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ABSTRACT We study a scenario where multiple drone-mounted base stations cruise freely over a macro
hotspot to servemobile users on the ground. The drone base stationsmove constantly and update their moving
directions following our proposed mobility control algorithm. The constant movement of drones reduces
the distance between the base stations and users, which in turn improves the probability of having a line
of sight connection. We consider a practical user association scheme for the moving base stations, which
enables user equipments to switch their serving base stations based only on the received signal strength.
via extensive simulations, we demonstrate that the drone base stations moving according to our proposed
algorithms can improve the average packet throughput by 82% and the 5th-percentile packet throughput by
430% compared to a baseline scenario, where drones hover over fixed locations. These improvements can
be realized regardless of users’ and base stations’ density. The constant movement of the drones also helps
reduce the total number of drones required to cover the macro hotspot.

INDEX TERMS Unmanned aerial vehicles, Drone base station, mobility control, game theory, network
optimization.

I. INTRODUCTION
Due to their ability to autonomously move to any hard-
to-reach-areas, drones or small unmanned aerial vehicles
(UAVs) are becoming a promising solution for a wide range
of applications in cellular networks. For example, drones
equipped with light-weight base station (BS) hardware can
act as a flying BS, creating an attractive alternative to conven-
tional roof-top or pole-mounted BSs. In our research, we are
leveraging the flexibility and agility of drones to study a new
breed of drone BSs (DBSs) that can move continuously over
the serving area. Such DBSs can continuously adapt their
moving directions in order to provide higher service quality
for mobile users on the ground.

In this paper, we focus on a practical scenario, where
drones provide emergency coverage to a large area struck
by disasters that destroyed all or most of the existing cell
towers in the area. In this case, users can move around in the
entire area. We refer to such areas as macro-hotspots due to
the larger size of the area compared with conventional pico-
hotspots. For such macro-hotspots, it is more meaningful for
drones to fly over the entire area to serve as many users as
they can, instead of limiting themselves in pre-defined small
areas. In this scenario, the following challenges arise:
• Due to the free movement of DBSs over the entire
service area, a user may frequently find different DBSs

available for communication. Therefore, users should be
able to re-select their serving DBS in the network area.

• The probability of physical collision between DBSs
arises, as they are assumed to be deployed at the same
optimal altitude and can move around the entire net-
work freely.

• By allowing DBSs to move freely over the entire service
area, it is necessary to optimize the number of DBSs to
achieve a certain performance target at a minimum cost.

In this paper, we address all of the above mentioned chal-
lenges. Our contributions can be summarized as follows:
• Wepropose a game theoretic distributedmobility control
algorithm to guide the movement of the drones in the
service area. We demonstrate that the proposed mobility
control can not only optimize the spectral efficiency
of the system, but also reduce the number of required
drones in the network. We also show that the proposed
mobility algorithm helps to prevent drones flying too
close to each other, which reduces the risk of collisions

• We propose a simple and practically realizable user
association scheme for the moving DBSs, which makes
association decisions based only on the received signal
strength.

• Using extensive simulations, we show that our proposed
user association and drone mobility control algorithms
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can improve the average packet throughput by 82% and
the 5th-percentile packet throughput by 430% compared
to the baseline scenario, where drones hover over fixed
locations. These improvements can be realized regard-
less of users’ and base stations’ density.

The rest of this paper is structured as follows. The related
work is reviewed in Section II. The systemmodel is presented
in Section III, followed by performancemetrics in Section IV.
We then explain our proposed drone movement algorithm in
Section V. In Section VI, the simulation results are presented.
Finally, our conclusions are drawn in Section VII.

II. RELATED WORK
In this section, we review the recent drone-related research
relevant to cellular networks.

Due to special characteristics of UAVs and drones [1],
finding a realistic and reliable path loss and fading models
is one of the basic challenges in drone communications.
Several studies demonstrate that a model that depends on the
altitude and the elevation angle of UAVs fits the best for drone
communications [2]–[4]. The proposed model is validated by
experiments and used in our work as well.

Additionally, due to the flexibility and mobility of drones,
authors employed them in different approaches. Deploy-
ing one single drone at fixed altitude hovering above the
target area is addressed in [2] and [5]. It is shown that
there is an optimal altitude for one UAV to provide the
maximum coverage of the area. Another recent study by
Mozaffari et al. [6] involves finding the optimal cell
boundaries and deployment locations for multiple non-
interfering UAVs. The objective of this study is to
minimize the total transmission power of UAVs. Moreover,
Bor-Yaliniz et al. [7] discussed finding the 3D optimal loca-
tion for deploying a drone cell to provide services for the
maximum number of users satisfying their SNR (Signal to
Noise Ratio) constraints.

Rather than deploying UAVs in optimal location, dynamic
movement of UAVs are also investigated in the literature.
Following a predefined path, specially circular trajectory,
is one of the common mobility models for drones, addressed
in [8] and [9]. The center and the radius of circular path are
adjusted for better performance between ground users and the
UAV. Irregular movement is another way to gain benefits of
drone’s abilities [10]–[12]. Motion control of UAVs’ chain
to improve the link capacity between two mobile nodes is
explored in [10]. Artificial Potential Field model is used to
control the speed and heading angle of UAVs. A maximum
turning angle and speed is defined for drones.

In our previouswork [13], we designed dronemobility con-
trol algorithms according to drone’s practical limitation [14],
in order to improve the performance of the cellular network.
DBS’s mobility was limited to its small cell boundaries, and
all users in the small cell were assumed to be associated
to their local DBS all the time. we have shown that letting
drones chasing users can significantly improve the system
performance, especially the packet throughput for cell-edge

users. In this work, we employ drones in a large area where
they can move freely. Users are also allowed to move freely
in the entire networks. Considering mobile users, multiple
interfering drones, and practical limitations on drones’ move-
ments bring new challenges in this work. In the following
section we review the system model and our proposed algo-
rithm for DBSs.

III. SYSTEM MODEL
We assume there is a large network area with a size of
L(m)×L(m), whichwill be covered by flyingDBSs. There are
U mobile users initially placed randomly in the serving area,
moving according to the Random Way Point Model (RWP).
In this model, each user selects a random destination within
the area border independent of other users and moves there
following a straight trajectory with a constant speed selected
randomly from a given range. Upon reaching the destination,
users may pause for a while before continuing to move to
another destination [15]–[17]. Moreover, there are N DBSs,
constantly moving in the network with a constant speed v
(m/s), at a fixed altitude of h (m). Figure 1 illustrates the
considered network scenario.

FIGURE 1. Considered network area with multiple mobile users and DBSs.

Note that, deploying drones at the same height with free
movement would cause potential collision among drones.
One alternative to avoid such collision issue is to use the
height separation technique, i.e., deploying DBSs at various
heights. However, by using height separation, drones could
be deployed at a vast range of heights, causing performance
degradation for the system. As a result, we assume all DBSs
are flying at the same height and address the possibility
of collision later.

DBSs may be connected to a nearby cell tower with wire-
less backhaul links. We further assume that each DBS is
transmitting data to users using a fixed transmission power
of ptx (watt), a total bandwidth B (Hz) centered on a carrier
frequency of f (Hz). It is assumed that transmissions from
DBSs can create interference up to κ meters. The interference
beyond κ meter is assumed to be negligible.
The ground distance or the two-dimensional (2D) distance

between user u (u ∈ [1, 2, . . . ,U ]), and drone n (n ∈
[1, 2, . . . ,N ]) is defined by the distance between the user and
the projection of the drone location onto the ground, denoted
by ru,n. The euclidean distance or the three-dimensional (3D)
distance between user u and drone n is then presented by
du,n =

√
r2u,n + h2, where h is the height of drone.
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A. CHANNEL MODEL
In this paper, we consider a practical path loss model incor-
porating both LoS (Line of Sight), and NLoS (Non Line
of Sight) transmissions. More specifically, the path loss
function is formulated according to a probabilistic LoS
model [2], [3], in which the probability of having a LoS con-
nection between a drone and its user depends on the elevation
angle of the transmission link. According to [2], the LoS
probability function can be expressed as

PLoS (u, n) =
1

1+ α × e(−β[ω−α])
, (1)

where α and β are environment-dependent constants, ω
equals to arctan(h/ru,n) in degree. Although this model is
recommended by 3GPP/ITU for urban scenarios, it would
still be valid for disasters, as buildings will not be completely
destroyed for most disasters. Moreover, the ratio of built-up
land area to the total land can be changed by adjusting the
environment-dependent parameters. As a result of (1), the
probability of having a NLoS connection can be written as

PNLoS (u, n) = 1− PLoS (u, n). (2)

From (1) and (2), the path loss in dB can be modeled as

ηpath(u, n) = Apath + 10γpath log10(du,n), (3)

where the string variable ‘‘path’’ takes the value of ‘‘LoS’’
and ‘‘NLoS’’ for the LoS and the NLoS cases, respectively.
In addition, Apath is the path loss at the reference distance
(1 meter) and γpath is the path loss exponent, both obtainable
from field tests [18].

B. TRAFFIC MODEL
The traffic model for each user follows the 3GPP recommen-
dation [19]. In this model, there is a reading time interval
between two subsequent user’s data packet request. The read-
ing time of each data packet is modeled as an exponential
distribution with a mean of λ (sec). Moreover, the transmis-
sion time for each data packet is defined as the time interval
between the request time of a data packet and the end of its
download, denoted by τ (sec).

All data packets are assumed to have a fixed size of s
(MByte). A user is referred to as an active user during the
transmission time.

C. COMMUNICATION MODEL
The received signal power, Spath(u, n) (watt), of an active user
u associated with drone n can be expressed by

Spath(u, n) =
bu
B
× ptx × 10

−ηpath(u,n)
10 (4)

where bu (0 ≤ bu ≤ B) is the allocated bandwidth to the user.
Moreover, the total noise power, Nu (watt), for an active

user u including the thermal noise power and the user equip-
ment noise figure, can be represented by [20]

Nu = 10
−174+δue

10 × bu × 10−3, (5)

where δue (dB) is the user equipment noise figure.

Accordingly, the Signal to Noise (SNR) and Signal to Inter-
ference plus Noise Ratio (SINR) of user u associated to drone
n can be expressed by

SNRpath(u, n) =
Spath(u, n)

Nu
, (6)

SINRpath(u, n) =
Spath(u, n)
Iu + Nu

, (7)

where Iu =
(∑

i∈N ,i 6=n,ru,i≤κ S
path(u, i)

)
represents the inter-

ference signal from neighbor DBSs received by user u.
Then, the spectral efficiency (SE) (bps/Hz) of an active user

u associated with drone n can be formulated according to the
Shannon Capacity Theorem as [21]

8path(u, n) = log2(1+ SINR
path(u, n)). (8)

Given the probabilistic channel model, the average SE for
user u is given by

8̄(u, n) = PLoS ×8LoS (u, n)+ PNLoS ×8NLoS (u, n). (9)

Moreover, the Throughput (bps) of a communication link
between an active user u and drone n can be formulated as

T (u, n) = bu × 8̄(u, n). (10)

D. DRONE MOBILITY CONTROL
Since all DBSs are flying at the same height, we consider
their mobility in the 2D plane only. In more detail, we assume
that each drone moves continuously in the 2D plane with a
constant linear speed of v, and updates its moving direction
every tm sec, hereafter called Direction Update Interval. The
proposed continuously moving model is thus applicable to all
types of drones, with or without drone rotors.

When a drone wants to change its direction while keeping
a constant speed, it moves along an arc. More importantly,
the maximum possible turning angle θmax for a drone during

a specific time tm can be obtained by θmax =
amax × tm

v
,

where amax and v is the maximum centripetal acceleration
and the speed of drone, respectively [14], [22]. At every tm,
the DBS chooses an angle, θn, between ±[0,θmax] and starts
to complete the turn at the end of next tm sec.

E. USER ASSOCIATION SCHEME
At any particular time, a set of users are connected to a DBS.
However, when drones can move freely in the entire network
area, users can reselect their serving DBSs frequently. The set
of all active users associated to a DBS n at a specific time t is
denoted by Qn(t) (0 ≤ |Qn(t)| ≤ U ). Additionally, the total
bandwidth of B is shared equally among all associated active
users of a DBS, and the DBS updates resource allocation
every tr second, which is referred to as Resource Allocation
Interval.
In the considered user association scheme, a user selects a

DBS with the highest received signal strength (RSS), and can
reselect its serving DBS every tr . There is no limitation on
the number of users that can be associated to a specific DBS.
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Note that each user can independently choose its serving
DBS according to the observed RSS without any additional
information from the other users.

IV. PERFORMANCE METRICS
In this section, we define the required metrics to evaluate the
network performance.

A. PACKET THROUGHPUT
The Packet Throughput, the ratio of successfully transmitted
bits over the time consumed to transmit the said data bits, can
be expressed as

P = s×
1
τ
, (11)

where s is the packet size, and τ is the transmission time.
Recall that the transmission time for each data packet is
defined as the time interval between the request time of a data
packet and the end of its download. The traffic model for each
user is shown in Figure 2.

FIGURE 2. The traffic model per user.

B. 5TH-PERCENTILE PACKET THROUGHPUT
In order to evaluate the performance of DBSs for the cell
edge users, the lowest 5th percentile of packet throughput
is considered, as recommended by the 3GPP [23]. Generally
speaking, a more homogeneous distribution of the user expe-
rience over the coverage area is highly desirable, and hence
improving the cell edge performance is particularly useful for
operators in practice.

C. USER-TO-DBS DISTANCE
One of the main motivation of mobile DBSs is to get close to
users and shorten the distance between users and BSs. As a
result, we investigate on the user-to-DBS ground distance to
see the impact of drones mobility on it.

D. DBS-TO-DBS DISTANCE
In the free movement models, drones can fly over the entire
network area, however keeping a safe distance to avoid phys-
ical collision between DBS is also very important. Moreover,
maintaining a reasonable distance among DBSs can help to
alleviate the interference problem.

E. PROBABILITY OF LOS
The probability of having a LoS connection between a serv-
ing DBS and an active user mainly depends on the height
of the drone and the elevation angle of the transmission
link. (See Equation 1) Higher LoS probability will improve

the communication quality, results in higher network perfor-
mance. Therefore, the probability of LoS is considered as one
the performances metrics in this paper.

V. DBS MOBILITY ALGORITHM
In this paper, we propose a DBSmobility algorithms (DMAs)
that employs Game Theory to make mobility decisions.

The task of a DMA is to choose turning angles for DBSs at
the start of every tm interval to improve the performance of the
system. The DBS will continue to follow the path specified
by the turning angle selected at the start of the interval for the
next tm seconds. This path cannot be changed in the middle
of tm despite any further changes in mobile user population
and traffic in the system. When there is no associated user to
a DBS, it chooses a random direction that keeps the drone in
the intended border.

To reduce the complexity of the problem, we discretized all
turning options into a finite set of [−θmax , . . . ,−2g,−g, 0, g,

2g, . . . , θmax], where g =
2θmax
G− 1

, with G representing the

total number of turning options. Each drone can choose its
direction from G candidate ones.

In the game theory based DMA, the direction selection is
formulated as a non-cooperative game played by all serving
DBSs in the system. The game is played at the start of each
tm interval and the decisions leading to the Nash Equilibrium
(NE) are adopted by the DBSs to update their directions.
A pure NE is a convergence point where no player has an
incentive to deviate from it by changing its action. Hereafter,
we refer to this algorithm as GT DMA.
The game is described by G = (P, {Ap}, up), where P =
{1, 2, . . . ,P} is the set of DBSs as players with at least one
associated active user. Ap is the set of actions (G turning
angles) for each DBS, and up is the utility function of each
DBS.

Furthermore, up : A→ IRmaps any member of the action
space, θ ∈ A, to a numerical real number. The action spaceA
is defined as the Cartesian product of the set of actions of all
players (A = A1 × A2 × · · · × AP). We denote the utility
function of each player as up(θp, θ−p), where θ−p presents the
action of all players except p. The utility function for each
player is defined by the spectral efficiency of that player given
the action of all players, as follows

up(θ ) = up(θp, θ−p) = 8̄(p), (12)

where 8̄(p) is the average SE for the active users associated
to DBS p.
In a non-cooperative game, each player independently tries

to find an action that maximizes its own utility, however its
decision is influenced by the action of other players:

θn = arg max
∀θp∈Ap

up(θp, θ−p) ∀p ∈ P. (13)

In this algorithm, at first, all drones select a random direc-
tion from their set of actions. Then each of them finds their
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best response considering other players’ action that maximize
the utility function. Exhaustive search is considered to find
the best response. Finally, after few trials they all converge to
a NE point and move towards the selected directions during
the next tm interval.

VI. SIMULATION AND DISCUSSION
In this section, the performance of the DBS network where
both users and DBSs are free to move in the entire network
area is evaluated through extensive simulations byMATLAB.
In this model, the RSS-based user association scheme is
employed. The numerical results are compared against those
of non-moving DBSs, i.e., hovering over the serving area.
Such baseline scheme is referred to as the hovering (HOV)
model.

In the HOV model, the total network area is reformed into
a regular grid of squares based on the number of available
DBSs. Each DBS is deployed hovering at the target height
above the centre of such squares. For example, given an
area of size 560m × 560m, and 16 available DBSs, the
area is divided into a 4×4 squares, each of size 140m ×
140m. Then a DBS is deployed above the centre of each
square.

The DBS’ speed vary from 2m/s to 8m/s, with the capabil-
ity of changing direction every tm = 1s. Moreover, the current
observed drone centripetal acceleration is set to 4 m/s2 [24],
while higher centripetal acceleration are expected for future
drones.

The recommended height of 10m [25] is selected for all
DBSs in our simulation. The number of users and their traffic
model follow the parameters recommended by the 3GPP [19]
shown in Table 1. Our preliminary simulation results show
that the system performance becomes stable after 500 sec-
onds. As a result, we run all simulations for 800 seconds
to obtain meaningful results. Moreover, to mitigate the ran-
domness of the results, all results have been averaged over
10 independent runs of 800-second simulations.

TABLE 1. Definition of parameters and their value.

FIGURE 3. The average packet throughput for DBSs with various speeds
and two different maximum centripetal accelerations.

FIGURE 4. The average packet throughput gain for DBSs with various
speeds and two different maximum centripetal accelerations.

A. IMPACT OF DBSS’ SPEED AND ACCELERATION
In this section, we fixed the number of DBSs to 49.Moreover,
the number of users in the area is 245. The DBSs which are
following our proposed GT algorithm are compared against
HOV model in terms of various performance metrics.

1) AVERAGE PACKET THROUGHPUT
Figure 3 plots the average packet throughput of the system
when DBSs are moving at various speeds, while the speed of
‘‘0’’ represents the HOV scenario. From this figure, we can
draw the following observations:
• Generally speaking, the average packet throughput of
the mobile DBSs becomes larger with a higher speed.
Note that considering the working frequency and the
maximum speed of 8m/s, the Doppler effect is negli-
gible. Moreover, a higher acceleration generates better
results than a lower acceleration.

• Although flying the drone faster may help taking the
DBS from one location to another in less amount of time,
the higher moving speed reduces the maximum turning
angle limiting the possible directions the DBS canmove.
As a result, by having a low maximum centripetal accel-
eration the system suffers from lower average packet
throughput at higher speed. However, in higher accel-
eration, drones are able to enjoy both higher speed and
higher maneuverability, and the average packet through-
put increases by increasing the drones’ speed.

• Regardless of the speed and the acceleration, the mobile
DBSs moving freely in the network area yield a con-
siderably higher average packet throughput than that of
the HOV model. The achieved gain of average packet
throughput for various speeds and accelerations are plot-
ted in Figure 4. For example, with the current drone
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FIGURE 5. The empirical CDF of packet throughput, having 49 DBSs and
245 users.

FIGURE 6. 5th-percentile packet throughput for DBSs with various speeds
and two different accelerations.

FIGURE 7. 5th-percentile packet throughput gain for DBSs with various
speeds and two different accelerations.

technology and the acceleration of 4m/s2, a remarkable
67% gain can be achieved when DBSs are moving at
a low speed of 4m/s. By increasing the acceleration to
8m/s2, and the speed to 8m/s, an even larger perfor-
mance gain of 82% can be obtained.

Moreover, to have a better understanding on the perfor-
mance gains, we have plotted the empirical CDF of the
packet throughput for the HOV model with the GT algorithm
in Figure 5. For the GT algorithm, drones are flying with
the speed of 6m/s with two different acceleration of 4m/s2

and 8m/s2, respectively. This figure shows that the GT algo-
rithms noticeably pushes the packet throughput CDF to the
right compared to the HOV model. Additionally, it can be
observed that a higher acceleration has led to a larger packet
throughput.

2) 5TH-PERCENTILE PACKET THROUGHPUT
The 5th-percentile packet throughput and the achievable gain
are compared to HOV model, and plotted in Figure 6 and 7,
respectively. From these two figures, we can draw the follow-
ing observations:

• The 5th-percentile packet throughput improves as the
DBSs’ speed and acceleration increase.

• According to Figure 7, there is a large performance
gain in terms of the 5th-percentile packet throughput,
reaching up to 343% and 430% improvement with the
existing consumer drones (an acceleration of 4m/s2) and
the future drones (an acceleration of 8m/s2), respec-
tively. This is because our algorithm allows drones to
move to the vicinity of users, while hovering drones
are stationary at pre-defined locations and thus cannot
deliver satisfactory QoS to cell-edge users.

We also summarized the 50th-percentile and 95th-
percentile packet throughput [in Mbps] along with the
achieved gain in Table 2 and Table 3, respectively. Both
Table 2 and Table 3 indicate that mobile DBSs following
our proposed GT algorithm can achieve a remarkable gain
comparing to the scenario where base stations are hovering
above fixed locations. Generally speaking, a higher accelera-
tion generates a higher gain as well.

TABLE 2. 50th-percentile packet throughput and the achieved gain.

TABLE 3. 95th-percentile packet throughput and the achieved gain.

3) USER TO DBS DISTANCE
The goal of designing mobility algorithms for DBSs is
to reduce the distance between users and the serving BS.
Therefore, in this subsection, we show how the DBS-to-user
distance reduces with mobile DBSs.

We collected the ground distance statistics between any
active user and its corresponding DBS during the entire sim-
ulation time. Figure 8 shows the average ground distances
for the proposed algorithm and the baseline model, where
drones are moving at various speeds. The results are plotted
for two different accelerations as well, i.e., 4m/s2 and 8m/s2.
According to this figure, there is a substantial reduction in the
average user-to-DBS distance, reaching up to 33% and 38%
reduction with the existing consumer drones (an acceleration
of 4m/s2), and the future drones (an acceleration of 8m/s2),
respectively.

4) PROBABILITY OF LOS
Having a LoS link between a user and a DBS will greatly
improve the communication performance. In the proposed
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FIGURE 8. The average user to DBS ground distance as a function of
DBSs’ speed and acceleration.

FIGURE 9. Empirical CDF of the probability of LoS connection for the HOV
model with the GT algorithm.

FIGURE 10. Empirical CDF of the elevation angle for GT and HOV.

model, DBSs are adapting themselves in a way to increase
the probability of having a LoS link. Figure 9 exhibits the
CDF of the probability of LoS for any communication link
between active users and their serving DBSs during the sim-
ulation time. In this figure, drones are moving at the speed
of 6m/s. According to this figure, the proposed GT algorithm
successfully pushes the CDF rightward compared against the
HOV scenario. Moreover, it shows that a higher acceleration
outperforms a lower one in terms of the probability of having
LoS communications. Having a LoS communication depends
on the elevation angle of the transmission link. Therefore,
in Figure 10 we show the CDF of the elevation angle the for
the proposed GT algorithm and the baseline model, where
drones are moving at the speed of 6m/s for the GT algorithm,
given two different accelerations. Similar to the probability of
LoS, the GT algorithm, effectively pushes the elevation angle
CDF to the right side. Having larger elevation angles means
that the BS has reduced the distance to the user and try to
position itself on top of the user’s location.

FIGURE 11. The average packet throughput for different user density.

FIGURE 12. The empirical CDF of interference for different user density.

B. IMPACT OF USER DENSITY
In this section, we change the number of users in the same
network area to see how DBSs perform having a different
number of users.

Figure 11 illustrates the average packet throughput for the
HOV model with the GT algorithm, when there are 49 DBSs
in the network area. Three different user densities are consid-
ered in this figure. From Figure 11, the following observa-
tions can be drawn:

• Given a fixed number of DBSs, increasing the number of
users in the network area decreases the average packet
throughput. The reason is that a large number of users
have more requests to be served by the DBSs; as a
result, each DBS needs to transmit a longer time than
the case with a less number of users in the area. More
transmissions by DBSs create more interference, and
thus reduces the system performance. Such conclusion
is corroborated by the results in Figure 12. This fig-
ure presents the empirical CDF of interference when
DBSs are moving at the speed of 4m/s. According to
this figure, having 490 users creates more interference
than having 392 and 245 users. Additionally, we sum-
marize the average percentage of transmission time for
DBSs during the simulation time in Table 4. This table
verifies that the average transmission time for drones
increases noticeably as the user density grows. For
example, the average transmission time for drones mov-
ing at the speed of 2m/s in the GT algorithm increases
from 41.2% to 75.9% as the number of users increases
from 245 to 490.

• Regardless of the number of users in the area, the pro-
posed flyingDBSs outperforms the baselineHOVmodel
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TABLE 4. Average percentage of transmission time for drones during the
simulation time.

FIGURE 13. Average packet throughput as a function of number of DBSs
with 245 users.

considerably in term of the average packet throughput.
For instance, having DBSs with a speed of merely 2m/s,
yields a gain of 68% and 71% for a DBS network with
392 and 490 users, respectively.

C. IMPACT OF NUMBER OF DBSS
When DBSs and users can move freely in the entire net-
work area, there is no physical constraint on the number of
deployed DBSs. As a result, we conduct simulations with
different number of DBSs in the area and evaluate the packet
throughput. Moreover, the results are compared against the
HOV model, where the same number of DBSs are deployed
in the network, hovering at the centre of considered grids.
We first set the number of users to 245. From Figure 13, the
following observations can be drawn:
• The average packet throughput reduces as the number
of deployed DBSs decreases in the network. By having
a less number of DBSs in the area, each DBS needs
to serve a larger number of users; thus the average
packet throughput reduces. The variation of the number
of active users served by DBSs during the simulation
time is plotted in Figure 14. In this figure, the median
number of served users is plotted using a red line in a
box for each number of DBSs in the area. Moreover,
the variations are shown in + symbol in red color. As
it can be seen from this figure, there is a possibility of
serving 60 users by one DBS in the case of deploying
16 DBSs in the network area. On the other hand, a drone
may serve up to 7 users when 144 DBSs are available in
the network area.

• Utilizing the mobility features of drones provides an
exciting opportunity to reduce the number of required
BSs in the network. As shown in Figure 13, having
36 flying DBSs can achieve a similar packet throughput
performance to that of 49 fixed hovering DBSs.

• For a given number of DBSs, mobile DBSs following
our proposed algorithm can bring a huge improvement in

FIGURE 14. Variation of associated users to DBSs as a function of number
of DBSs with 245 users.

FIGURE 15. Average packet throughput gain as a function of number of
DBSs with 245 users.

terms of packet throughput compared to the same num-
ber of hovering DBSs. However, the obtained gain could
be different depending on the number of available DBSs.
To see how the achieved average packet throughput gain
varies with various number of DBSs, we plot the gain
in Figure 15.

As can be seen from Figure 15, one interesting finding is
that the performance gain increases at first, however it wanes
when the number of DBSs is larger than 36. This figure indi-
cates that the highest performance gain can be obtained by
36 DBSs in the area. Through dense deployment of DBSs
(e.g., 144 DBSs), there is less chance for DBSs to move
around. As a result, they cannot provide a high performance
gain.

Figure 15 also presents the gains as a function of drones’
speed. It indicates that regardless of the speed of drones, the
highest performance gain can be achieved by 36 DBSs when
there are 245 users in the network area.

To see how the gain varies by the change of the user
number, we also plot the achievable gain for variable num-
ber of DBSs when there are 392 users in the network area
in Figure 16. Interestingly, this figure shows that the optimal
number of DBSs to achieve the maximum gain is 49 DBSs,
when there are 392 users in the network.

From Figure 15 and Figure 16, it can be concluded that
there is an optimal number of DBSs to achieve the maximum
gain in the network area. However, such optimal number
depends on the user density. It shows that with a higher
user density, a higher DBS density is needed to achieve the
maximum gain. The reason is that with too few DBSs the
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FIGURE 16. Average packet throughput gain as a function of number of
DBSs with 392 users.

FIGURE 17. Trajectory of 16 DBSs in the network area, moving at the
speed of 6m/s and acceleration of 4m/s2.

gain of DBS mobility is limited because of the large BS-
to-user distance. On the other hand, with too many DBSs
the baseline scheme of hovering is already good enough.
Therefore, the movement of drones does not make a large
difference. The relation between the optimal DBS number
and the user density is left for future work.

We also provide themoving trajectory of DBSs in the entire
network area during the simulation time to see how they chase
the users in the network. According to Figure 17, mobile
DBSs can leverage their mobility in order to cover the entire
area and provide high quality services for the users even if the
density is low.

D. THE DBSS COLLISION ISSUE
Note that when drones are moving freely at the same height,
they may collide with each other. To study the probability
of collision, we analyze the DBS-to-DBS distance during
the simulation time. Figure 18 illustrates the CDF of such
DBS-to-DBS distance for the free movement models. As
can be seen from this figure, the intelligent movement of
drones maintains a comfortable distance among the DBSs.
The intuition is that in the proposed algorithm, each DBS
tends to be closer to its serving users, and farther away from
interfering DBSs. Therefore, the possibility of having two
drones flying in close proximity is extremely low,which helps
to prevent drones coming too close to each other. As shown

FIGURE 18. The empirical CDF of DBS-to-DBS distance.

in Figure 18, the probability that the DBS-to-DBS distance
is less than 10m, is well below 10−3 even for dense DBSs
deployment.

VII. CONCLUSION
In this paper, we considered a macro hotspot scenario, where
both flying DBSs and users can move freely in the entire
network area. The flying DBSs serve as many users as they
can based on the received signal strength. We shows that by
freeing up the DBSs and letting them cruise in the network,
a significantly large system throughput can be achieved. This
enormous performance is the result of an intelligent and
effective control mobility algorithm and a practical user asso-
ciation scheme. Moreover, by allowing DBSs to move freely,
the opportunity to deploy a less number of DBSs becomes
promising. The performance impact of the DBS and user
densities have also been studied in this paper.
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