimental tests, we choose the standard color plain
images, such as Lena, Baboon, Peppers, et al., with different
sizes as the testing subjects. The secret keys are set as (µ1 =

1.9, µ2 = 1.7, µ3 = 1.6, x10 = 0.1049306640625, x20 =
0.2049306640625, x30 = 0.3049306640625; a = 1, b = 3,
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FIGURE 4. The decrypted image corresponding to one of the
decryption keys {µ1, µ2, µ3, x10, x20, x30} with 10−10 error. (a) The
improved algorithm. (b) The Wu’s algorithm.

c = 5, d = 16, rm = 4, rn = 7, t = 5), and δ will be
determined by the plaintext image to be encrypted.

A. KEY SPACE ANALYSIS
Key space size is the total number of different keys which
can be used in a cryptosystem. For a good encryption algo-
rithm, the key space should be large enough to make brute-
force attack impossible. In the improved encryption scheme,
the secret keys are K1 = {µ1, µ2, µ3, x10, x20, x30; a, b, c,
d , rm, rn, t} and δ. The total number of different keys in K1
is the same as those in Ref. [27], and it is (5×10102). But δ is
a new double-precision number introduced by the improved
scheme, then the key space is (5×10102)×1015, which ismore
than 2390. Therefore the improved scheme has the bigger key
space than Wu’s scheme, and the key space is large enough
to resist brute-force attacks.

B. KEY SENSITIVITY
A good encryption algorithm should be sensitive to the secret
keys, namely, when the keys used in decryption are slightly
different from the keys used in encryption, the plaintext
image can not be decrypted correctly. To test the sensitivity
of the improved encryption algorithm to the secret keys,
we encrypted the 256×256×3 color image Peppers by using
the keys (µ1 = 1.9, µ2 = 1.7, µ3 = 1.6, x10 = 0.201, x20 =
0.301, x30 = 0.401; a = 1, b = 3, c = 5, d = 16, rm = 4,
rn = 7, t = 5) and δ = 0.472900390625. In the decryption
process, we slightly change one of the parameters of {µ1,µ2,
µ3, x10, x20, x30} and the change is only 10−10, namely, µ′i =
µi+10−10 or x ′i0 = xi0+10−10 (i = 1, 2, 3), whereµ′i and xi0
are the encryption keys, while µ′i and x

′

i0 are the decryption
keys. For example, when µ′1 = 1.9000000001 and the rest of
the key parameters remain unchanged, the decrypted image
by our improved algorithm and Wu’s algorithm are shown
in Figs. 4(a) and 4(b) respectively. Changing one of the other
parameters, the results of decryption are similar to Fig.4.

From Fig.4, one can see that the decrypted image obtained
by our improved algorithm with one key in decryption
process has a slight error is meaningless at all. However,
the decrypted image obtained by the Wu’s algorithm with
one key in decryption process has a slight error exposes
the plaintext information. Hence, the Wu’s algorithm is

FIGURE 5. Experiment results of the proposed scheme. (a) The Lena
image. (b) The histogram of the Lena image. (c) The encrypted Lena
image. (d) The histogram of the encrypted Lena image.

insensitive to the secret keys and unsafe. The reasons why
the Wu’s algorithm is not sensitive to the secret keys are as
follows: When one parameter in {µ1, µ2, µ3, x10, x20, x30}
has a slight error in the decryption process, only one key-
stream in {S1, S2, S3} will change accordingly, and only one
component in {R,G,B}won’t be decrypted accurately. How-
ever, in our improved algorithm, thanks to the introduction of
Eq.(19), changing any parameter in {µ1,µ2,µ3, x10, x20, x30}
will affect all of the key streams S1, S2 and S3. Therefore, our
improved algorithm is more secure than Wu’s algorithm.

C. DISTRIBUTION OF THE CIPHERTEXT
An image histogram displays the distribution of the values of
its pixels, and it provide some statistical information of the
image. Figs. 5(a) and 5(b) depict the plain-image Lena and
its corresponding histogram respectively. While Figs. 5(c)
and 5(d) depict the cipher-image Lena and its corresponding
histogram respectively. It can be seen from Fig.5 that the
distribution of the values of pixels in the plain-image is
uneven. However, the distribution of the pixel values in the
cipher-image is nearly uniform, and hence the cipher-image
can well protect the information of the image to withstand the
statistical analysis attack.

For quantity analyses of the performance of pixel values
distribution, we introduce variances of histograms to evaluate
uniformity of ciphered images. The variance of histograms is
presented as [33]

var(Z) =
1
n2

n∑
i=1

n∑
j=1

1
2
(zi − zj)2 (22)

where Z is the vector of the histogram values and
Z = {z1, z2, . . . , z256}, zi and zj are the numbers of pixels
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TABLE 2. Variances of the histograms of the Lena (512 × 512).

which gray values are equal to i and j respectively. The lower
value of variances indicates the higher uniformity of ciphered
images.

In simulating experiments, we calculate variances of his-
tograms of Lena plain image (size of 512×512) and its
ciphered image by Eq. (22). The variances of the histograms
of the Lena plain image and its corresponding cipher images
encrypted by three different encryption algorithms are listed
in Table 2. From the results, we can see that the variance
of the cipher image Lena obtained with our algorithm is
the lowest, that is 3485.1953, and is much less than that of
Zhang’s algorithm [33] and Zhu’s algorithm [34]. Thus, our
improved color image encryption algorithm is more efficient
and secure.

D. CORRELATION ANALYSIS OF TWO ADJACENT PIXELS
Ameaningful image usually has a large degree of correlation
between any adjacent pixel pairs. To enhance the resistivity
to statistical analysis attacks, a good encrypted image should
reduce the correlation as much as possible. As a experimental
test, we select all pairs of two-adjacent pixels (in vertical,
horizontal, and diagonal direction) from Lena cipher-image,
and calculate the correlation coefficients as Wu et al. did
in [27]. The cipher-image which has smaller absolute values
of correlation coefficient has better performance in resist-
ing statistical attack. The test results about the correlation
coefficients have been given in Table 3 and compared with
some references.We can see that our improved scheme shows
better performance than the other ones.

E. SHANNON ENTROPY ANALYSIS
Shannon entropy [35] is usually used to measure the ran-
domness of the gray values of an image. For an 8-bit image,
Shannon entropy is defined as

H (m) = −
255∑
i=0

P(mi) log2[P(mi)]. (23)

Where mi represents the ith gray value, while P(mi) is the
probability of value mi existing in the image. Obviously, for
an 8-bit completely random image, P(mi) = 1/256 and the
entropy is 8. A good encryption algorithm should make the
Shannon entropy of the ciphertext image very close to 8.
For a color image with a size of m × n × 3, we convert it
into a gray image with size of m × 3n to compute Shannon
entropy.

TABLE 3. Correlation coefficients of two adjacent pixels.

TABLE 4. Shannon entropy of different cipher image encrypted by
different schemes.

The results of different ciphertext images encrypted by
different related algorithms are listed in Table 4. Note that
our improved algorithm obtains the highest entropy in most
cases, which means that our improved algorithm leaks the
least information among the three ones.

F. ROBUSTNESS AGAINST DIFFERENTIAL ATTACK
Sometimes, attackers encrypt two plaintext images with the
same encryption algorithm, and the two plaintext images only
have slight differences. Then attackers try to find out the
relation between plain image and its cipher image by com-
paring the two encrypted images. We refer to this cryptanaly-
sis method as differential attack. In order to verify whether
the improved algorithm can resist differential attack, two
commonly used metrics are cited, which are the number of
pixel changing rate (NPCR) and the unified averaged changed
intensity (UACI) [38]. Their definitions are as follows.

NPCR =

m∑
i=1

n∑
j=1

D(i, j)

m× n
× 100% (24)

UACI =
1

m× n
(
m∑
i=1

n∑
j=1

|C2(i, j)− C1(i, j)|
255

)× 100%

(25)
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TABLE 5. Values of NPCR and UACI for Lena cipher images.

Where m, n represent the total number of rows and columns
of pixels in the image respectively. C1(i, j) and C2(i, j) are
pixel values at the same position (i, j) of the two encrypted
images mentioned above, and D(i, j) is computed by

D(i, j) =
{
1, if C1(i, j) 6= C2(i, j),
0, if C1(i, j) = C2(i, j).

(26)

The ideal value of NPCR is close to 1, and the ideal value of
UACI is close to 0.3346 [38]. The greater the value of NPCR
and UACI, the better the performance of the algorithm resists
differential attack.

In the experiment, We have randomly chosen six different
pixels (one at a time, including the first and last positions) in
Lena plain image and changed its value slightly (by adding
1). Table 5 shows the NPCR and UACI values. We can see
that the NPCR values are equal to 1 and UACI values are
also very close to 0.3346. Compared with the results in [27],
our improved algorithm has better performance than Wu’s
algorithm in resisting differential attacks.

Table 6 compares the NPCR and UACI values of different
encryption scheme for some classical standard test images
under the circumstance of the first pixels with the changes of
the least significant bits. From the results of Table 6, we know
that our proposed scheme has a larger NPCR value compared
with other schemes, which implies that our improved scheme
can resist stronger differential attack.

G. RESISTANCE TO CLASSICAL TYPES OF ATTACKS
According to the definitions of four classical types of attacks,
chosen plaintext attack is the most powerful attack. If a
cryptosystem can resist this attack, it can resist other types
of attack [32].

In our improved scheme, the key-streams (S1, S2, S3)
are related to the plaintext image to be encrypted. Even if
the attacker cracked the key-streams (S1, S2, S3) with some
special selected plaintext images, the key streams (S1, S2, S3)
can not be used to decrypt the target ciphertext image, because
different images have different key-streams (S1, S2, S3).
Further more, in the diffusion process, the encrypted value is
not only related to the corresponding plain value and the key
but also related to the former plain value and former ciphered
value. This means different ciphered image has different for-
mer plain value and former ciphered value. So, the improved
algorithm can resist the chosen plain- text/ciphertext

TABLE 6. NPCR and UACI values comparison for different encryption
schemes.

attack, and can well resist the four classical types of
attacks.

H. ANALYSIS OF SPEED
In applications, a practical algorithm should be fast. In our
experimental tests, several 24 bits color images with different
size have been used to measure the time cost of our improved
algorithm in encrypting or decrypting an image.

Our experimental tests run on a desktop PC with Intel(R)
Core(TM) i5-4590 3.30 GHz CPU, 4 GB RAM and 500 GB
hard disk. The operating system is 64 bitsMicrosoftWindows
7, and the computational platform is Matlab R2016b. The
average time taken by our improved algorithm for encrypting
(or decrypting) the images with size of 256 × 256, 512
× 512 and 1024 × 1024 are 0.58, 2.28 and 9.16 seconds,
respectively. Considering its high level of security, the speed
of image encryption or decryption processing is acceptable.

VI. CONCLUSION
In this paper, a color image encryption algorithm is
analyzed and cracked by using chosen-plaintext attacks. Fur-
ther, we proposed an improved color image encryption algo-
rithm. The improved algorithm includes the following three
major improvements. Firstly, A new combined chaotic sys-
tem called Logistic-tent map (LTM) is proposed, which has
better chaotic performance than tent map. Secondly, the new
chaotic system is applied to the improved encryption scheme.
Thirdly, by improving the key generation method and encryp-
tion strategy, the new encryption scheme can overcome the
security defects of the original encryption scheme. The ana-
lytical and experimental results show that the improved algo-
rithm can significantly improve the security of encryption
images while still possessing all the merits of the Wu’s
algorithm, which has a better potential for application. The
improved image encryption algorithm proposed in this paper
is suitable for encryption of color images with high security
requirements, and is also suitable for gray images encryption.
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