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ABSTRACT In addition to the accuracy requirements, the calibration of the line scan camera (LSC) should
also have strong operability and portability. This paper presents a low-cost high-reliability LSC calibration
method. First, a 3D right-angle stereo target based on concentric rings is designed, which is named space
rings group, and it is suitable for static calibration of LSC. The calibration target has a simple structure and
is easy to carry. The calibration process does not require other auxiliary instruments, greatly improving the
operability of the calibration for the line camera. Second, in order to improve the positioning accuracy of
subpixel edges in the image and reduce the computational complexity, a subpixel edge detection method
is adopted, which is a region-by-region localization algorithm, a combination of global adaptive Canny
detection and local partial area effect (Local-Canny-PAE, LCPAE). Then, the relationship between the actual
spatial point and the image point is established by using the invariant nature of the image and the imaging
model of the camera, and the two-step particle swarm optimization (TS_PSO) algorithm is used to solve the
internal parameters of the camera. Finally, the validity of this method is verified by computer simulation and
real experiment.

INDEX TERMS Line scan camera (LSC), calibration, space rings group (SRG), local-Canny-PAE (LCPAE),
two-step particle swarm optimization (TS_PSO).

I. INTRODUCTION
LINE scan camera (LSC) is widely used in industrial
production for real-time detection of moving objects,
because of its advantages of high resolution and continuous
high-speed measurement. In these applications, especially in
three-dimensional (3D) surface reconstruction and the mea-
surement of the accuracy of moving objects, the internal
parameters of the visual system often need to be pre-acquired.
So, the calibration of camera is an indispensable process.

The existing calibration methods are mostly designed for
the matrix camera [1], [2], for the LSC is very limited.
Therefore, it is significant to design a simple and effective
calibration method for LSC.

Because of its unique one dimensional imaging charac-
teristics, LSC is difficult to obtain the complete geometric
information such as corners and contours, making it difficult
to calibrate. Therefore, the calibration of the LSC usually
need to solve the following problems:
• Calibration target design effectiveness. Due to the one-
dimensional scanning imaging characteristics of LSC,

it is difficult to obtain effective external geometric
information at one time. Therefore, the design of the
calibration target must allow the camera to detect the
target content and clearly distinguish the information of
calibration features.

• The rationality of solving the model. The ideal LSC
conforms to the Pinhole model. However, the real cam-
era lenses often contain distortions, and the distortion
effects cannot be ignored when the visual system needs
higher accuracy. In addition, the effectiveness of the
image point information extraction algorithm has great
influence on the calibration result.

• Calibration method of operability. In practice, since the
camera and other equipment often need to be adjusted
according to the scene, the calibration method of the
camera is required to have higher portability and oper-
ability.

Currently, the calibration methods for LSC can be roughly
classified into two types: the dynamic scanning calibration
method and the static calibration method.
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Dynamic calibration method mostly through the relative
motion between the camera and the calibration target, to get
the complete target pattern information. This method usually
needs to set or acquire the relative motion information in
advance, and accurate and reliable motion control is required
in the calibration process. Drareni et al. [4] obtains the scan-
ning image of camera by using a planar grid pattern and
Hui [5]–[7] presents a series of scanning calibration methods
using 3D patterns instead of planar patterns, etc.

According to the one-dimensional imaging characteris-
tics of LSC, the static calibration methods usually estab-
lish a correspondence between the target and the image
by constructing a pattern such as parallel lines or blocks.
Horaud et al. [3] firstly proposed this kind of calibration
method. However, the pattern must be translated in the direc-
tion of the coordinate axis with known steps, the result of the
calibration depends on the accuracy of the panning control.

The static calibration method has high operability and
portability, and simple to calculate compared with the
dynamic scanning method. Moreover, since the dynamic cali-
bration method needs additional control costs, the calibration
result is easily affected by the movement accuracy. However,
the static calibration involves solving multi-parameter equa-
tions, and needs to obtain a plurality of non-collinear spatial
point information.

Sun [8]–[10] acquired non-collinear feature points by
shooting target patterns from multiple angles using a com-
bination of matrix camera and LSC. Luna et al. [11] and
Lilienblum et al. [12], [13] build the spatial target model
through 3D target forms. The 3D target method is more
computationally simple and avoids the introduction of matrix
camera errors. However, the actual straight line is usually a
narrow band whose width information is not ideal. The ideal
straight line feature appears as a single point on the LSC
image, which increases the positioning difficulty of the image
feature. Li et al. [14] changes the line to a triangle block with
bandwidth information instead of a line style, the effective
utilization area of the target pattern and the final result of
calibration is easily affected by the tilt angle of the triangle.

In view of the above factors, a static calibration method
based on 3D right-angle stereo target with concentric rings
is presented for surface measurement, namely space rings
group (SRG). The method uses concentric ring symmetrical
structure graph to reduce the calculation difficulty in the cal-
ibration process and increase the number of effective points
in the interval.

Usually, the real camera imaging model is nonlinear.
In order to avoid the instability of optimization results caused
by the correlation of parameter calculations and to speed up
the optimization, a two-step method is used to solve and
optimize the calculation of parameters. In addition, since
the effectiveness of the image point location algorithm has
a direct impact on the calibration results, a sub-pixel loca-
tion algorithm is proposed in this paper. Through the use of
global Canny operator and local partial area effect (Local-
Canny-PAE, LCPAE) algorithm for regional step-by-step

FIGURE 1. Equivalent integral of PAE.

positioning, the image feature location speed and accuracy
are improved.

The paper consists of the following parts: Part II, using
BM3D [22] filtering to remove noise and obtaining the sub-
pixel edge position with LCPAE. Part III, using the Space
Rings Group (SRG) target model to statically calibrate a
LSC. Part IV, optimizing the calibration parameters using the
Two-step particle swarm optimization (TS_PSO) algorithm.
Part V and Part VI, validation and analysis of calibration
results, including computer simulation experiments and real
calibration experiments. Part VII, Calibration Model Sum-
mary.

II. A SUB-PIXEL EDGE DETECTION ALGORITHM
For the static calibration of the line camera, it is necessary to
acquire the feature end positions of line segments. In order
to reduce the effects of noise and system signal transmission
instability, multiple lines of statically scanned images are
often used for calibration. Thanks to the characteristic that
the feature endpoints present line shapes on multi-line scan
images, the position information of the endpoints can be
easily obtained by means of sub-pixel detection.

There are many existing sub-pixel edge detection meth-
ods such as interpolation, moment method [15], [16], fitting
method [17] and other methods [18]–[20]. The interpolation
method is simple and computationally fast, but the accuracy
of the acquired edges is low. Compared with the interpolation
method, moment estimation method [15], [16] can obtain
higher positioning accuracy, but the algorithm is still easy
to be disturbed by noise. In addition, these methods can’t
accurately obtain the edge point intensity value and direction
of change. Moreover, the computational complexity is high
for the above methods.

Fortunately, Trujillo-Pino et al. [21] proposed an edge
location method based on partial area effect (PAE), which can
precisely detect the edge at a sub-pixel position. The method
is accuracy in the description of the edge features.

The edge is simulated by PAE, which using equivalent
integral to calculate the strength of the two sides of the
second-order curve in a neighborhood, and as shown in Fig. 1.

SL = ((x1 − x0) · (y′ − y0)− PL01) · A1 + PL01 · B1 (1)

The intensities of the three sub-window areas are SL , SM ,
and SR, respectively. A1 and B1 are the mean values of the
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intensities of the diagonal regions N1 and N2 within the
window.

PL01 =
∫ x1

x0
(η1 · x2 + η2 · x + η3)dx (2)

Where PL1,PM01, and PR01 are respectively the area of
the area below the quadratic curve in the three sub-windows.
η1, η2, and η3 are the coefficients of the curve to be fitted.

However, the PAE algorithm calculates the entire image
at the sub-pixel level, and the calculation based on the
region easily covers the noise information. In other words,
the method of PAE has to face the follow tough questions:
• The PAE method acts on the entire image to detect
the sub-pixel edges, in particular, which involves the
calculation of complex windows, which undoubtedly
increased the cost of computing.

• The calculation results are easily affected by the noise
in the window area, especially, salt and pepper noise and
white Gaussian noise.

• The appropriate threshold selection is also the key to
positioning accuracy, especially when the local edge
information in the image is not obvious.

An improved PAE-based method, LCPAE is proposed to
solve the above problem, and the flow is shown in Fig.2.
In order to reduce the time consumption of PAE, the LCPAE
method firstly uses Canny for pixel-level edge detection and
then uses PAE for sub-pixel level detection in a small local
window. The LCPAEmethod uses Canny for pixel-level edge
detection in the global region and then uses PAE for sub-pixel
level detection in a local regions.

FIGURE 2. The flow chart of sub-pixel edge detection.

Firstly, BM3D [22] algorithm is used to remove the image
noise, and the self-adaptive threshold Canny (SATC) edge
detection that proposed by Tang et al. [23] is used for the edge
detection at pixel level, and the automatic threshold selection
method based on gradient amplitude histogram and maxi-
mum variance between classes. SATC can extract real edges
better for different images, especially for low contrast images.
With the SATC algorithm, it can capture pixel-level edges

and help set thresholds for the improved PAE algorithms of
LCPAE.

Secondly, it takes the edge point of SATC as the core of a
neighborhoodwindow and LCPAE is operated inside thewin-
dow. The optimal threshold is determined by calculating the
correlation between the results of PAE at different thresholds
and the SATC, as shown in Fig.3.

FIGURE 3. The threshold calculation of LCPAE.

SATC uses Eq. (3) to get the pixel-level edges:

gc(x, y) = Canny(f (x, y),Adp_T1,2) (3)

Where f (x, y) represents the input image, Adp_T1,2 are
the thresholds of SATC, gc (·) denotes a binary image that
generated by SATC.

What LCPAE needs to get is the specific location informa-
tion of the edge. However, the edge provided by the SATC is
relatively rough. So, the edge of SATC needs to be refined by
Eq. (4):

Gc−thin(x, y) = (gc ⊗ b)(x, y) (4)

WhereGc−thin (·) stands for the image of gc (·) after convo-
lution thinning operation by structural unit b. Otherwise,

⊗
represents morphological refinement.

The PAE model obtains the sub-pixel edge. In order to
facilitate the assessment of the threshold Tp applicability,
the edge information needs to be rounded by Eq. (3):

ILocal(x, y) = round(LPAE(Tp)(f (x, y))) (5)

The Local-PAE method is LPAE(TP)(·) that based on TP,
and TP expresses a corresponding threshold. LPAE(TP)(·) will
return a sub-pixels collinear. round (·) will return a rounded
integer of sub-pixel collinear. ILocal(·) states the local neigh-
borhood result of output that a binary image generated by
PAE edge detection.

The rounding result of ILocal(·) will reduce the coverage of
the edge information. In order to reduce the error, the ILocal(·)
is expanded by Eq. (6).

GPAE−inf late(x, y) = (ILocal(Tp) ⊕ b
′

)(x, y) (6)

Where GPAE−inflate(·) represents the local PAE edge after
rounding and expansion. Besides,

⊗
represents morpholog-

ical expansion.
The applicability of the threshold Tp is judged by Eq. (7).

The new threshold is updated with Eq. (8) and Eq. (9):

P(Tp) =

∑
N
gc(x, y) & GPAE−inf late(x, y)∑

N
Gc−thin(x, y)

(7)
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P(TP) indicates the correlation of SATC and Local-PAE at
a threshold of TP.

Sfeedback =

{
1 P(Tp) > τ

0 other
(8)

And

Trenew = Tp − l · Sfeedback (9)

The judgment threshold is τ to verify the validity of TP,
and Trenew is the updated threshold in Local-PAE. l indicates
the update iteration step.

III. SPACE RINGS GROUP (SRG) CALIBRATION METHOD
A. LINE SCAN CAMERA MODEL
In the process of calibration of a line scan camera, the cam-
era is calibrated by a combination of a linear model and a
non-linear model, as shown in Fig.4. First of all, by using
the linear model to obtain the initial parameter solution,
and then use the non-linear model to optimize the iteration,
to obtain the final optimization of all the parameters of the
solution.

FIGURE 4. The model of Line scan camera.

The space point is P, and the coordinates of the camera
coordinate system (CCS) is (XP,YP,ZP).y denotes the undis-
torted mapping point on the image under the linear model,
and y′ represents the distortion map point on the image under
nonlinear model. y0 stands for the main point. f means the
focal length. The linear model can be expressed as follows:{

y = y0 + f · g(α)
g(α) = tan(α) = YP

ZP

(10)

The distortion parameters k1, k2, k3 [24] are considered in
the nonlinear model. It is still used f to indicate the camera
focal length. And the line scan camera imaging model can be
expressed as follows:

y′ − y0 + k1 · (y− y0)2 + k2
·(y− y0)3 + k3 · (y− y0)5 = f · tan(α)
XP = 0

(11)

The relationship between the world coordinate system
(XW

P ,Y
W
P ,Z

W
P ) and the camera coordinate system (XP,YP,

ZP) can be expressed as follows:XPYP
ZP

=[R T
]
·


XwP
YwP
ZwP
1

=
R1 T1
R2 T2
R3 T3

·

XwP
YwP
ZwP
1

 (12)

Where R is the rotation matrix, and T means the translation
matrix; R1,R2,R3,T1,T2 and T3 are their component.

Otherwise, the linear model of a line scan camera in the
world coordinate system is:{

0 = r11 · XW + r12 · YW + r13 · ZW + T1
y = y0 + f · Sy

(13)

Similarly, the nonlinear model can also be represented as
follows:{

0=r11 · XW + r12 · YW + r13 · ZW + T1
y′ = y0 + f · (Sy + a1 · S2y + a2 · S

3
y + a3 · S

5
y )

(14)

Where

Sy =
r21 · XW + r22 · YW + r23 · ZW + T2
r31 · XW + r32 · YW + r33 · ZW + T3

(15)

B. SPACE RINGS GROUP (SRG) PATTERN
The SRG target pattern, mainly consists of two parts: rings
group and regional labels. The rings group is used to generate
the space points, and the labels eliminate the ambiguity of
the calculation plane by determining the quadrant area of
the target pattern in time-space calibration, and it as shown
in Fig.5.

FIGURE 5. The 3D view of Calibration target.

The Line_1 and Line_2 are the intersection of scanning
plane and space target of line camera in different posi-
tions in Fig.6. And it can be seen from the Fig.6 that
Line_1 contains the labels, Line_2 does not contain. When
Line_1 removes the label information, the result of the static
scan of the multi-line intersections in the two positions is
the same, which adds the ambiguity information to the cal-
culation of the subsequent scan plane equation. By using the
regional labels, not only the calibration range is increased, but
also ambiguous information is eliminated.

C. THE CALCULATION OF SCANNING PLANE
OF THE CAMERA
The line scan camera’s plane can be solved by Lxy and Lxz.
Meanwhile, the rotation vector R1 and the translation param-
eter T1 can also be obtained from the plane equation. The
linear equations of Lxy and Lxz can be solved by calculating
the distance (h1, h2, h3) between the straight line to the circle
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FIGURE 6. The Line-scan camera images of the target.

center of the torus calculated by the invariance property of
the space beam. Combined with regional labels, to further
determine the final results. The invariance properties of the
space beam [25] are also be shown in Fig.6.

The mapping points of the target feature points (A, B,
C, D) in the image are (a, b, c, d), the image of line
scan can be approximate to a line, so a function can be
expressed:

ad · bc

ac · bd
=

(ya − yd ) · (yb − yc)
(ya − yc) · (yb − yd )

(16)

Where (ya, yb, yc, yd ) are the corresponding image pixel
coordinates of (A, B, C, D) under the linear model. The
distance from the center of the circle to (A, B, C, D) is
(ra, rb, rc, rd ). And h is the distance from the line to the center
of the circle:

(ya − yd ) · (yb − yc)
(ya − yc) · (yb − yd )

=

(√
r2a − h2 +

√
r2d − h

2

)
·

(√
r2b − h

2 +
√
r2c − h2

)
(√

r2a − h2 +
√
r2c − h2

)
·

(√
r2b − h

2 +

√
r2d − h

2

)
(17)

Linear equations of Lxy can be set as:

Lxy :

{
µ1 · X + µ2 · Y + 1 = 0
Z = 0

(18)

The coordinates of two circle centers corresponding to the
rings groups are (0, Oy1, 0) and (0, Oy2, 0), and

∣∣µ2 · Oy1 + 1
∣∣√

µ2
1 + µ

2
2

= h1∣∣µ2 · Oy2 + 1
∣∣√

µ2
1 + µ

2
2

= h2

(19)

Where h1 and h2 are the distances from the straight line to
the two center points, and the symbols of µ1 and µ2 can be
determined by the labels.

The linear equation of Lxz can be solved by the intercept
Ld = 1/µ1 of the linear equation Lxy on the X axis and
the distance to the center of the rings group (0, 0, Oz1),
the equation of Lxz can be obtained from Ld and h3, expressed
as follow:

Lxz :

{
µ1 · X + µ3 · Z + 1 = 0
Y = 0

(20)

And ∣∣µ3 · Oz1 + 1
∣∣√

µ2
1 + µ

2
3

= h3 (21)

In summary, the camera scanning plane is:

µ1 · X + µ2 · Y + µ3 · Z + 1 = 0 (22)

D. THE CALCULATION OF INTERNAL PARAMETERS
When the line camera plane intersects all circles, the infor-
mation of twenty-four feature points can be acquired for the
camera parameter calibration.

Firstly, the initial solution of the calibration parameters
is obtained from the non-distorted linear model of the line
camera:{

0=R11 · XW + R12 · YW + R13 · ZW + T1
y = y0 + fy ·

R21·XW+R22·YW+R23·ZW+T2
R31·XW+R32·YW+R33·ZW+T3

(23)

The equation can be simplified as:

y =
L1 · XW + L2 · YW + L3 · ZW

L4 · XW + L5 · YW + L6 · ZW
(24)

Introducing four intermediate variables (ω, s1, s2, s3),
where s1, s2, and s3 represent the proportion coefficient
between the parameters:

y0 = s1 ∗ T1
T2 = s2 ∗ T1
T3 = s3 ∗ T1

(25)

And ω is the scaling factor of the simplified equation, the
relationship between the parameters can be expressed by the
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following equations:

L1 = ω · (fy · r21 + s1 · r31 − s2 · r11)
L2 = ω · (fy · r22 + s1 · r32 − s2 · r12)
L3 = ω · (fy · r23 + s1 · r33 − s2 · r13)
L4 = ω · (r31 − s3 · r11)
L5 = ω · (r32 − s3 · r12)
L6 = ω · (r33 − s3 · r13)

(26)

Establish a linear system of equations between the space
point coordinates and the image coordinates, and then obtain
the values of Li(i = 1, · · · 6) by means of singular value
decomposition (SVD), and calculate the values of parameters
as (27), as shown at the bottom of this page, where R1 and T1
can be solved by the plane equation (22):

r11
r12
r13
T1

 = ±1√
µ2
1 + µ

2
2 + µ

2
3


µ1
µ2
µ3
1

 (28)

The sign of T1 can be determined by whether the image
contains the regional labels, it should be T1 < 0 when the
area of the rings group does not contain the labels.

Otherwise, the relationship betweenω and R3 is as follows:

ω = R3 ·

 L4L5
L6

 (29)

For convenience, the intermediate variable ε is introduced
as follows:

ε = R1 ·

 L4L5
L6

 = −ω · s3 (30)

and

L4 = ω · r31 − ε · r11 (31)

Where ω has:

ω2
= ω2

· (r231 + r
2
32 + r

2
33)

⇒ ω2
= (L4 + ε · r11)2+(L5+ε ·r12)2 + (L6+ε ·r13)2

(32)

And the rotation vector R2 is:

R2 = R1 × R3 (33)

All of the initial values of parameters can be found at this
step, but they are not the final accurate results. The linear
model does not take into account the distortion, and the plane
(µ1, µ2, µ3) is also not a convincing plane of scanning.

IV. OPTIMIZATION
A. TWO-STEP PARTICLE SWARM OPTIMIZATION (TS_PSO)
In the process of calibration of a line scan camera, the camera
is calibrated by a combination of a linear model and a non-
linearmodel, as shown in Fig.4. First of all, by using the linear
model to obtain the initial parameter solution, and then use the
non-linear model to optimize the iteration, to obtain the final
optimization of all the parameters of the solution.

In the linear model, all the calibration parameters are ini-
tially determined. However, this is not the final result. Due
to the fact that the camera lens often contains distortion,
the imaging model is nonlinear, which affecting the accuracy
of the edge detection of the feature points, resulting in cali-
bration results error.

In order to get as accurate calibration parameters as possi-
ble, it needs to optimize the model. However, there are many
problems to be faced in the optimization of multi parameters.
One hand, the amount of calculation is large, the stability
of the optimization results is poor. The real camera imaging
model is nonlinear, and calculations between internal param-
eters are interrelated. If all parameters are optimized directly,
which easily leads to non-convergence of optimization. Oth-
erwise, the initial optimization range of the parameters can-
not be determined because of the different magnitudes of
the actual parameters. On the other hand, the optimization
process tends to fall into the local optimal solution. Because
of the influence of each parameter on the calibration result
is not the same. Such as the distortion of the lens is very
small, which has limited influence on the calibration result.
Indiscriminate optimization of all parameters at the same
time, will ignore the impact of certain parameters, resulting in
its optimization results into a local optimum. For the purpose
of overcome these problems, it is necessary to perform differ-
entiating optimization for different parameters, and two-step
particle swarm optimization (TS_PSO) is a good choice.

TS_PSO consists of two parts: In the first step, the dis-
tortion of the lens has limited influence on the calibration
result, so distortion parameters can be ignored, and the non-
linear model used for camera solving is converted to linear
model. The initial solution of the parameter is obtained by
linear model, and the optimal range is given. Then, the initial
optimization solution is obtained by optimizing (h1, h2, h3)
in the initial parameters. In the second step, by introducing
the distortion parameters, a nonlinear model is established
to limit the optimization range. And then the particle swarm
optimization (PSO) algorithm is optimized for the initial opti-
mization solution to obtain the final optimization solution,


XW1 YW1 ZW1 −y0 · XW1 −y0 · YW1 −y0 · ZW1
XW2 YW2 ZW2 −y0 · XW2 −y0 · YW2 −y0 · ZW2
...

...
...

...
...

...

XWn YWn ZWn −y0 · XWn −y0 · YWn −y0 · ZWn



L1
L2
L3
L4
L5
L6

 = 0 (27)
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FIGURE 7. The Two-step particle swarm optimization (TS_PSO).

as shown in Fig.7.
In Fig.7, the first step optimization is aiming at the scan-

ning plane (µ1, µ2, µ3), because the error is mainly caused
by (h1, h2, h3), and which will be calculated by the sub-pixel
location.

However, the distortion, the blurred depth of field and
the position of the sub-pixel feature points on the image
can’t accurately reflect the cross-ratio property, thus affecting
the accuracy of the scanning plane. The second step is an
optimization for all parameters [fy,R,T , a1, a2, a3], and the
initial values [a1, a2, a3] of the distortion coefficients can be
obtained from the first step.

The PSO [26] is a global optimization algorithm that pro-
duces random particles in an optimized space and calculates
the fitness function at different particle locations. Each parti-
cle according to its own and global applicability, to change
their position for the next iteration update. When all the
particles converge, the optimal solution is finally found. The
particle updates its speed and position through the equation
expressed as:{
V k+1
in = η · V k

in + c1 · λ1 · (8
k
in − ξ

k
in)+ c2 · λ2 · (0

k
in−ξ

k
in)

ξ k+1in = ξ kin + V
k+1
in

(34)

TABLE 1. Computer simulation parameters of calibrated targets.

TABLE 2. Computer simulation parameters of the camera.

Where ξi = (τi1, τi2, · · · , τiN ) represents a N dimen-
sion vector of current particle position in the search space.
(τi1, τi2, · · · , τiN ) stands for the optimized parameters and
iis the serial number of particle. Vi = (vi1, vi2, · · · viN )
is the velocity of particle swarm, and the local extreme
is 8i = (φi1, φi2, · · · , φiN ), the global extreme is 0i =
(ζi1, ζi2, · · · , ζiN ). Otherwise, η signifies the weight, k means
the iteration times, c1 and c2 are acceleration coefficients, λ1
and λ2 are the random numbers at the range of 0-1.

B. THE PROCEDURE OF CALIBRATION
The entire calibration procedure is shown in Fig.8.

FIGURE 8. The process steps of Calibration.

V. THE COMPUTER SIMULATIONS
The proposed calibrationmethod has been tested by computer
simulated data and real data. The computer simulated data are
used to evaluate the calibration performances considering the
following four factors: (1) the sub-pixel location accuracy; (2)
the depth of field and the noise level for locating the image
points; (3) the lens distortion; (4) the placement of calibration
target. The real data are used for verifying the practicability
of the method.

The calibration target information includes four radius of
every rings group [r1, r2, r3, r4], the circle center coordi-
nate (Oy1,Oy2,Oz1), and the space angle between two target
planes. The computer simulated target parameters are shown
in the following Table. 1.

The camera parameters is simulated and shown in Table. 2.
Firstly, the linear imaging model is derived from
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FIGURE 9. Calibration results under real projection point data with
noises.

parameters (fy,R,T ), and the coordinates of twenty-four
intersection points are obtained, and R is the rotation matrix
generated by the rotation angle (ϕ1, ϕ2, ϕ3). Secondly, noises
are added to the derived simulated image sub-pixel points.
Thirdly, the theoretical simulated image points is sub-pixels
but the edge points of image are not. In order to simulate
the true pixel points of image, the CCD photosensitive unit
is simulated by rectangle area integral, and the real image is
generated. Otherwise, white Gaussian noises and Gaussian
blur are added to the simulated image, considering that the
signal noise and depth of field. Fourthly, the mapping range
of the target in different space distance is different, resulting
in a different influence on the accuracy of edge detection.
The different spatial positions of the target are simulated by
changing T3. Fifthly, the lens distortion is an extra factor
which is taken into account. Finally, the all simulated images
and the derived simulated image points are used to work out
the intrinsic and extrinsic camera parameters by the method
in Section IV.

A. PERFORMANCE WITH RESPECT TO THE NOISE LEVEL
FOR INTERSECTION POINTS
The true intersection points are projected onto the image
plane by (fy,R,T ). In order to test the influence of sub-pixel
positioning accuracy on calibration results, Gaussian noise
with 0 mean and σ standard deviation is added to the true
projected points. And the estimated camera parameters are
then compared with the true values in Table 2. The absolute
error is measured for the estimated camera parameters. The
noise level is varied by changing σ from 0.1 to 0.5 pixels
in 0.05 pixels increment. For each noise level, 100 indepen-
dent trials are performed and the average results are shown
in Fig.9.

It can be seen from Fig.9 that (R2,R3,T2,T3, fy, y0) are
sensitive to the noise level for intersection points. And with
the increase of noise, the calculation errors also tend to
increase.

FIGURE 10. The simulation of image pixel values.

FIGURE 11. Calibration results under simulated images with noises.

B. PERFORMANCE WITH RESPECT TO THE NOISE
LEVEL FOR IMAGE
The theoretical simulated image points can be accurate to
decimal but the description of image points are not, as shown
in Fig.10. In order to simulate the CCD photosensitive unit,
a rectangle area integral is used, the results are used for further
experiments.

Otherwise, considering that the signal noise and depth of
field, white Gaussian noises and Gaussian smoothing fuzzy
are added to the simulated image, and the noise level is varied
by changing σ from 0.1 to 0.6 pixels in 0.1 increment and the
coefficient of Gaussian- smooth is 0.5. For each noise level,
100 independent trials are performed and the average results
are shown in Fig.11.

Where (R2,R3,T2,T3, fy, y0) are also sensitive to the noise
level for image in Fig.11. And with the increase of noise,
the calculation errors also tend to increase. It also can be seen
that the influence of image noise on the calibration accuracy
has a positive correlation with the sub-pixel detection from
Fig.11.

C. PERFORMANCE WITH RESPECT TO THE
DIFFERENT SPATIAL
The different spatial positions of the target are simulated
by changing T3. The relative position of the target relative
to the camera has a certain randomness to the calibration
results fromFig.12. Taking into account the target size and the
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FIGURE 12. Calibration results at different T3 positions.

FIGURE 13. The Line-scan camera images of the target.

number of pixels the camera imaging, and calibration error
and the relationship between the sub-pixel detection accuracy.
It is considered that the resolution of the target in the imaging
plane is different under different spatial positions, and the
detection accuracy of sub-pixels is different, thereby affecting
the calibration accuracy.

D. PERFORMANCE WITH RESPECT TO THE DIFFERENT
DISTORTION PARAMETERS
By setting the parameters k1 to introduce camera distortion,
and using non-linear model for simulation. The simulated
camera model is determined by Eq. (1).

In Fig.13, the lens distortion have an impact on (y0,T2,T3),
with the distortion coefficient increases, the absolute error
also becomes larger. The optimization process has significant
effects on (R1,R2,T1,T3, fy).

VI. REAL EXPERIMENT
SRG method is used to conduct real calibration experiments
in different locations. The experimental results are divided

FIGURE 14. (a) The layout of Calibration experiment (b) The image
of 500 lines under static scanning.

FIGURE 15. The non-optimized results.

into six groups according to different angles. The equipment
models as shown in Fig.14 (a). Each image is the result of five
hundred static scans, as shown in Fig.14 (b). The experimen-
tal camera is UM2-GE_2010, the lens is FY-YFL3528, and
the light source is HLND-1200SW2-R. In order to consider
the impact of background factors, each experiment was per-
formed at different exposures and gains to obtain valid exper-
imental data, the non-optimized results are shown in Fig.15.

In Fig.15, the non-optimized results for each group at
different exposures and gains clearly show that improper
exposure and gain can severely affect the calibration results.
When choosing a reasonable exposure and gain range, the ini-
tial non-optimized RMSE (root mean square error) can be
controlled within 0.9.
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FIGURE 16. The optimized results after TS_PSO.

Taking into account other factors such as lens distortion,
the TS_PSO method is used to optimize the results in the
reasonable exposure and gain interval of Fig.15. The three
axes are exposure time (us), gain (dB), and RMSE (pixel).
Otherwise, the optimization process and results are shown
in Fig.16.

In Fig.16, after TS_PSO optimization, RMSE can be
reduced to less than 0.3, the best result is 0.16. Otherwise,
in real experiments, 30 initial particle populations were used.
The number of iterations and the optimization results show
that when the number of iterations reaches 5, the optimization
effect is significant, and the calculation amount is 150 cal-
culation cycles. When the number of iterations reaches 10,
the iteration results tend to be stable with an equivalent of
300 calculation cycles.

In addition, without parallel calculations, the total time
for the non-optimized calculation is 4.1531 seconds, with
sub-pixel edge positioning time of 0.7519 seconds. The cal-
culation time for a single optimization cycle is 3.7301 sec-
onds. The above results are all completed under the CPU
(E3-1231 v3) and the platform (Matlab-2016). The parallel
acceleration technology is not used in the calculation process.

The real calibration results of six sets are shown in Table. 3.

TABLE 3. The real experimental results.

VII. CONCLUSION
In this paper, a new calibration method of line camera is
proposed. This method uses the space target method to carry
on the static calibration, the line reference target pattern such
as the conventional space parallel line group or the parallel
block is changed. The method of point reference calibration
based on the space rings group is constructed. After computer
simulation and real experimental data, the effectiveness of the
method is verified. Compared with dynamic scanning and
other methods, the proposed method has strong operability
and portability.

REFERENCES
[1] Z. Zhang, ‘‘A flexible new technique for camera calibration,’’ IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no. 11, pp. 1330–1334, Nov. 2000.
[2] X. Meng and Z. Hu, ‘‘A new easy camera calibration technique based

on circular points,’’ Pattern Recognit., vol. 36, no. 5, pp. 1155–1164,
May 2003.

[3] R. Horaud, R. Mohr, and B. Lorecki, ‘‘On single-scanline camera calibra-
tion,’’ IEEE Trans. Robot. Autom., vol. 9, no. 1, pp. 71–75, Feb. 1993.

[4] J. Draréni, S. Roy, and P. Sturm, ‘‘Plane-based calibration for linear
cameras,’’ Int. J. Comput. Vis., vol. 91, no. 2, pp. 146–156, 2011.

[5] B. Hui, G.Wen, Z. Zhao, andD. Li, ‘‘Line-scan camera calibration in close-
range photogrammetry,’’ Opt. Eng., vol. 51, no. 5, p. 053602, 2012.

[6] B. Hui, J. Zhong, G. Wen, and D. Li, ‘‘Determination of line scan camera
parameters via the direct linear transformation,’’Opt. Eng., vol. 51, no. 11,
p. 113201, 2012.

[7] B. Hui, G. Wen, P. Zhang, and D. Li, ‘‘A novel line scan camera calibration
technique with an auxiliary frame camera,’’ IEEE Trans. Instrum. Meas.,
vol. 62, no. 9, pp. 2567–2575, Sep. 2013.

[8] B. Sun, J. Zhu, L. Yang, S. Yang, and Z. Niu, ‘‘Calibration of line-
scan cameras for precision measurement,’’ Appl. Opt., vol. 55, no. 25,
pp. 6836–6843, 2016.

[9] B. Sun, J. Zhu, L. Yang, S. Yang, and Y. Guo, ‘‘Sensor for in-motion
continuous 3D shape measurement based on dual line-scan cameras,’’
Sensors, vol. 16, no. 11, p. 1949, 2016.

[10] B. Sun, J. Zhu, L. Yang, Y. Guo, and J. Lin, ‘‘Stereo line-scan sen-
sor calibration for 3D shape measurement,’’ Appl Opt., vol. 56, no. 28,
pp. 7905–7914, 2017.

[11] C. A. Luna, M. Mazo, J. L. Lazaro, and J. F. Vazquez, ‘‘Calibration of line-
scan cameras,’’ IEEE Trans. Instrum. Meas., vol. 59, no. 8, pp. 2185–2190,
Aug. 2010.

[12] E. Lilienblum, A. Al-Hamadi, and B. Michaelis, ‘‘A coded 3D calibration
method for line-scan cameras,’’ in Proc. German Conf. Pattern Recognit.
(GCPR), 2013, pp. 81–90.

[13] E. Lilienblum andA. Al-Hamadi, ‘‘A structured light approach for 3-D sur-
face reconstruction with a stereo line-scan system,’’ IEEE Trans. Instrum.
Meas., vol. 64, no. 5, pp. 1258–1266, May 2015.

[14] D. Li, G. Wen, B. W. Hui, S. Qiu, and W. Wang, ‘‘Cross-ratio invariant
based line scan camera geometric calibration with static linear data,’’ Opt.
Laser Eng., vol. 62, pp. 119–125, Nov. 2014.

23720 VOLUME 6, 2018



M. Niu et al.: LSC Calibration Based on SRG

[15] S. Ghosal and R. Mehrotra, ‘‘Orthogonal moment operators for subpixel
edge detection,’’ Pattern Recognit., vol. 26, no. 2, pp. 295–306, 1993.

[16] F. Bouchara, ‘‘Efficient algorithm for computation of the second-order
moment of the subpixel-edge position,’’ Appl. Opt., vol. 43, no. 23,
pp. 4550–4558, 2004.

[17] R. Archibald, J. Gelb, and A. Yoon, ‘‘Polynomial fitting for edge detection
in irregularly sampled signals and images,’’ SIAM J. Numer. Anal., vol. 43,
no. 1, pp. 259–279, 2005.

[18] R. M. Haralick, ‘‘Digital step edges from zero crossing of second direc-
tional derivatives,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6,
no. 1, pp. 58–68, Jan. 1984.

[19] T. Aydin, Y. Yemez, E. Anarim, and B. Sankur, ‘‘Multidirectional and
multiscale edge detection via M-band wavelet transform,’’ IEEE Trans.
Image Process., vol. 5, no. 9, pp. 1370–1377, Sep. 1996.

[20] H. Zunfeng, D. Hongshe, and L. Xiaorui, ‘‘A novel fast subpixel edge
location method based ON Sobel-OFMM,’’ in Proc. IEEE, Int. Conf.
Autom. Logistics, Sep. 2008, pp. 828–832.

[21] A. Trujillo-Pino, K. Krissian, M. Alemán-Flores, and D. Santana-Cedrés,
‘‘Accurate subpixel edge location based on partial area effect,’’ Image Vis.
Comput., vol. 31, no. 1, pp. 72–90, 2013.

[22] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ‘‘Image denoising
with block-matching and 3D filtering,’’ Proc. SPIE, vol. 064, p. 606414,
Feb. 2006.

[23] L.-L. Tang, Q.-C. Zhang, and S. Hu, ‘‘An improved algorithm for canny
edge detection with adaptive threshold,’’ Opto-Electron. Eng., vol. 38,
pp. 127–132, 2011.

[24] D. C. Brown, ‘‘Close-range camera calibration,’’ Photogramm. Eng.,
vol. 37, no. 8, pp. 855–866, 1971.

[25] O. Faugeras, Three-Dimensional Computer Vision: A Geometric View-
point. MIT, 1993, pp. 51–66.

[26] J. Kennedy and R. Eberhart, ‘‘A new optimizer using particle swarm
theory,’’ in Proc. 6th Int. Symp. IEEE Micro Mach. Human Sci., Oct. 1995,
pp. 39–43.

MENGHUI NIU received the B.E. degree from
the School of Henan University of Science and
Technology, Luoyang, China, in 2013, and the
M.S. degree from the School of Mechanical Engi-
neering and Automation, Northeastern University,
Shenyang, China, in 2016, where he is currently
pursuing the Ph.D. degree. His research interests
include machine vision and image processing.

KECHEN SONG received the B.S., M.S., and
Ph.D. degrees from the School of Mechanical
Engineering and Automation, Northeastern Uni-
versity, Shenyang, China, in 2009, 2011, and
2014, respectively. He has been a Teacher with
Northeastern University, China, since 2014. His
research interests include vision-based inspection
system for steel surface defects, surface topogra-
phy, image processing, and pattern recognition.

XIN WEN received the B.E. and M.S. degrees
from the School of Mechanical Engineering,
Liaoning Shihua University, Fushun, China,
in 2012 and 2015, respectively. She is currently
pursuing the Ph.D. degree with the School of
Mechanical Engineering and Automation, North-
eastern University, Shenyang, China. Her research
interests include surface topography and machine
vision.

DEFU ZHANG received the B.E. degree from
the School of Mechanical Design, Manufactur-
ing and Automation, Hebei University, Baoding,
China, in 2014, and the M.S. degree from the
School of Mechanical Engineering and Automa-
tion, Northeastern University, Shenyang, China,
as joint training of students with the Shenyang
Institute of Automation, Chinese Academy of Sci-
ences, in 2017. He is currently pursuing the Ph.D.
degree with the School of Mechanical Engineering

and Automation, Northeastern University. His research interests include
machine vision and salient object detection.

YUNHUI YAN received the B.S., M.S., and
Ph.D. degrees from the School of Mechanical
Engineering and Automation, Northeastern Uni-
versity, Shenyang, China, in 1981, 1985, and 1997,
respectively. He has been a Teacher with North-
eastern University, China, since 1982, and became
a Professor in 1997. From 1993 to 1994, he
was with the Tohoku National Industrial Research
Institute as a Visiting Scholar. His research
interests include intelligent inspection, image
processing, and pattern recognition.

VOLUME 6, 2018 23721


	INTRODUCTION
	A SUB-PIXEL EDGE DETECTION ALGORITHM
	SPACE RINGS GROUP (SRG) CALIBRATION METHOD
	LINE SCAN CAMERA MODEL
	SPACE RINGS GROUP (SRG) PATTERN
	THE CALCULATION OF SCANNING PLANE OF THE CAMERA
	THE CALCULATION OF INTERNAL PARAMETERS

	OPTIMIZATION
	TWO-STEP PARTICLE SWARM OPTIMIZATION (TS_PSO)
	THE PROCEDURE OF CALIBRATION

	THE COMPUTER SIMULATIONS
	PERFORMANCE WITH RESPECT TO THE NOISE LEVEL FOR INTERSECTION POINTS
	PERFORMANCE WITH RESPECT TO THE NOISE LEVEL FOR IMAGE
	PERFORMANCE WITH RESPECT TO THE DIFFERENT SPATIAL
	PERFORMANCE WITH RESPECT TO THE DIFFERENT DISTORTION PARAMETERS

	REAL EXPERIMENT
	CONCLUSION
	REFERENCES
	Biographies
	MENGHUI NIU
	KECHEN SONG
	XIN WEN
	DEFU ZHANG
	YUNHUI YAN


