IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SOFTWARE FAILURES

SPECIAL SECTION ON SOFTWARE STANDARDS AND THEIR IMPACT IN REDUCING

Received January 30, 2018, accepted March 1, 2018, date of publication March 20, 2018, date of current version May 24, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2817572

An Ensemble Oversampling Model for Class
Imbalance Problem in Software Defect Prediction

SHAMSUL HUDA"'1, KEVIN LIU ', MOHAMED ABDELRAZEK', AMANI IBRAHIM?,
SULTAN ALYAHYA2, HMOOD AL-DOSSARIZ, AND SHAFIQ AHMAD 3

School of IT, Deakin University, Melbourne VIC 3125, Australia
2Information Systems Department, King Saud University, Riyadh 11451, Saudi Arabia
3Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia

Corresponding author: Shamsul Huda (shamsul.huda@deakin.edu.au)

This work was supported by the Deanship of Scientific Research at King Saud University under Grant RGP-1436-039.

ABSTRACT Software systems are now ubiquitous and are used every day for automation purposes in
personal and enterprise applications; they are also essential to many safety-critical and mission-critical
systems, e.g., air traffic control systems, autonomous cars, and SCADA systems. With the availability of
massive storage capabilities, high speed Internet, and the advent of Internet of Things devices, modern
software systems are growing in both size and complexity. Maintaining a high quality of such complex
systems while manually keeping the error rate at a minimum is a challenge. Therefore, automated detection
of faulty components in a software system is important during software development and also post-delivery.
Fault detection models usually needs to be trained on a labeled-balanced dataset with both faulty and non-
faulty samples. Earlier work, e.g. Mohsin et al. (2016), showed that most real fault detection training dataset
are imbalanced. Thereby, the trained model gets over-fitted and classifies faulty components as non-faulty
components. The consequence of a high false negative rate is cumulative and results in generating more
errors when using the model in other software systems —never seen before, which is very expensive. In this
paper, we propose a software defect prediction ensemble model which considers the class imbalance problem
in real software datasets. We use different oversampling techniques to build an ensemble classifier that can
reduce the effect of low minority samples in the defective data. The proposed approach is verified using
PROMISE software engineering datasets. The results show that our ensemble oversampling technique can
more greatly reduce the false negative rate compared to the standard classification techniques and identify
the faulty components more accurately resulting in a less expensive detection system (lowering the rate of
non-faulty predictions of faulty modules).

INDEX TERMS Software quality and fault detection, imbalanced metric data, ensemble model of detection,
oversampling, highly accurate detection.

I. INTRODUCTION

Software is currently being used to automate and operate
most of the processes and tasks we have today, including
many safety-critical and mission-critical systems, e.g., air
traffic control systems, autonomous cars, SCADA systems,
personal applications, and enterprise applications. Testing
such software systems is very challenging and time consum-
ing. Software spending worldwide amounted to $3.8 trillion
in 2014 [1]-[3], with testing and other quality assurance
activities accounting for 23% of the spending [1]-[3]. This
percentage reflects the criticality and complexity of the soft-
ware testing task as a part of the software development life
cycle (SDLC) [3].

The challenge with modern software engineering is that
systems have become more complex and dynamic with the
widespread adoption of new continuous delivery models,
where new features can be pushed into production faster.
Hence, automated software testing and software defect detec-
tion is very critical to speeding up this process and cutting
down the cost to locate and analyze for defects.

Most of the testing strategies currently available cannot
guarantee better than 40% for statement coverage [3], [4].
Thus, there is always a need for more effective detection
techniques to spot defect-prone components in the software.
Locating and fixing a software defect after deployment in a
production environment is far more expensive than during the

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

24184

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7848-0508
https://orcid.org/0000-0003-0712-9133

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

IEEE Access

development process; it is estimated to be 100 times more
expensive to fix a defect in production [3]-[5].

Deciding if a component is defective has been proved
to have a strong relationship with some software met-
rics (feature vector), including McCabe metrics [5], [6],
Halstead metrics [6], etc. Hence, automated prediction of
defective components (defective vs. non-defective) from
extracted software metrics is a very active research area [6].
Many approaches have used machine learning (ML) tech-
niques such as Naive Bayes (NB) [7]-[9], support vector
machines (SVM) [7], [9], and decision trees [8], and neural
networks [9], [10] have been proposed for software defect
detection based on the measure of internal metrics and defect
data from similar projects or earlier releases to construct
defect detection models.

However, Menzies et al. [11] proved that different datasets
lead to different prediction accuracy [11], and often the accu-
racy depends on different metrics/features that change from
one dataset to another. It is recommended to use all features
when conducting defect prediction [11]. The traditional chal-
lenge in having a dataset with too many features and limited
instances (data points) to use for training is that it becomes
very challenging to achieve high accuracy. Moreover, in case
of the defect prediction problem, the dataset usually has a
class imbalance problem, i.e., the number of instances that
represent the ‘“‘defective” class is far less compared to the
number of instances that represent the ‘‘non-defective” class.
This usually causes the classification techniques to give less
weight (importance) to the instances from the defective class.

The different strategies for solving the class imbal-
ance problem include: 1) apply feature reduction/selection
techniques [12], which affects accuracy; remove some
instances from the non-defective class under-sampling, which
affects the accuracy of the classification technique; or set-
ting a higher cost for the misclassification of defective
instances [12]; or 2) add more examples (instances) to fix the
imbalance problem [11], [12] by over sampling.

Earlier work by Ali et al. [12], proposed an approach
by developing a parallel framework-based significant met-
ric selection and a fault identification technique using a
hybrid wrapper-filter approach [12]. That work [12] devel-
oped a computationally efficient classification model, which
achieved high accuracy to some extent. However, in that
approach [12], the false negative rate was not significantly
reduced [12].

In this paper, we introduce a novel hybrid ensemble of
oversampling strategy to generate more pseudo instances
from the defective classes. Our approach uses a combination
of random oversampling [13], Majority Weighted Minority
Oversampling Technique [13], and Fuzzy-Based Feature-
Instance Recovery [14] to build an ensemble classifier. Our
proposed approach can minimize the effect of imbalance dis-
tribution of classes in the training data to reduce false negative
rate and improve cost sensitive classification performance.

The rest of the paper is presented as follows. The class
imbalance problem and related research in software fault

VOLUME 6, 2018

detection are discussed in Section II. In Section III, the pro-
posed hybrid-ensemble oversampling approach is presented.
The datasets used in this paper and the experimental results
are explained in Section I'V. Section V concludes.

Il. CLASS IMBALANCE PROBLEM FOR SOFTWARE
DEFECT PREDICTION

A class imbalance problem occurs when a class of data is
highly under-represented (minority) compared to the other
class (majority) in a given data set [15]. Class imbalance is a
common problem when learning the behavior and attributes
that characterize rare scenarios, e.g., security anomalies and
risk management. Similarly, in software defect prediction,
the defective class usually has fewer instances and are less
likely to occur. However, this defective class is the most
important class — it is the class which we want to learn and
be able to predict. Due to the under-representation of the
defective class, it is usually hard to learn with high accuracy
and soundness [16]. The solutions to this problem are found
in the literature as below:

The class imbalance problem was addressed in the liter-
ature by adjusting the learning algorithm to be more sen-
sitive (appreciate) to the importance of instances from the
minority class, including the one-class learning [15] and cost-
sensitive learning algorithms [2], [14], [15]. The challenge
with algorithm-based solutions, however, is that they require
specific treatments/tuning, which complicates their applica-
tion in most cases.

Ensemble learning [17] allows the application of differ-
ent learning algorithms and combining their results using
an ensemble. Ensemble learning was introduced in software
defect prediction in [34] which focused mainly on error
rate or accuracies. Since the PROMISE data set [11], [31]
has data imbalance problem and classifying defect as non-
defect (false negative) is the most expensive in software
defect prediction, therefore this work [34] has limitations in
analyzing cost-sensitive classification.

Adjustments in training datasets and hence resolving the
class imbalance problem are used in traditional ML tech-
niques [18]. Under-sampling techniques try to solve the class
imbalance problem by removing instances from the majority
class. Oversampling techniques try to solve the class imbal-
ance problem by adding instances from the minority class
either by duplicating or adding fake data. Hybrid techniques
try to solve the problem using a combination of under-
sampling and oversampling.

Random under-sampling and oversampling techniques
have been widely used [14], [15]. However, their accuracy
relies on the data in hand and the algorithm used for the
classification [14]. Menzies et al. [11] and [11] proposed a
class imbalance learning technique that under-samples the
non-defective class to balance the training data. The authors
reported that this did not affect the accuracy of the C4.5 or
the Naive Bayes classifier. However, the objective was to
emphasize that we could achieve similar accuracy if we care-
fully sub-sampled instances, i.e., the goal was not to improve

24185

IEEE Access

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

the accuracy of the classification technique. Chen et al. [17]
proposed a model to tackle the class overlap and imbalance
problem in SDP by applying a neighbor cleaning method to
remove non-defective class overlapping instances, followed
by random under-sampling several times to generate a bal-
anced subset that can be trained using traditional classi-
fiers. Wang and Yao [19] introduced a detailed comparison
between five class imbalance learners including, Random
Under-sampling of the majority, Random Under-sampling
of both classes, Threshold Moving (which applies a cost-
sensitive method directly on the data, SMOTE Boost (which
is a combination of the random oversampling technique plus
Adaptive Boost [19], which was applied on UCI machine
learning repository data set [33], but not on software fault
detection. The authors showed that random oversampling fol-
lowed by adaptive boosting achieved the best balance in 8 out
of 10 benchmark datasets. Barandela et al. [20] conducted a
comparative study of various samplings.

Both oversampling and under-sampling techniques are
used in SDP according to the above review to address
the class imbalance problem. These have improved the
prediction performance over without sampling of original
data. Barandela et al. [20] showed that in highly imbalanced
datasets, oversampling of the minority class is more effec-
tive. They [20] also observed that under-sampling would be
useful when the difference between the number of minority
instances and majority instances is not too big. Literature
review shows that sampling techniques for class imbal-
anced problem was used only for a single classifier which
acquire bias-variance problem. Ensemble approach is a pop-
ular approach in machine learning domain to overcome the
variance problem; which was not adopted in software fault
detection. Literature gap motivates us to employ ensemble
technique with oversampling approach for class imbalance
problem.

1Il. PROPOSED APPROACH TO CLASS IMBALANCE
PROBLEM: ENSEMBLE OVERSAMPLING LEARNING
SCHEME

The proposed approach considers an ensemble of oversam-
pling techniques to address the class imbalance problem in
software fault detection. We propose a hybrid of oversam-
pling techniques. Detailed steps are described in Table 1,
Algorithm 1.

Step-1 (Multiple Oversampling and Generating Training
Data for Ensemble Classifier): Three different kinds of over-
sampling methods were used, namely ROS, MWM, and
FIDos.

Random Oversampling (ROS) [21]: ROS generates new
samples based on the minority classes by randomly selecting
training samples from the minority class, and then duplicating
it. In doing so, the class distribution can be balanced, but this
usually causes overfitting and longer training times during the
imbalanced learning process.

Majority Weighted Minority (MWM) Oversampling Tech-
nique (MWMOTE) [13]: This technique involves three key

24186

steps: 1) identify the most important and hard-to-learn minor-
ity class samples, 2) calculate the selection weight S,, from
each member of S;,i;, where S, is the informative minority
set; 3) generate synthetic samples from S;,,;; using S,,; and
4) produce the output set Sy, by adding the new generated
samples to the original minority class, S,,.

Precisely, there are three stages in constructing Siyuin.
In the first stage, MWMOTE filters the original minority class
samples, Sin, in order to find a filtered minority set, Spinf.
In this respect, the nearest neighbour of each sample x; of
Smin 1s calculated as NN (x;) which has k1 neighbours. Then, x;
will be removed if its NN (x;) contains only the majority class
samples. In the second stage, construct a nearest majority
set, Nyqj(x;), for each x; with the number of majority neigh-
bours used for constructing informative minority samples,
ko, as few as possible. A borderline majority set Sppgq; is
obtained by combining all the N,,4;(x;). For each y; € Spg;,
and then we can obtain nearest minority Ny,in(yi). Npin(Vi)
consists of nearest k3 minority examples from Sp,,qj which
is computed using Euclidean distance. Then we compute the
informative minority set Sji, by the union of all Ny, (v;).
For each y; € Spnqj, and for each x; € Sjpin, we compute the
information weight I,,(y;, x;) For the selection weights, S,, is
expressed as:

Sw () = Zy.es,, (i, 1),
] maj

where 1,,(y;, x;) is the information weight and is computed as
the product of the closeness factor, Cr (y;, x;) and the density
factor Dy (y;, x;):

Ly (yi, xi) = Cr(yi, xi) X Dy (i, xi) (D
The closeness factor Cr (y;, x;) is defined as:
o)
Cr (viyxi) = —0eD 7o CpAX 2)
Cr(th)

where Cy(th) and CMAX are the user-defined parameters, and
f is a cut-off function, which is:

F) = by if x < Cr(th)

. 3
Cr(th) otherwise

Moreover, MWMOTE computes D¢ (y;, x;) by normalizing
Cr (vi, xi), which is:

Cr (i, xi)
qESimin Cf (yi’ xi)
MWMOTE first clusters S,,;;, into M clusters, which can be
denoted as L Ly, - - - , Ly. Then, a sample x is selected from
Simin following the probability distribution {S,(x;)} (where
Sp (x)) = {S,,(x)}/ ZZiGSimin Sw (zi)). Let’s assume x € Ly.
After that, randomly choose another sample y from L; and
generate a synthetic sample s using the linear interpolation of
x and y, which is:

Dy (yi, xi) = 5 @

s=x+ax((y—x) (5)

where « is a random number of [0, 1].

VOLUME 6, 2018

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

IEEE Access

The procedure can be repeated ‘N’ times to generate ‘N’
synthetic samples.

Fuzzy-Based Feature and Instance Recovery Using Infor-
mation Decomposition (FIDos) [14]: FIDos produces a func-
tion mapping which maps the input space to a discrete set. Let
us consider the mapping as described below:

uw:XxU—[0,1], (6)
(xia uS) g M (xi7 MS) ’ (7)

Where vector X is an example of input feature which have
dimension ‘i’. The discrete set is denoted by U. The central
interval points are denoted by u; where s = 1, ..., where
t=total number of values to be estimated for synthetic sam-
ples. A membership function u (x;, uy) is considered which is
constructed as below. Let us consider the required step length
of interval is h;

Pl
1 (i, ug) = hi Lo (8)
0, otherwise
Xi, if Y im(xi u) =0
mg = Z]m:l Mg) 9)
—m—————, Otherwise
Dy M (i,)

where m;; = u (x;, ug) X x;.
Now we use the membership function to generate the new
instances in imbalanced data.

Let us assume that

A={X,X2,X3..... Xn (10)
B={y,y2y3..... ¥n (1D

Where x,, and y,, are the feature vectors and A and B are the
set of minority and majority class.

Let us assume we want to create ‘1’ synthetic instances,
we compute the minimum and maximum for each feature
vector from the set A and B as below.

a = min{x;j, yj} (12)
b = max {x;, yi} (13)

We compute the step length for each feature vector as below

b—a
hi = 14
i 57 (14)

Here is.
I; the intervals for each values to be estimated as follows:

I;={a+(s—1)xh,a+s x h}

For each interval point ‘s’ where s = 1,2,3,..2 — 1) we
compute u; (which is the center) as below

ugs=(@+G—1) xh+a+sxh)2 (15)

Then we compute weight w (x;, ug) using equation-(8)
The information decomposition is computed as below

mis = W (Xi, Us) X X;. (16)

VOLUME 6, 2018

Then the value for feature for the synthetic instances is com-
puted using equation (9).

Step-2 (Training the Individual-Based Learner for Ensem-
ble Classification): Ensemble classification is a popular
approach in machine learning (ML) when datasets have class
imbalance issues or when the data size is small. Ensemble
classifiers are constructed from a set of classifiers. The sam-
ples are classified based on the individual classifiers and
are combined using a voting or an average strategy. Several
individual learning algorithms are trained for the same classi-
fication task, and the trained model of each learning algorithm
is used to test the new samples to obtain better predictive
performance.

An ensemble model is built in three steps [22], which
are ensemble strategy, learners, and final results genera-
tion procedure. Many prevailing methods are from the Bag-
ging [23] and Boosting [22], [23] families. The predicted
results [22]-[25] show that the ensemble method can achieve
better results than the single learner method [22]-[25].

Recently, there have been many other methods for
obtaining the component learners. For example, Liu ef al. [26]
proposed sampling ensembles to improve the prediction accu-
racy for frequent patterns.

This paper introduces the novel approach of oversampling
using an ensemble approach to empower the oversampling
algorithms. This can help repair imbalanced data by inte-
grating the random oversampling, Majority Weighed Minor-
ity Oversampling Technique, and Fuzzy-Based Feature and
Instance Recovery approaches into one unified technique.

As shown in Figure 1, for a given observation dataset D,
we randomly divide D into training data and test data. Then,
we re-balance the training data on three subset and obtain
three pre-processed datasets: D1 = (Dgos+ U D_), Dy =
Dpywp+ U D-), and D3 = (Dppos+ Y D). For each re-
balanced training dataset, Random Forest (RF) is used to
create the model.

RF [27], [28] is a bagging ensemble approach which is
constructed based on standard decision tree. The trees in the
RF are constructed by applying bootstrapping technique on
the training data and then train a decision tree from each
bootstrapped sampled set. The set of decision trees in the
RF can also be constructed by randomly generating subset
of input features and then construct a decision tree from each
subset. A majority vote is utilized for the final decision make
for a given observation. During the training process, about %
of the training data are not used in bootstrapping technique
which are known as out-of-bag (OOB) samples.

In recent studies, RF was extensively used for class imbal-
ance learning [28]-[30]. In this paper, we have used RF for
the classification. RF predicts an unseen test sample accord-
ing to the following equation:

~ 1 m n
y=. ijl Zi:l W; (xi, x) yi
n 1 m
=2 G 2 Wi G Xy (17)

i=1 "m

24187

IEEE Access

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

/

Original Training Data

/

Test Data /

—

/ Training Data /
AP“_"&_ —_—

|
| ROS MW FlIDos
| _]
|Reha[anoeddata
|
| I
| DMWM Dru:;n]
| = _ _ /= l___________J
Classifier
5 |
| 1
—"'I Classifierl Classifier2 Classifier3 I
| -]

Ensemble classification

FIGURE 1. Framework of the detection strategy based on ensemble oversampling.

where W; is the non-negative weight of the ith training sample
for test sample x with respect to the jth tree. m is the number of
trees. According to [28], an RF results in better performance
with 50 trees. Therefore, in our study m is set to 50.

Finally, given a test sample, a majority voting scheme is
introduced for decision making. Given a test sample, the final
prediction is determined by the following equation. Our pro-
posed ensemble approach framework is illustrated in Table 1.

C)= {positive class if N(y;)>2

. . (18)
negtive class otherwise

N (y4) is the number of classifiers that predict x as a positive
class sample, given as:
3
NGy =), fCak) =y
Cl=Classifier index, y;+ = Posiotive class, f(.) is the boolean
function. The function f(.) = 1 if the test criteria is true,
otherwise f(.) = 0.

19)

24188

IV. DATASETS USED IN OUR EXPERIMENTS

The datasets used in the experiments herein were col-
lected from the PROMISE repository software engi-
neering databases [11], [31], and they are varied in
their degree of complexity, number of instances, and
imbalance ratio (IR), which means the size of the
majority class to the size of minority class is as
follows:

IR — #Majority samples

= —— (20)
#Minroity samples

Precisely, Table 2 summarizes the 15 datasets utilized
in this paper. We can see the imbalance ratio varies
from 3.50 (only slightly imbalanced) to 45.56 (highly
imbalanced). We also considered datasets with diver-
sity in the number of instances; the smallest dataset
has 36 samples, while the largest dataset contains
17,186 samples.

VOLUME 6, 2018

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

IEEE Access

TABLE 1. The proposed ensemble oversampling algorithm-1.

Step-1: Oversampling and Training of Base Learners
INPUT: Training data set D (D, U D_); Oversampling ratio a;
Classification algorithm C;

OUTPUT: Multiple base classifiers C;, C,, and C3

1: Redistribute D, with random oversampling method Dggs
ROS(D,,), Dy =(Dgos4+ U D_);

2: Redistribute D, with MWMOTE method Dyywmore+s =
MWMOTE (D, &), D; =(Dywmore+ Y D-);

3: Redistribute D, with FIDos
FIDos(D,, &), D3 =(Dpipos+ Y D_);
4:ForClin1, 2, and 3 do

method Dpjposs =

S: Train classifier C; using base classification algorithm:
Cor = C(Dy);

6: End for

7: Return Cy, C;, and Cs.

Step-2: Build Ensemble Model

INPUT: Test sample x.

OUTPUT: Decision making for x.

1: ForClin 1, 2, and 3 do

2: Calculate Cl(x) as mentioned in equation (18)
3: End for

4: Calculate N (. using equation (19)

otherwise

positive class
negtive class

5:C(x) z{

A. RESULTS AND PERFORMANCE ANALYSIS

In the experiments, a 5-fold cross validation (CV) with 10 trial
runs were applied to justify the performances of the proposed
approach. An RF is used as a base learner in our experiments
which was also tested on standard machine learning data sets
in an earlier study [26] by one of the co-authors [26].

1) EXPERIMENTAL SETTINGS FOR THE PARAMETERS
The experimental settings for proposed approach and existing
other approaches are described here.

For Random forest (RF), Tree size (m) =50 is considered.
We considered high tree size to avoid overfitting which is
determined from earlier experiments [12], [14].

For MWMOTE, the values for parameters have been cho-
sen from our earlier experiments and best performance while
using MWMOTE techniques for dealing with missing values
in our earlier works [14], [26]. The values for MWMOTE are
as below:

Ky =5, Ky=3andKj3 = Spin/2, Cp =3, Cxm) =3,

VOLUME 6, 2018

TABLE 2. Data set.

Dataset Ins t:nces # Minority Majﬁrity #Hattr IR
CM1 327 42 285 37 6.79
M1 7782 1672 6110 21 3.65

MW1 253 27 226 37 8.37
AR1 121 9 112 29 12.44
AR3 63 8 55 29 6.88
AR4 107 20 87 29 4.35
AR5 36 8 28 29 3.50
AR6 101 15 86 29 5.73
KCl1 2109 326 1783 21 5.47
KC2 522 107 415 21 3.88
PC1 1109 77 1032 21 13.40
PC2 745 16 729 36 45.56
PC3 1077 134 943 37 7.04
PC4 1458 178 1280 37 7.19
PCS 17186 516 16670 38 32.31

and CMAX = 2, Sy is computed form the data set which is
the number of original minority class samples. According to
the earlier experiments [14], [26], itis seen that an oversample
ratio of 200 percent of the original minority class samples
provided significant classification performance.

Different performance metrics are used to verify the detec-
tion performance of the proposed approach. The performance
metrics are: detection accuracy, true positive rate (TPR), false
negative rate (FNR), area under the curve (AUC), F-measure.
When computing the confusion matrix for performance anal-
ysis, we considered a faulty module as a positive class. In the
training data sets, faulty modules are in the minority group
and non-faulty modules are in the majority group.

We compared the proposed ensemble technique with
existing approaches including original data sets with-
out sampling (ORI), Random Over sampling (ROS) [21],
MWMOTE/MWM [13], FIDos [14], [26] our earlier fuzzy
information decomposition based sampling technique.

For a binary classification problem of software fault detec-
tion, a confusion matrix visualizes the performances of learn-
ing algorithm. Confusion matrix is shown in table 3.

In the confusion matrix in table 3, if a module is faulty
and predicted as a positive, it is considered as a true positive
(TP). However, if a module is faulty, and it is predicted as a
negative, it is considered as false negative (FN). If a module
is non-faulty and predicted as a positive, it is considered as
a false positive (FP). However, if a module is non-faulty,
and it is predicted as a negative, it is considered as true
negative (TN).

AUC Results From Our Experiments: Figure II-Figure V
present the False Positive Rate and AUC values of software

24189

IEEE Access

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

ROC
1
08¢
Q
©
Qg
o
2
‘B
[}
o
5 04
'_
0.27
—Porposed method
=—ORI
0
0 0.2 0.4 0.6 0.8 1
False Positive Rate

FIGURE 2. ROC curve based on AR6 dataset

ROC
1
0.8}
[
T
06
1)
2
‘@
o
o
S 0.4
'_
0.2
—Porposed method
—ORI
0 ; ; ; ;
0 0.2 04 0.6 08 1
False Positive Rate

FIGURE 3. ROC curve based on kc1 dataset.

defects prediction results derived by the RF classification
algorithm based on the 15 datasets. One can observe that
the proposed ensemble learning method produces the lowest
average false positive rate at 39%, which is much lower than
the second best, MWM, with about 48.5%. When comparing
with the original data, the proposed method can improve the
false positive rate by at least 20%. Figure V also demonstrates

24190

ROC
1
08¢
]
I
ro6r
)
2
.%
o
o
g 04r
'_
[):2:
—Porposed method
—ORI
0 1 I I 1
0 0.2 0.4 0.6 0.8 1
False Positive Rate

FIGURE 4. ROC curve based on MW1 dataset.

that our proposed ensemble method obtains the highest AUC
values among all data sets and all approaches with about
68% compared with other approaches. ROS and FIDos also
improved the performance to 66% and 66.5%, respectively,
compared to original data sets without sampling (ORI) with
63.5%. MWM (which was 64.8%) performed only slightly
better than ORI. This indicates that MWM is not stable in
classification performance.

The experimental results for false positive rate and AUC
for all data sets and all algorithms (ORI, ROS, MWM, FIDos
and proposed ensemble) have been box plotted in Figure V.
The performance of ORI indicates that directly learning from
the original data yields poor classification performance. ROS,
MWM, and FIDos can somehow improve the classification
performance a bit but are not stable. The proposed algorithm
can result in a low false positive rate and obtains the maxi-
mum AUC values and highest median values, which means
it can significantly boost the software defects prediction per-
formance to another level.

Tables 4 and 5 compare the accuracy and recall of the five
approaches based on the 15 datasets. One can see that ORI
and FIDos produced the highest accuracy values in 6 and 5 out
of 15 datasets, respectively. ROS obtains highest accuracy
values in 4 datasets. However, the proposed algorithm can
result in very comparative accuracy values in some cases.
For example, the FIDos performance on the PC4 dataset
was 0.907, while the proposed method was 0.906, which is
0.001 lower. An earlier work [32] showed that the overall
classification accuracy was not enough to justify the classi-
fiers’ performances when a dataset has 95% examples from

VOLUME 6, 2018

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

IEEE Access

Og b oo pesrenanen oo e e e T L L L LT T T T T E P PP P PP P TR U RERRTRTRRPRRREPPIS 4 - -
—_ | _ o
| T [T —— e L —— | —— =
| ! | | 0.8 | | | |
08 e, S A [R 4 | | |
| | : | _ T I ! :
E % || I mREdlassmensmnnicns [EEY R s
o7 ... [S— T e 0.75 | I
| P
|
3 | |
[UNCEEN ISR e R e B O Fzess : cesrrveere U D ... o
L
£ o
a 05 L.. D Looon] L] L (. 4 :
s [s
9 : - Z 065
@ |
w04t [T IO — il
o | [' [
LL : I | : 06 .. DO (i [SBaarsiaaa R e -
| |
03} e : g S T | : : : :
' | I ' ' | ! | |
| | | | | 055 B [ERTEIERERRRRRII [| A [i
02 I {| _I | - | | | | I
| | | | I | | I
| — | | I | | I
o T T S—————— slignd 0.5t il o — pligemeny i
ORI ROS Pl FIDos Proposed_m ORI ROS Pl FIDos Proposed_m
FIGURE 5. Averaged overall False Positive Rate and AUC results.
TABLE 3. Confusion matrix.
Confusion Matrix

Positive prediction

Negative prediction

Actually positive True positive(TP)

False negative(FN)

Actually negative False positive(FP)

True negative(TN)

majority group and rest of the examples are from minority
group. In this case, the classifier can accurately identify all
members of majority group in the dataset. Accordingly, clas-
sifier’s accuracy performance becomes 95%. ORI, ROS, and
FIDos raise the accuracy values at the cost of simultaneously
raising the false positive rate. This concludes that ORI, ROS,
and FIDos are not useful in practice. Comparatively, along
with Figure V, we can see that our proposed algorithm is more
practical and applicable to software defects prediction.

2) COMPARISON WITH OTHER WORKS IN THE LITERATURE
Earlier works on fault detection based on ensemble
technique [34] mainly focused on defect detection based
on overall accuracies which has limitation in cost sensitive
classification (reducing false negative rate and increasing the
recall). In [34], PROMISE data was used and only four data
sets were tested. In this work [34], 21.3% error rate was
achieved for PC1. 23.4% error rate was achieved for IM1 data
set. 24.1% error rate was achieved for CM1 data set. 26.1%
error rate was achieved in JP/NASDA data set.

However PC1 our proposed method achieved only 7%
error rate. For JM1 proposed method achieved 24.1% error

VOLUME 6, 2018

rate. For CM1, proposed method achieved 21.9% error rate.
None of the data set was tested in [34] for recall or AUC which
are the best performance metrics.

Recall values was tested in [35] with three PROMISE
datasets (KC1, PC3 and PC4). In [35], for KC1 86.5%
accuracy and 31.61 recall, for PC3 90.96% accuracy and
22.50 recall, for PC4 91.89% accuracy and 54.51% recall
were achieved.

Table 4 and Table 5 also summarize the Recall and AUC
values of the five methods based on the 15 datasets. For
KC1 proposed method achieved 52.4% recall which is 60%
times higher recall achieved in [35]. For PC3 and PC4 dataset,
our proposed method achieved 41.8% and 68.3% recall values
which are higher than recall achieved in [35]. The proposed
algorithm produces 68.3% on the PC4 dataset, which is
higher than ORI and FIDos (which achieved 15.5%). Pre-
cisely, the proposed method yields the best recall perfor-
mance in all data sets as mentioned in Table 4 and Table 5.

Because of the in-class imbalance problem, we are most
interested in the minority class samples. Especially in soft-
ware defects prediction, it is very important to have better
recall (true positive rate) performance because the cost of

24191

IEEE Access

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

TABLE 4. Accuracies.
Data Imbalanced data redistribute algorithms
ORI ROS MWM FIDos Proposed
average | Std. average | Std. average | Std. average | Std. average Std.
CM1 | 0.6%94 0.127 | 0.826 0.045 | 0.823 0.031 | 0.819 0.047 | 0.781 0.057
IM1 0.791 0.002 | 0.777 0.003 | 0.781 0.007 | 0.778 0.002 | 0.759 0.002
MWI1 | 0.864 0.046 | 0.868 0.011 | 0.855 0.113 | 0.864 0.010 | 0.814 0.069
ARI 0.361 0.068 | 0.520 0.126 | 0.491 0.403 | 0.573 0.145 | 0.329 0.380
AR3 | 0.728 0.129 | 0.767 0.091 | 0.800 0.295 | 0.857 0.085 | 0.779 0.110
AR4 | 0.792 0.059 | 0.779 0.058 | 0.793 0.063 | 0.813 0.024 | 0.739 0.072
AR5 | 0.751 0.115 | 0.809 0.077 | 0.774 0.242 | 0.774 0.111 | 0.774 0.086
AR6 | 0.664 0.133 | 0.784 0.087 | 0.724 0.277 | 0.801 0.065 | 0.682 0.143
KCl 0.858 0.003 | 0.844 0.006 | 0.846 0.014 | 0.847 0.003 | 0.831 0.007
KC2 | 0.826 0.009 | 0.804 0.009 | 0.813 0.034 | 0.810 0.004 | 0.784 0.007
PC1 0.938 0.002 | 0.936 0.002 | 0.932 0.012 | 0.935 0.003 | 0.930 0.003
PC2 0.135 0.132 | 0.438 0.195 | 0.174 0.352 | 0.325 0.160 | 0.134 0.131
PC3 0.871 0.005 | 0.864 0.005 | 0.852 0.019 | 0.862 0.006 | 0.843 0.005
PC4 0.906 0.004 | 0.904 0.006 | 0.907 0.014 | 0.907 0.004 | 0.906 0.002
PC5 0.976 0.001 | 0.975 0.001 | 0.973 0.002 | 0.974 0.001 | 0.972 0.000
TABLE 5. Recall values.
Data Imbalanced data redistribute algorithms name
ORI ROS MWM FIDos Proposed m
average Std. average Std. average Std. average Std. average Std.
CMl1 0.263 0.171 0.106 0.083 0.146 0.113 0.146 0.062 | 0.268 0.114
M1 0.201 0.008 | 0.295 0.008 0.273 0.024 | 0.292 0.004 | 0.384 0.008
MW1 0.221 0.093 0.267 0.040 | 0.345 0.203 0.294 0.085 0.363 0.074
ARI 0.660 0.084 | 0.470 0.149 | 0.550 0.476 | 0.410 0.185 0.680 0.047
AR3 0.760 0.108 | 0.750 0.085 0.770 0.338 | 0.770 0.067 | 0.840 0.108
AR4 0.405 0.117 | 0.455 0.101 0.515 0.269 | 0.420 0.075 0.610 0.084
ARS 0.770 0.125 | 0.800 0.105 0.860 0.227 | 0.820 0.114 | 0.910 0.074
AR6 0.420 0.191 0.353 0.157 | 0.473 0.324 | 0.340 0.142 | 0.527 0.155
KC1 0.310 0.018 | 0.394 0.023 0.437 0.069 | 0.394 0.018 | 0.524 0.017
KC2 0.455 0.035 | 0.541 0.032 | 0.619 0.095 0.544 0.023 0.661 0.034
PC1 0.294 0.031 0.348 0.027 | 0.318 0.118 | 0.333 0.037 | 0.390 0.025
PC2 0.880 0.140 | 0.560 0.207 | 0.840 0.370 | 0.680 0.169 | 0.880 0.140
PC3 0.141 0.023 0.246 0.029 | 0.310 0.094 | 0.252 0.030 | 0.418 0.024
PC4 0.367 0.014 | 0.524 0.031 0.575 0.086 | 0.528 0.017 | 0.683 0.019
PC5 0.427 0.011 0.520 0.016 | 0.578 0.048 | 0.524 0.011 0.659 0.011

24192

VOLUME 6, 2018

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

IEEE Access

TABLE 6. AUC values.

Data Imbalanced data redistribute algorithms name
ORI ROS MWM FIDos Proposed m
average Std. average Std. average Std. average Std. average Std.
CM1 0.511 0.011 0.519 0.020 0.534 0.052 0.532 0.021 0.563 0.034
IM1 0.576 0.004 0.602 0.004 0.597 0.011 0.601 0.003 0.623 0.004
MW1 0.581 0.028 0.604 0.020 0.630 0.089 0.613 0.042 0.615 0.032
AR1 0.490 0.020 0.498 0.032 0.517 0.097 0.498 0.026 0.516 0.012
AR3 0.746 0.041 0.765 0.033 0.790 0.210 0.822 0.049 0.808 0.049
AR4 0.643 0.028 0.654 0.025 0.686 0.132 0.662 0.042 0.689 0.043
ARS 0.764 0.054 0.807 0.063 0.813 0.163 0.794 0.047 0.826 0.045
ARG 0.563 0.017 0.606 0.043 0.621 0.121 0.611 0.035 0.618 0.048
KC1 0.634 0.009 0.660 0.012 0.679 0.031 0.662 0.009 0.706 0.010
KC2 0.688 0.018 0.706 0.015 0.741 0.050 0.711 0.009 0.739 0.016
PC1 0.640 0.015 0.664 0.014 0.648 0.058 0.656 0.019 0.680 0.013
PC2 0.500 0.001 0.498 0.002 0.499 0.002 0.499 0.001 0.499 0.002
PC3 0.558 0.012 0.599 0.014 0.619 0.046 0.601 0.015 0.661 0.013
PC4 0.674 0.007 0.741 0.016 0.764 0.043 0.744 0.008 0.810 0.009
PC5 0.710 0.006 0.754 0.008 0.782 0.024 0.756 0.006 0.820 0.005

false negatives (i.e., actually defective modules predicted as
non-defective) is usually several times higher than the cost
of false positives (i.e., actually non-defective but predicted as
defective).

Moreover, one can see from Table 5 that our proposed algo-
rithm results in the best performance in 9 out of 15 datasets.
Although MWM obtained the highest AUC values in 4 out
of 15 datasets, the proposed methods showed very compara-
tive performance in these datasets. For example, the AUC val-
ues of MWM on the MW1 and ARI1 datasets were 0.630 and
0.517; however, the related AUC values of the proposed
method are 0.615 and 0.516, which are only 0.015 and
0.001 lower. Since AUC is not sensitive to the distribution
between the majority and minority classes, it can sort models
by overall performance. We can conclude that our proposed
algorithm can build a more robust classifier for software
defect prediction.

V. CONCLUSION

For high accuracy and a low false negative rate, balanced
defect data is the most important criteria in automated soft-
ware fault detection. However, in practical situations, due
to limited facilities to collect software metric dataset with
many faulty modules, most available datasets are imbalanced.
Earlier work by Ali et al. [12] showed that when imbalanced
data are used for training an automated detection system,
it cannot reduce the false negative rate, even with a well-
trained classification model [12]. The cost due to the high
false negative rate can grow very rapidly if not detected at the
early stages in the software development life cycle. Therefore,

VOLUME 6, 2018

there is an urgent need to address the imbalanced data in
software metrics.

In this paper we proposed an ensemble model by building
a set of individual base-learners from different oversampling
techniques. Three different oversampling techniques were
used. Using multiple oversampling techniques mitigates the
bias of sampling approaches, while the ensemble technique
can take advantage of many classifiers and increases the
correct classification rate and reduces the false negative rate.
Experimental results show that proposed approach outper-
forms the standard fault detection techniques. Developing
ensemble oversampling classifier is a complex task with a
selected base classifier. The proposed method is based on
random forest base classifier. One of the limitations in the
proposed method is that it may carry the variance problem of
individual classifier itself. This can be avoided by testing the
proposed ensemble method with other base classifiers includ-
ing support vector machine, neural networks and decision
trees. Then select the best performing classifier from their
comparative results. This can be done in a future extension
of this work. Future work can also include a combination
of our earlier work [12] with the current work of ensemble
oversampling techniques for identifying significant metrics
while also developing a fast and accurate fault detection
system.

REFERENCES

[1] Gartner Says Worldwide it Spending on Pace to Reach 3.8 Trillion in 2014.
Accessed: Feb. 21, 2016. [Online]. Available: http://www.gartner.com/
newsroom/id/2643919

24193

IEEE Access

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

[2]
[3]
[4]

[5]

[6]

[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

O. F. Arar and K. Ayan, “Software defect prediction using cost-sensitive
neural network,” Appl. Soft Comput., vol. 33, pp. 263-277, Aug. 2015.
B. S. Ainapure, Software Testing and Quality Assurance, st ed.
New Delhi, India: Technical Publications, 2014.

C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,” Inf.
Sci., vol. 179, no. 8, pp. 1040-1058, 2009.

L. Pelayo and S. Dick, “Applying novel resampling strategies to software
defect prediction,” in Proc. Annu. Meeting North Amer. Fuzzy Inf. Process.
Soc. (NAFIPS), Jun. 2007, pp. 69-72.

M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, “A comparison between
software design and code metrics for the prediction of software fault
content,” Inf. Softw. Technol., vol. 40, no. 14, pp. 801-809, 1998.

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. New York, NY,
USA: Cambridge Univ. Press, 2000.

J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81-106, 1986.

B. Krose and P. V. D. Smagt, An Introduction to Neural Networks.
Amsterdam, The Netherlands: Univ. Amsterdam, 1993.

R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Appl. Soft Comput., vol. 27, pp. 504-518,
Feb. 2015.

T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Impli-
cations of ceiling effects in defect predictors,” in Proc. 4th Int. Workshop
Predictor Models Softw. Eng. (PROMISE), 2008, pp. 47-54.

M. M. Ali, S. Huda, J. Abawajy, S. Alyahya, H. Al-Dossari, and J. Year-
wood, “A parallel framework for software defect detection and met-
ric selection on cloud computing,” Cluster Comput., vol. 20, no. 3,
pp. 2267-2281, 2017.

S. Barua, M. M. Islam, X. Yao, and K. Murase, “MWMOTE-majority
weighted minority oversampling technique for imbalanced data set learn-
ing,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 2, pp. 405-425,
Feb. 2014.

S. Liu, J. Zhang, Y. Wang, and Y. Xiang, “Fuzzy-based feature and
instance recovery,” in Proc. Asian Conf. Intell. Inf. Database Syst., 2016,
pp. 605-615.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321-357, 2002.

A. Estabrooks, T. H. Jo, and N. Japkowicz, ‘A multiple resampling method
for learning from imbalanced data sets,” Comput. Intell., vol. 20, no. 1,
pp. 18-36, 2004.

L. Chen, B. Fang, Z. Shang, and Y. Tang, “Tackling class overlap and
imbalance problems in software defect prediction,” Softw. Quality J.,
vol. 26, no. 1, pp. 97-125, 2016.

K. O. Elish and M. O. Elish, “Predicting defect-prone software modules
using support vector machines,” J. Syst. Softw., vol. 81, no. 5, pp. 649-660,
2008.

S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and
potential solutions,” IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 42,
no 4, pp. 1119-1130, Aug. 2012.

R. Barandela, R. M. Valdovinos, J. S. Sdnchez, and F. J. Ferri, “The imbal-
anced training sample problem: Under or over sampling?”” in Proc. Joint
IAPR Int. Workshops Stat. Techn. Pattern Recognit. (SPR) Structural Syn-
tactic Pattern Recognit. (SSPR), 2004, pp. 806-814.

R. T. Hadke and P. Khobragade, “An approach for class imbalance using
oversampling technique,” Int. J. Innov. Res. Comput. Commun. Eng.,
vol. 3, no. 11, pp. 1145111455, 2015.

S. Huda, J. Yearwood, H. F. Jelinek, M. M. Hassan, G. Fortino, and
M. Buckland, “A hybrid feature selection with ensemble classification for
imbalanced healthcare data: A case study for brain tumor diagnosis,” IEEE
Access, vol. 4, pp. 9145-9154, 2016.

X. Wang and H. Wang, “Classification by evolutionary ensembles,”
Pattern Recognit., vol. 39, no. 4, pp. 595-607, 2006.

A. Awad, M. Bader-El-Den, J. McNicholas, and J. Briggs, “Early hospital
mortality prediction of intensive care unit patients using an ensemble
learning approach,” Int. J. Med. Inf., vol. 108, pp. 185-195, Dec. 2017.
M. A. King, A. S. Abrahams, and C. T. Ragsdale, “Ensemble methods
for advanced skier days prediction,” Expert Syst. Appl., vol. 41, no. 4,
pp. 1176-1188, 2014.

24194

(26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

S. Liu, J. Zhang, Y. Xiang, and W. Zhou, ‘“Fuzzy-based information
decomposition for incomplete and imbalanced data learning,” IEEE Trans.
Fuzzy Syst., vol. 25, no. 6, pp. 1476-1490, Dec. 2017, doi: 10.1109/
TFUZZ.2017.2754998.

F. Li et al., “Cost-sensitive and hybrid-attribute measure multi-decision
tree over imbalanced data sets,” Inf. Sci., vol. 422, pp. 242-256, Jan. 2018.
A. Mellor, S. Boukir, A. Haywood, and S. Jones, “Exploring issues of
training data imbalance and mislabelling on random forest performance
for large area land cover classification using the ensemble margin,” ISPRS
J. Photogramm. Remote Sens., vol. 105, pp. 155-168, Jul. 2015.

A. Liaw and M. Wiener, “Classification and regression by randomforest,”
R News, vol. 2, no. 3, pp. 18-22, 2002.

S. Huda, M. Abdollahian, M. Mammadov, J. Yearwood, S. Ahmed, and
1. Sultan, “A hybrid wrapper—filter approach to detect the source(s) of out-
of-control signals in multivariate manufacturing process,” Eur. J. Oper.
Res., vol. 237, no. 3, pp. 857-870, 2014.

J. S. Shirabad and T. J. Menzies, “The PROMISE repository of software
engineering databases,” School Inf. Technol. Eng., Univ. Ottawa, Ottawa,
ON, Canada, Tech. Rep., 2005, accessed: Apr. 12, 2018. [Online]. Avail-
able: http://promise.site.uottawa.ca/SERepository/

M. Lin, K. Tang, and X. Yao, “Dynamic sampling approach to training
neural networks for multiclass imbalance classification,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 4, pp. 647-660, Apr. 2013.

A. Frank and A. Asuncion. (2010). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

B. Twala, ““Predicting software faults in large space systems using machine
learning techniques,” Defence Sci. J., vol. 61, no. 4, pp. 306-316, Jul. 2011.
J. Moeyersoms, E. J. de Fortuny, K. Dejaeger, B. Baesens, and D. Martens,
“Comprehensible software fault and effort prediction: A data miningap-
proachJulie Moeyersomsa,” J. Syst. Softw., vol. 100, pp. 80-90, Feb. 2015.

SHAMSUL HUDA received the Ph.D. degree in
computer science. He was a Research Fellow with
Federation University. He was an Assistant Pro-
fessor with the Computer Science Department,
Khulna University of Engineering and Technol-
ogy, Bangladesh. He is currently a Lecturer with
the School of Information Technology, Deakin
University, Australia. He has published over 50
journal and conference papers in well reputed jour-
nals, including the IEEE Transactions. His main

research interests include information security, cyber physical systems, com-
putational intelligence, and machine learning.

KEVIN LIU (SHIGANG LIU) received the Ph.D. degree in computer sci-
ence. He is currently a Research Associate with the School of Information
Technology, Deakin University, Australia.

MOHAMED ABDELRAZEK received the Ph.D.
L degree from Swinburne University in 2014. He
is currently an Associate Professor in software
engineering and IoT with the School of Informa-
tion Technology, Deakin University, Australia. He
has over 10 years’ experience in building software
solutions. His research interests include software
engineering, security, and artificial intelligence.

VOLUME 6, 2018

http://dx.doi.org/10.1109/TFUZZ.2017.2754998
http://dx.doi.org/10.1109/TFUZZ.2017.2754998

S. Huda et al.: Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction

IEEE Access

VOLUME 6, 2018

AMANI IBRAHIM is currently a Senior Lecturer
in cyber security with the School of Information
Technology, Deakin University. He is a cybersecu-
rity professional with over a decade of experience
across academia and industry. He is also the Cyber-
security Research Discipline Lead with the Deakin
Software and Technology Innovation Laboratory.

SULTAN ALYAHYA received the B.Sc. degree
(Hons.) in information systems from King Saud
University, and the M.Sc. degree in information
systems engineering and the Ph.D. degree in com-
puter science from Cardiff University, U.K., in
2007 and 2013, respectively. He is currently an
Assistant Professor with the College of Com-
puter and Information Sciences, King Saud Uni-
versity. His main research interests include soft-
ware project management, agile development, and
computer supported co-operative work.

HMOOD AL-DOSSARI received the M.S. degree
in computer science from King Saud University
and the Ph.D. degree from Cardiff University. He
is currently an Assistant Professor with the College
of Computer and Information Sciences, King Saud
University. His research interests include quality
of service assessment, trust and reputation man-
agement systems, human and computer interac-
tion, sentiment analysis, and social mining. He
has several publications in international journals

and conferences. He has attended various conferences and presented many

seminars.

SHAFIQ AHMAD received the Ph.D. degree from RMIT University, Mel-
bourne, Australia. He is currently an Assistant Professor with the College
of Engineering, King Saud University. His research interests include smart
manufacturing, performance analysis, and bibliometric. He has published a
research book as well as a number of refereed research articles in interna-
tional journals and conferences. He has over two decades experience both in
industry and academia in Australia, Europe, and Asia.

24195

	INTRODUCTION
	CLASS IMBALANCE PROBLEM FOR SOFTWARE DEFECT PREDICTION
	PROPOSED APPROACH TO CLASS IMBALANCE PROBLEM: ENSEMBLE OVERSAMPLING LEARNING SCHEME
	DATASETS USED IN OUR EXPERIMENTS
	RESULTS AND PERFORMANCE ANALYSIS
	EXPERIMENTAL SETTINGS FOR THE PARAMETERS
	COMPARISON WITH OTHER WORKS IN THE LITERATURE

	CONCLUSION
	REFERENCES
	Biographies
	SHAMSUL HUDA
	KEVIN LIU (SHIGANG LIU)
	MOHAMED ABDELRAZEK
	AMANI IBRAHIM
	SULTAN ALYAHYA
	HMOOD AL-DOSSARI
	SHAFIQ AHMAD

