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ABSTRACT This paper focuses on the security and robustness of smart campuses by studying a virus
propagation model. Establishing a model that reflects the epidemiological transmission mechanism is a
primary method for studying disease outbreaks and control. However, the relationship between microscopic
and macrodynamic evolution in networks has long remained an unsolved problem. The existing virus
transmission models, which ignore differences between individuals, cannot objectively reflect the spread of
infectious diseases. In this paper, a differential model of virus propagation is established for a smart campus
network by considering the differences among individuals, and a method to extend the individual evolution
process to the evolution process of the entire network is proposed. First, the functional process of a virus
infection in individuals is reflected by the evolution model of a single node. Then, we extend the individual
evolution to the whole network to reflect the scale of virus transmission and propagation among individuals
in a smart campus network. The proposed model more objectively reflects viral infections and could serve
to enhance the security and robustness of smart campuses.

INDEX TERMS Smart campus, security, robustness, dynamic evolution, virus propagation.

I. INTRODUCTION
Smart campuses have recently become a hot research topic
because the campus network is a basic facility. Smart cam-
puses must be supported by fast, strong and safe campus
networks. However, campus networks may be threatened by
different types of viruses that could negatively impact the
security of the smart campuses. To improve the security and
the robustness of a smart campus network, it is important to
analyze how a virus could propagate through the network.
Knowledge of such propagation can improve the security and
robustness of smart campuses.

Creating mathematical models of virus propagation has
always been a hot topic in academia, industry, and gov-
ernment [1]. Scholars proposed the first mathematical
frameworks of epidemic transmission as early as 1927. Two
classical models that describe the propagation process of
biological viruses in social networks are SIS and SIR [2], [3].
These models provide the high-level trend of virus trans-
mission in a population, and they have remained dominant
for a long time. As the SIR model shows, for all viruses to
which a population can develop immunity (which provides
protection from future virus outbreaks), the entire population

tends to become immune [4]. Under repeated viral attacks,
the SIS model shows that, in theory, a dynamic balance will
eventually be struck between the number of people in the
population and the health of the population. The SIS and
SIR classical models are still in use and have undergone
additional development. Based on these two models, the SI
model, which models the early stage of a disease outbreak,
and the SIRS model, which models the immune period, pro-
vide results closer to the spread of real-world viruses [5]–[7].
Some important related studies exist.Wei et al. [8] proposed a
gradient-driven parking navigation using a continuous infor-
mation potential field based on awireless sensor network, and
in [9], a modified repetitive learning control approach was
proposed. In [10], Yang et al. studied optimum surface rough-
ness prediction, and Cui and Qin [11] conduced virtual reality
research. In [12], nonlinear dynamics and anti-sway tracking
control were proposed.With the rise of network science, virus
propagation model establishment is no longer isolated from
the analysis of network properties. In addition, such models
can also consider interactions between the networks. Thus,
using network science research methods to study transmis-
sion of disease-causing and computer viruses in a network has
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become a new topic. The model of virus propagation based
on cellular automata shifted the attention from the overall
transmission situation to one of state evolution, starting with
a single individual and developing through coupling relation-
ships. In recent years, with the continuous development of
network science and network dynamics, the cellular automata
model [13], [14] and coupled map lattice (CML) model can
reflect changes in information transmission in the network
resulting from coupling relationships between network nodes
(a virus can be regarded as a special type of information), and
reflect how the network state changes over time.

However, these models are also based on the assumption
that nodes do not differ in behavior. Thus, thesemodels ignore
the influences of individual behaviors on the final state of
the network. In addition, in fact, the influence of individual
behavior on the eventual overall state of the network is both
objective and even critical, because it considers such aspects
as immune system differences among organisms and different
congestion control strategies in the computer network, which
should not be ignored.

By establishing a node behavior model that reflects the
different coping mechanisms of individual network nodes,
we can obtain a structure that reflects the viral evolution in
an individual in each period. At the same time, based on the
network communication model, the individual information is
exchanged, and a method of describing the whole network
from a macro perspective can be achieved.

Through comparative experiments, we found that the new
model not only achieves the same results as SIS and SIR
model when describing the evolution trend of the whole
network but also yields the state of any single point in real
time, which can help with controlling the spread of disease (or
information). Simultaneously, due to differences in individual
coping mechanisms, an individual early warning threshold
can be set to control the spread of disease. This threshold also
provides an index that can reveal individuals who need special
attention.

The rest of this paper is organized as follows. In Section II,
we introduce the related work. Section III presents an evo-
lutionary model of virus propagation based on the predator
model. Section IV presents a simulation of network failure
propagation. Finally, conclusions are drawn in Section V.

II. RELATED WORKS ON VIRUS TRANSMISSION MODELS
Research on viral transmission models includes many clas-
sical methods. The purpose of such models is to simulate
viral spread realistically. By better reflecting the mechanisms
through which viruses spread, these models provide a better
theoretical basis for prevention, which is the goal of virus
control.

A. MEAN FIELD METHOD
The mean field method is the most concise method and
the most widely used in epidemic disease the analysis [15].
This method addresses environmental effects on the object
collectively by computing the average effect instead of the

effects of single superpositions [16]. The SIR model hypoth-
esis assumes that the propagation period of an epidemic is
much shorter than the lifetime of an individual, which means
that the death of any single individual can be ignored. The
evolution process of nodes in the network is susceptible,
infected, and recovered (S → I → R). However, when
the propagation process completes, there are only two states:
S and R.

After considering the relevant effects in the network,
the SIRmodel that acts on the average network can be written
as follows [17]:

dS(t)
dt
= −S(t)λ < k > I (t)

dI (t)
dt
= −µI (t)+ S(t)λ < k > I (t)

dR(t)
dt
= µI (t)

1 = S(t)+ R(t)+ I (t).

(1)

Here, S(t), I (t) and R(t) indicate the node density in the
three states, S, I and R, respectively, < k > represents the
average degree of the network, λ is the probability of disease,
and µ is the probability of recovery.

To accurately describe propagation process of an epidemic
in heterogeneous networks, Pastor and Vespignani proposed
the heterogeneous average field method [17], [18].The differ-
ential model of the concrete SIR model is as follows [19]:

dSk (t)
dt
= −Sk (t)λk2(t)

dIk (t)
dt
= −µIk (t)+ Sk (t)λk2(t)

dRk (t)
dt
= µIk (t)

1 = Sk (t)+ Rk (t)+ Ik (t).

(2)

The gap between model (2) and model (1) occurs mainly
because of the introduction of 2(t), which expresses the
effects of different degrees on the propagation. Introducing
this variable more accurately describes the probability that
an edge of a given node of k is connected to an infected node:

2(t) =
∑
k ′
P(k ′|k)Ik ′ (t). (3)

The mean field theory is widely used in the threshold of
epidemic spread and in the final analysis of infection density.
It also plays a dominant role in the analysis of the density of
infection during homeostasis. However, the error of the mean
method is also obvious: it ignores the dynamic correlations
between the nodes when solving models (1) and (2). A more
accurate description of the evolution of the epidemic in the
network cannot assume the independence of dynamic inter-
actions between nodes. An approximation method for these
interactions is proposed in this paper.

B. POINT APPROXIMATION
Point approximation is used to describe simple spatial
dynamics behavior by a set of differential equations [20].
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Suppose that λ is the disease probability, andµ is the recovery
probability. In the SISmodel, the following differential model
can be obtained [21]:

d[S]
dt
= −

∑
SI

λ+
∑
I

µ

d[I ]
dt
=

∑
SI

λ−
∑
I

µ

[S]+ [I ] = N ,

(4)

where [S] and [I ] indicate the number of nodes in the s
and I States, respectively, N is the total number of nodes,
and [SI ] represents the number of edges between nodes in
the S state and nodes in the I state. Then, the equations of the
different types of edges specific to the approximation method
are expressed as follows [22]:

d[SS]
dt
= −2

∑
SI

λQ(S|SI )+ 2
∑
I

µQ(S|I )

d[SI ]
dt
=

∑
SI

λ[Q(S|SI )− Q(I |SI )]

+

∑
I

µ[Q(I |I )− Q(S|I )]

d[II ]
dt
= 2

∑
SI

λQ(I/IS)− 2
∑
I

µQ(I |I )

[SS]+ 2[SI ]+ [II ] = M ,

(5)

where Q(I |SI ) represents the average number of I nodes in
the point neighborhood of the S state from the S − I edge
Point approximation is applicable to network structures

without loops, and the dynamic process description of a topo-
logical multi-part-tree structure is more accurate. However,
there are too many circuits in actual social networks, making
this method difficult to formulate accurately.

C. THE MODELING PRINCIPLE
In dynamic models of disease spread, several types of
dynamic models are typically established to make the model
more realistic. However, the spread of disease in reality can-
not be rigorously studied if only the interactions between
nodes are studied but the differences between individuals
are ignored. The immune systems of different individuals
causes different outcomes between individuals infected with
the same virus. At the same time, in reality, diseases also
have a latent period and models must consider the evolution
of the second immune system. If these individual dynamics
and the overall dynamics of the network were to be combined,
the theory would more closely mimic actual situations.

However, selecting an appropriate method to model indi-
vidual expression of the special viral information is the main
problem. Here, a property relationmodel method is proposed.
The specific ideas are shown in the following flow chart:

From Figure 1, it is clear that using a differential equa-
tion or a difference equation to describe the relationships
between each attribute can not only reflect the changes in the
quantity of each attribute over time but also the differences

FIGURE 1. The System Model.

between individuals based on the differences in the initial
attribute values.

From the flow chart, it can be seen that the node states are
no longer simple 0s and 1s as in the classical model; instead,
each node state is a continuous value that can describe the
individual’s health degree and introduces death as a con-
sideration during the node evolution process. Consequently,
the result is more consistent with the actual situation. More-
over, it is universally important tomodel the attribute relation-
ships within an individual using the principles of biological
viruses. The effects of different viruses can then be simulated
by modifying the virulence factors of different viruses to
represent state changes over time.

III. EVOLUTIONARY MODEL OF VIRUS PROPAGATION
BASED ON THE PREDATOR MODEL
A. FACTOR ATTRIBUTE OF ORGANISM
After entering an individual, the virus invades a host cell and
uses the machinery and nutrients of the host cells to power a
large amount of replication. Then, it breaks up the host cell,
allowing the replicants to spread and infect other cells. At the
same time, the immune system uses leukocyte phagocytosis
and other means to eliminate these foreign invaders. The state
of a given individual is defined by the vector s = (V ,C,W ),
where V represents the number of viruses in the body,
C represents the number of individual host cells, and W
represents the number of immune cells in the body. The states
changes over time, which are represented by the function
vector s(t) = (V (t),C(t),W (t)).
To describe an individual’s health condition, the node state

vector is mapped to specific quantitative indexes; the node
states are then reflected through these quantitative indexes.
We define F as the mapping, which represents the health of
an individual as follows:

F (s (t)) : R3 7→ [0, 1] . (6)

Here, F (s (t)) = 1 represents the highest degree of a
diseased node, and F (s (t)) = 0 represents a healthy node.
A fully healthy individual is defined as one with no virus, and
an individual’s death occurs when all the host cells become
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inactive. Based on the definition of the function vector, in a
simple plane, S1 = {(0, x, y) , x > 0, y ≥ 0} expresses a
completely healthy state, the line S2 = {(z, 0, 0) , z ≥ 0}
expresses a dead state, and S1 and S2 are mutually perpendic-
ular. The state of the whole evolution can bemodeled to a first
approximation within the limits of three-dimensional space.
Define vector a as a health reference vector. Then Formula (6)
becomes

F (s (t)) = 1−
〈s (t) , e〉
‖s (t)‖2 ‖e‖2

C (t)
C (0)

. (7)

From Formula (7) we can see that the cosine of the angle
between the state vector s(t) and the health reference vector e
is used as the state mapping. Formula (7) shows that within
a time period, the health status of an individual is expressed
by the angle between the state s(t) and the plane S1 and the
ratio of the number of active host cells to the initial number
of active host cells. The larger the angle is, the more that
individual deviates from the healthy state.

When an individual recovers after the immune cycle,
the virus in that individual is eliminated. However, the num-
ber of active cells that individual has does not return to the
original level; therefore, the individual’s state of health is still
poor. Figure 2 shows a geometrical representation of the state
map.

F (s (t)) = 1− cos (θ)
C (t)
C (0)

. (8)

FIGURE 2. Geometric representation of state mapping.

B. ATTRIBUTE RELATIONSHIP MODEL BASED ON THE
PREDATOR-PREY RELATION
The number of viruses is related to both the number of
host cells and the viruses themselves. In individuals, after
a virus infects a cell, it subsequently releases more viruses.
Simultaneously, as the viral load increases, the immune func-
tion becomes activated, and immune cells proliferate, which
inhibit the rate of viral growth. In general, the virus preys on
cells, and the immune system preys on viruses.

The relationship shown in Figure 3 can be expressed in the
form of a differential equation seas follows:

dV (t)
dt
= V (t) (aC (t)− bW (t))

dC (t)
dt
= C (t) (c− dV (t))

dW (t)
dt
= W (t) (−e+ fV (t)).

(9)

FIGURE 3. Attribute relationship factor diagram.

The change in an individual’s state is reflected in com-
parison to the initial value. For example, the initial value
(0, c, 0) indicates an individual who has had no contact with
the virus and therefore has no corresponding antibodies; The
initial value (v, c, 0) denotes an individual with no prior
viral contact who is infected by the virus; The initial value
(v, c,w) represents an individual with antibodies once again
in contact with the virus (the secondary immune process of
the organism).

The model (9) and the actual immune process are different
as well; thus, we need to improve the model to make it
more realistic. First, the host recovers appropriately after the
disease, but is then restored to the initial value in a state of
equilibrium. After a virus is eliminated, the immune cells
do not remain at high numbers; they become reduced to
a low (but not zero) value. Based on these conditions (9),
the following models can be obtained:

dV (t)
dt
= V (t) (aC (t)− bW (t))

dC (t)
dt
=
C (t)− sgn (C (t)− C (0))C (t)

2
× (c− dV (t))
dW (t)
dt
= W (t) (−e+ fV (t)) .

(10)

C. DETERMINATION OF MODEL PARAMETERS
In the differential equation set in Formula (10), the parameters
describe the relationships among the three factors. These
parameters describe the body functions and the ability of a
virus to become pathogenic. In this paper, all the parameters
are divided into two sets, α and β. One set is a collection
of internal relations (parameter β), which include the indi-
vidual’s own cell renewal level {c, e}, the phagocytic abil-
ity of immune cells b, and the immune system’s response
capability f , namely, {c, e, b, f } ∈ β. The other is a col-
lection of external relations (parameter α), which include
the pathogenic ability of the virus d and the propagation
capacity a of the virus in the body, namely, {a, d} ∈ α.
Parameter set α indicates viral differences, while coefficient
set β reflects the individual functional differences. The initial
value (V (0) ,C (0) ,W (0)) reflects the differences among
individuals’ initial states. The values for collection α can be
determined by referring to medical experiments.

Taking the viral invasion of a human nasopharyngeal carci-
noma cell line CNE as an example, the following information
can be obtained from data reported in [22], which studied
the effect of a virus on the nasopharyngeal carcinoma cell
line CNE. The survival rate of epithelial cells exposed to the
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virus was less than 60 % under normal conditions. On the
other hand, the virus increased 50 times more than normal
over 24 hours in the CNE environment; the cells were dis-
tributed in an observation well of 100µL with a density of
1×105/mL, and the virus titer MOI is 1. Based on these data
from the literature, the partial coefficients of themodel in (10)
are set as shown in Table 1.

TABLE 1. The collection parameters.

The model coefficient set α (Table 1) and the numerical
experiment using these initial values can be visualized as
shown in Figure 4.

The different initial values and the numerical experiments
using different values for the parameter set β are reflected
in Figure 4. As shown in Figure 4(A), the establishment and
description of the model is in line with the biological immune
process, that is, the virus kills the cell but simultaneously
stimulates the immune cells to kill the virus. Figure 4(B–D)
reflects the evolution of the virus, the host cells and the
immune cells derived from varying the parameter collection β
to reflect different internal relationship parameters. These
results also conform to the rules of immunity. As shown
in Figure 4(C), the pathogenicity of the virus is sufficient to
kill a large number of cells within a very short time; with no
outside help, this virus would be difficult to overcome.

D. THE PLANE GRAPH OF THE MODEL AND
THE ANALYSIS OF ITS SOLUTION
After analyzing the model and the coefficients, consider-
ing that model (10) is a nonlinear differential equation set,
obtaining an analytical solution is difficult. Therefore, for
the model proposed in this paper, the solution and analysis
of the model are shown by the plane figure of the solution
and the analytical method of sexual state. The parameters
corresponding to those used to create Figure 4(A) are shown
in Table 2.

TABLE 2. The parameters used for the model in Formula (10).

Among the initially selected values, the Take interval of the
virus is [30, 100] and the corresponding value of the immune
cells is W (0) = C (0) /30.These three factors are depicted
graphically in Figure 5.

Figure 5(A) shows a trend diagram of the change over
time between the three factors’ properties. Figure 5 (B, C, D)
show the results of projecting (A) to three planes, respec-
tively. Figure 5 (A) shows the overall evolution of the three

FIGURE 4. Evolutionary process map of organism properties.

FIGURE 5. Relationships between attribute of the organism and the
plane Figure.

properties (decreased number of host cells and virus load and
increased immune cells). The graph in Figure 5(B) reflects the
relationship between host cells and viruses, showing that in
the initial disease stage, the pathogenicity causes a dramatic
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increase in the number of cell deaths; however, when the
number of surviving cells is less than 80, the viral effect on
cells decreases with the number of viruses and becomes flat.
At the same time, in Figure 5(C), the increase in the number
of virus causes the number of immune cells to increase, and
when the number of immune cells reach a certain level, they
inhibit further increases in the amount of virus. As this plane
figure shows, modeling can describe the immune process
of an individual; the modeling is consistent with the actual
situation.

FIGURE 6. Organism immunity graph and rail lines.

Figure 6 shows a 3D graph (6(A)) and rail lines (6(B))
corresponding to different initial values. The change trends
of the tracks are consistent with Figures 3–5. As seen from
Figure 5 and Figure 6, all the rail lines intersect the plane at
S1 = {(0, x, y) , 0 < x < 80, y ≥ 0}. This shows that after a
sufficiently long period, the virus will be engulfed, but the
number of nodes that survive viral thinning is very low; thus,
the node state represents serious illness or death.

E. CHANGES IN THE NETWORK NODE STATE
An important aspect for establishing the node evolution
model is to provide equations that model the independent
evolution of each node and that reflect how the state changes
over time through a state function (7). Because nodes are
a major part of a network structure, it is very important
to study node states. By comparing the state changes of a
node under different initial value conditions, we can then
target approaches to protecting the nodes. Even for highly
pathogenic viruses such as H1N1, improving the antiviral
capacity of the individual nodes is highly significant to the
evolution of the entire network.

As Figure 7 shows, improving the immune ability of an
individual reduces the period during which the individual
is in the diseased state. However, because of the strong
pathogenicity of the virus, its sensitivity to the immune sys-
tem is low.

This section describes the evolution of the three important
factors of life during a viral invasion through the establish-
ment of relational differential equations that describe the
effects of separating individuals from the biological social
network in the face of the evolutionary process of disease
invasion. Through the relationships shown in the plane figure,
by performing experiments with the virus, we find that the
pathogenic ability of virus becomes extremely high under the
influence of the evolution of the other nodes in the network;

FIGURE 7. Health degree.

thus, we cannot ignore the influence of node death within the
network.

IV. SIMULATION OF NETWORK FAILURE PROPAGATION
Considering the node attribute relationship model of the dis-
ease transmission network described in Section 3, the virus
is transmitted through a social network, that is, the virus is
the main information exchanged in this network, and viral
transmission among different nodes should be considered in
the evolution of the individual.

Let s (t)i = (Vi (t) ,Ci (t) ,Wi (t)) represent the ith node
in the network, and let θ represent the proportion of the virus
exchanged during interactions. Here, A represents the adja-
cency matrix of the entire social network, and Formula (10)
joins the node coupling relationship. Then, the ith node can
be represented as follows:

dVi (t)
dt
= Vi (t) (aCi (t)− bWi (t))

+

n∑
j=1

θjaijVj (t)− θiVi (t)

dCi (t)
dt
=
Ci (t)− sgn (Ci (t)− Ci (0))Ci (t)

2
× (c− dVi (t))

dWi (t)
dt

= Wi (t) (−e+ fVi (t)).

(11)

The model in Formula (11) shows the node model after
joining and coupling. As mentioned in the introduction, when
the scale of the network is large, solving model is quite
difficult. Therefore, this paper uses an approximate iterative
method to simulate the coupling process of the network.
This process involves dividing the long-term evolution of
the network into a series of evolutionary cycles Tp. In each
cycle, only the evolution of each individual node is con-
sidered; the influences of other nodes on the network are
ignored. At the end of a cycle, the network information is
exchanged, followed by the next cycle. This process is iter-
ated until the different states of the number of nodes in the
network are relatively stable, at which point the algorithm is
terminated.
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TABLE 3. The basic network properties.

A. NETWORK CHARACTERISTICS AND DETERMINING
THE ITERATIVE PERIOD
Networks formed by the interactions of social individuals
are typically complex. Social networks include a series of
relational subnetworks, such as those formed by friend-
ship relationships and working relationships. Scholars have
made great strides in research concerning large-scale social
networks; these advances provide the basis for research of
infectious diseases in biological networks.

According to [23] and [24], it is assumed that the nature
of the communication network in this article is as shown
in Table 3.

The interval from the time that an individual is infected to
the time they become a viral vector is related to both the evo-
lution of the virus itself and the individual’s social contacts.
The time required to exchange a virus between two individ-
uals is the individual evolution cycle Tp. Tp is related to the
status of an individual in a social network, which is expressed
by the degree di of each individual in a social network. Thus,
Tp (di) represents the viral evolution cycle of individual i.
Based on reports from [22], set Tp (di) = 24 (mdi)−1,

where m represents the proportion of social competence in
an individual. For individuals who have a large impact on the
network, the elapsed time from infection to viral exchange
with other individuals is smaller than those of other, less
important nodes.

B. NETWORK INTERACTIONS AND MODEL
OPERATIONAL RULES
The vector function s (t) represents the state of a node at
point t . We define a vector function, n (t), to represent the
state of the whole network as follows:

n (t) =


s1 (t)
s2 (t)
...

sn (t)



=


V1 (t) C1 (t) W1 (t)
V2 (t) C2 (t) W2 (t)
...

...
...

Vn (t) Cn (t) Wn (t)

. (12)

Based on the topological structure of the network, the adja-
cency matrix of the network can be obtained, which is
denoted as A (t). Because of the need to remove ill individ-
uals from the network, the topology of the network must be
adjusted over time:

F (n (t)) =


F (s1 (t))
F (s2 (t))

...

F (s3 (t))

. (13)

Here, F (n (t)) represents a state metric for each node of
the network. The viral propagation can then be expressed
formulas follows:

V1 (t)
V2 (t)
...

V3 (t)


T

=


V1 (t − 1)
V2 (t − 1)

...

V3 (t − 1)


T

{[F (n (t − 1))] ∗ A (t)− εI } . (14)

The ∗ operation between the vector [F (n (t − 1))] and
the matrix A (t) in Formula (14) is the direct sum of the
column vector [F (n (t − 1))] and the corresponding elements
of each column of A (t) (15), as shown at the bottom of
this page.
Because disease outbreaks are stochastic, they can be

regarded as a stochastic fault in a social network. Thus,
the process of the periodic evolution model proposed in this
paper is as follows:
Step 1: Attach random virus values to the nodes of the

network such that some individuals contain a certain number
of viruses,
Step 2: Evolve each node in the network over a cycle Tp,

as described in 4.2.1;.
Step 3: Using Formula (14), conduct an exchange based

on the number of individual viruses in the network. Record
the nodes that substantially deviate from the health state and
eliminate dead nodes.
Step 4: During the exchange, the number of individual

viruses is taken as the initial value. Then, the process returns
to the second step to simulate viral evolution in each node.
The node evolution process based on this periodic algorithm
is shown in Figure 8.

[F (n (t − 1))] ∗ A (t) =


[F (s1 (t − 1))] a11 [F (s1 (t − 1))] a12 · · · [F (s1 (t − 1))] a1n
[F (s2 (t − 1))] a21 [F (s2 (t − 1))] a22 · · · [F (s2 (t − 1))] a2n

...
...

. . .
...

[F (sn (t − 1))] an1 [F (sn (t − 1))] an2 · · · [F (sn (t − 1))] ann

. (15)
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FIGURE 8. A sketch map of the node evolution process based on the
proposed periodic algorithm.

C. RATIONALITY ANALYSIS THE ITERATIVE ALGORITHM
The process of the dynamic model solved by the iterative
algorithm and the process described by the model in For-
mula (11) are similar. The main difference between the mod-
els in (10) and (11) is the network coupling. As shown in
the model in (11), the coupling relationship is represented

by the formula
n∑
j=1
θaijVj (t)− θVi (t). In this relationship,

n∑
j=1
θaijVj(t) represents an exchange of virus between adja-

cent nodes, and θVi (t) represents the number of viruses
exchanged during each process. Thus, we can divide the
propagation process in (11) into two processes as follows:



dVi (t)
dt
= Vi (t) (aCi (t)− bWi (t))

dCi (t)
dt
=
Ci (t)− sgn (Ci (t)− Ci (0))Ci (t)

2
× (c− dVi (t))

dWi (t)
dt

= Wi (t) (−e+ fVi (t))

+
dVi (t)
dt
=

n∑
j=1

θjaijVj (t)− θiVi (t)

dCi (t)
dt
= 0

dWi (t)
dt

= 0.

(16)

The portion to the left of the plus sign denotes the evolu-
tion process, while the portion to the right of the plus sign
denotes the propagation process. To signify communication,
the propagation process in V (t) = (V1 (t) , · · · ,Vn (t)),

θ = (θ1, · · · , θn), (16) can be rewritten as:

dV (t)
dt
= θTV (t)A− θTV (t) I (17)

After introducing this cycle, the overall evolution model is
as follows:

dV (t)
dt
= V (t) (aC (t)− bW (t))

dC (t)
dt
=

C(t)−sgn(C(t)−Ci(0))Ci(t)
2

× (c− dVi (t))

dW (t)
dt
= W (t) (−e+ fV (t))

+
dV (t)
dt
= g (t) θTV (t)A− θTV (t) I

dC (t)
dt
= 0

dW (t)
dt
= 0,

(18)

where g(x) =
{
1, x = nTp
0, others

. When Tp becomes sufficiently

small, the node evolution in Formula (18) will be approx-
imated indefinitely (16). Therefore, the introduction of the
cycle can reduce the difficulty of solving the model, and
selecting a better cycle can also improve the accuracy of
the operation. When θi = [F (si (t − 1))], the propagation
processes in (17) and (14) are equivalent.

D. NUMERICAL SOLUTION AND SIMULATION
Basic comparative data were obtained by calculating the
rates of diseases (number of people/the largest number). The
proposed model and the SIS model are executed using these
basic data and the differences between the model results and
the actual situation were evaluated.

To select the appropriate evolution cycle, by comparing the
gap between the simulated data and the real data, we can reach
the following conclusions:

TABLE 4. Comparison of average cycle selection effect.

As shown in Table 4, selecting different social ability
levels affects the average evolution cycle of nodes. Select-
ing an average evolution cycles different from reality will
result in differences between the final model and the actual
data. As the social ability level increases, the evolution cycle
decreases according to Tp (di) = 24 (mdi)−1. A decrease in
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FIGURE 9. Virus propagation of two models compared to the real
situation.

the evolution cycle leads to (18) becoming more accurate,
resulting in a smaller gap between the model results and the
actual data.

As Figure 9 shows, the model based on node evolution
is closer to the real data. The proposed model can simulate
the spread of the a virus given the results of pathological
experiment and provide a more accurate prediction of actual
virus spread. The model can be customized by setting differ-
ent model coefficients to simulate different virus attacks and
setting different initial values to reflect individual differences.

V. CONCLUSIONS
In this paper, viral propagation in a smart campus network
was studied to improve the security and robustness of smart
campuses. A new virus propagation model for the campus
network applies a differential power system to describe a
single network node; then, it uses graph theory and linear
equations to link the evolution of each node with changes
throughout the entire network. As is the case with a virus in
an individual, the nodes in the smart campus network also
have a certain degree of autonomy, which makes network
research more complex. The improved model presented here
can also be used to control both successive failures and
public sentiment. In viral transmission, it can be found that
under different immune initial values, autonomous individu-
als play a strong regulatory role. Therefore, regarding traffic
congestion control and sequential failures, we can use this
model to quantify the control strategy of each node into a
single individual model, which can then be used to simulate
and compare different control strategies to produce different
effects on the smart campus network.
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