
Received February 4, 2018, accepted March 13, 2018, date of publication March 20, 2018, date of current version April 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2817518

A Secure Verifiable Ranked Choice Online Voting
System Based on Homomorphic Encryption
XUECHAO YANG 1, XUN YI1, SURYA NEPAL2, ANDREI KELAREV1, AND FENGLING HAN1
1School of Science, RMIT University, Melbourne, VIC 3000, Australia
2Data61, CSIRO, Armidale, NSW 2350, Australia

Corresponding author: Xuechao Yang (xuechao.yang@rmit.edu.au)

This work was supported by the Discovery Grant from the Australian Research Council and the Data61 Research Collaborative Project
(Enhancing Security and Privacy in IoT) under Grant DP160100913.

ABSTRACT Advanced security methods are necessary to introduce effective online voting in the whole
world. Elections conducted on paper consume a lot of resources and contribute to the destruction of forests,
which leads to climate deterioration. Recent online voting experiences in countries, such as the United
States, India, and Brazil, demonstrated that further research is needed to improve security guarantees for
future elections, to ensure the confidentiality of votes and enable the verification of their integrity and
validity. In this paper, we propose a ranked choice online voting system, which addresses these challenges.
It eliminates all hardwired restrictions on the possible assignments of points to different candidates according
to the voters’ personal preferences. In order to protect the confidentiality of the votes, each cast ballot is
encrypted using the exponential ElGamal cryptosystem before submission. Furthermore, during voting the
system ensures that proofs are generated and stored for each element in the cast ballot. These proofs can
then be used to verify the correctness and the eligibility of each ballot before counting without decrypting
and accessing the content of the ballot. This validates the votes in the counting process and at the same time
maintains confidentiality. The security and performance analyses included in this paper demonstrate that our
method has achieved significant improvements in comparison with the previous systems. The outcomes of
our experiments also show that our proposed protocols are feasible for practical implementations.

INDEX TERMS Online voting, privacy preservation, homomorphic encryption, homomorphism tally, end-
to-end verification.

I. INTRODUCTION
Homomorphic encryption is a well-known powerful tech-
nique with many useful applications (cf. [1]–[5]). Recently,
it has been applied to the design of online voting systems
(see the next section for details). This is motivated by the need
to develop advanced security systems to facilitate a broad
introduction of online voting throughout the whole world.
Elections conducted by paper votes are unsustainable, as they
consume a lot of resources and lead to destruction of forests
contributing to deterioration of climate. Recent experimental
online voting in countries such as the United States, India and
Brazil highlighted significant challenges that require further
research to improve security guarantees in future elections.

Secure e-voting systems are required for casting votes
using the Internet. Online voting systems not only increasing
sustainability, but also reduce the overall cost of running
elections and may increase voter participation because of
the more convenient procedure, in particular, for the vot-

ers with disabilities. The study of electronic elections con-
tributes to the more general area of privacy-preservation
(cf. [6]–[10]) and relies on secure implementations of other
aspects involved in e-voting (cf. [11]–[14]). Since online
voting remains vulnerable to malicious activity and hacking
attacks, the design of a secure, flexible and verifiable e-voting
system is a very important problem (cf. [15], [16]).

In this paper, we propose an e-voting system inspired by the
so-called approval voting also known as score voting, [17].
Approval voting has been used in various elections since
1987. Examples include elections conducted by some scien-
tific and engineering societies, an econometric society and
democratic state committees, [17]. However, to the best of
our knowledge, score voting has not been applied in secure,
flexible and verifiable e-voting systems.

Our e-voting system enables voters to score all candidates
and assign points to different candidates directly without any
restrictions apart from the total number of available points

20506
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-5621-767X

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

specified by the organizers of the election. This is illustrated
in Fig. 1 where the total number of available points is equal
to 6.

FIGURE 1. Here (a), (b) and (c) are the voting mechanism of our e-voting
system when the total number of available points is equal to 6. A voter
can treat all candidate equally as in (a), or support only one candidate as
in (b), or rank all candidates as in (c).

Our ranked choice e-voting system constructed in this
paper uses the exponential ElGamal cryptosystem due to [18]
(see also [2], [5]). Before submission, the contents of each
cast ballot are encrypted using the exponential ElGamal
encryption. The additive homomorphism property of this
cryptosystem, [19], makes it possible to tally encrypted bal-
lots directly without decrypting them. Our cryptosystem also
includes cryptographic proofs incorporated to ensure the
integrity of the voting process and to verify the validity of
each vote before it is counted.

Maintaining the privacy and security of the voters is a pri-
ority for any online voting system. Our voting system ensures
that the following security requirements are met. These
requirements are essential for voting according to [20]–[22].
Eligibility of Voters: Only authorized voters can submit

ballots.
Multiple-Voting Detection: Each voter can only vote once.

Multiple voting by any one voter is detected and identified.
Privacy of Voters: All votes must be stored securely and

secretly and should not reveal voting preferences of the
voters.
Integrity of Ballot: No one can modify or duplicate any

submitted ballot without being detected.
Correctness of Tallied Result: Only verified ballots are

counted and added to the final result.
End-to-End Voter Verifiable: Every voter is able to verify

whether their vote is posted and counted correctly.
In order to make the system End-to-End (E2E) voter ver-

ifiable, we require each voter to generate proofs for each
encrypted element of the ballot. These proofs are sent along
together with the encrypted ballots. After submission, every-
thing is made available publicly to all users. The proofs are
generated using proof of partial knowledge (cf. Section III-B)
and zero knowledge proof (cf. Section III-C), which means
that the eligibility of each encrypted ballot can be verified by
anyone.
Contributions of this Paper: We propose a new e-voting

system, which is more flexible than the previous systems.
It uses encryption to achieve verification of the integrity of
the voting process and the validity of the ballots, at the same
time maintaining confidentiality of the users. Our e-voting
system is an E2E voter verifiable voting system. Each ballot is

encrypted by the exponential ElGamal encryption algorithm
and contains proofs used in verification. The proposed proto-
cols achieve the following.

(1) The information of each encrypted ballot can be added
to other ballots without decrypting any votes.

(2) Each encrypted ballot can be verified without revealing
voting preferences. Only verified ballots are tallied for the
final result.

(3) Voters can verify that their ballots are submitted cor-
rectly to the pool.

(4) Everyone is able to verify the eligibility of any voter’s
ballot without revealing voter’s privacy.

(5) Each voter can verify the correctness of the final tallied
result.
Structure of This Paper: Section II provides a literature

review of recent work devoted to e-voting systems based
on encryptions with homomorphic properties. Section IV
presents our e-voting system. Security and performance
analysis can be found in Sections V and VI, respectively.
Section VII concludes this paper. For the convenience of the
readers, Sections III-A, III-B and III-C describe preliminaries
on the cryptographic models used in our e-voting system.

II. RELATED WORK
Homomorphic encryption has been used in online voting
systems, for example, in [23]–[25]. The homomorphic prop-
erty makes it possible to tally all encrypted ballots without
decrypting them and accessing the content of any individual
ballot.

Helios [26] is the first web-based voting system. It used
ElGamal encryption to achieve open-audit voting. Helios did
do not claim any cryptographic novelty apart from that fact
that, assuming that there were enough auditors, even if all the
authorities fully colluded to corrupt the system, theywould be
unable to counterfeit the election result without a high chance
of being caught. However, the security of the Helios relies on
the trust of all participants in the Helios server. The security
level of Helios depends on a mix-net shuffling mechanism
implemented by the server. It follows that a corrupt Helios
server can attempt to shuffle submitted votes incorrectly or
decrypt shuffled votes incorrectly. Further, the performance
results reported in [26] show that the computation time is
quite long. The verification and auditing process took more
than three hours on a server and a complete audit took more
than four hours on voter, even though there were only 2 ques-
tions in each vote and 500 voters in total. Thus, [26] provided
the time achieved in only one experiment with a fixed number
of voters.

All previous voting systems including [26] imposed several
security assumptions required on their systems. Adida [26]
made an assumption that there were several honest authorities
and a central honest server. If any authority is compromised,
they can attempt to shuffle the votes incorrectly. Likewise, a
corrupt Helios server knows the usernames and passwords of
all users, and can easily authenticate and cast ballots on behalf
of users.

VOLUME 6, 2018 20507

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

Several improvements to Helios were made in Helios 2.0
(see [27]), which was used in a real election (UCL election).
Helio 2.0 could handle 25,000 potential voters. In the UCL
election, 5000 participants registered and nearly 4000 voted
in each round of the election. Helio 2.0 updated the open-
audit mechanism, so that it could provide more evidence of
the counters’ works to all voters. However, their proposed
approach distributed the key-generation and decryption code
among a few trusted members of the election commission.
This required the trustees to be technically savvy and honest.
There is no indication of the running time of any new exper-
iments in [27].

The security assumptions in [27] were the same as in [26].
In particular, a compromised server in Helios 1.0 and
2.0 could subvert all data in the ballot box near the end of
the election day.

A multi-authority e-voting system introduced in [28]
applied the distributed ElGamal DSA with an inherited addi-
tive homomorphism property. In addition to the authorities
and the voters in the election, a trusted third party was
introduced and was used to distribute the shared secret key
among the multiple authorities. The proposed system became
receipt-free, because the encryption of each ballot now is
done by the trusted third party. This means that the voters
could not prove how they voted by using their encrypted vote,
and the authorities of the election could not learn the content
of each vote from its encryption. However, the drawback of
the system was that the third party could collude with any of
the authorities and together they could recover the contents of
submitted votes, which would violate the privacy of voters.
The paper [28] assumed that there was a trusted third party
involved in the scheme to distribute the shared secret key
among the authorities. There was no indication of the running
time or performance analysis of any new experiments in [28].

Cobra [29] was the first coercion-resistant system. It was
a proof-of-concept voting system offering concurrent ballot
authorization. The paper focused on the problem of coercion
and vote selling. However, the proposed registration process
could not be applied in practical elections, because it required
each voter to register multiple times. In the performance anal-
ysis section, the authors provided concrete numbers only for
a hypothetical election with 5 candidates, 10,000 registered
voters, 20,000 submitted ballots and 3 trustees. This example
took almost two hours of computing time on a fully parallel
8-core machine. A careful analysis of the running times of
various steps of the algorithm was presented in [29], but only
in one experiment with a fixed number of voters. In [29],
an assumption was made that all authorities (trustees) should
be honest. The trustees of an election authority engaged in a
secure, universally verifiable protocol implementing a ballot
authorization function.

Zeus [30] was a system developed based on Helio [26].
Zeus used the same workflow as Helio, but it provided more
types of voting. The paper [30] assumed that the server should
be always trusted. However, a potential security vulnerability
of the systemwas that Zeuswas run in a black box on a remote

virtual machine. The lack of control and access to this black
box virtual machine implementation created a possibility that
without any control or awareness of any participants in the
election process of how the black box operates, it could be
subverted and confidential information could leak, or even
the whole computing procedure could be incorrectly imple-
mented. Thus, in the proposed implementation Zeus did not
provide any reliable guarantee of anonymity and security to
the users. Furthermore, Zeus turned out to be a computation-
ally expensive system. It took approximately 65 minutes of
computing time to handle 10000 votes by using a 16-core
2.26 GHz machine. This is the only new experiment with the
running time indicated in [30].

A flexible e-voting system for online discussion forums
was proposed in [31], where it was assumed that there is a
trusted third party (registration server). This paper presented
two diagrams with line graphs comparing only the time of
the encryption operations, since it considered the special case
of online voting conducted as a part of continuing online
debates.

The most recent online voting system based on homomor-
phic encryption was proposed in [20]. It enables voters to cast
their ballots by ranking all candidates. The main idea behind
the system proposed in this paper is to convert each cast ballot
into a square matrix, where the size of the matrix depends
on the number of candidates. After that, each element in the
matrix is encrypted by a verifiable homomorphic encryption
algorithm. This approach,makes it possible to verify the eligi-
bility of each submitted ballot without accessing the content
of the ballot. Besides, the final result can be computed by
using the additive homomorphic property without decrypting
the cast votes.

The paper [20] assumes that there is more than one author-
ity, and at least one of them is honest. The major weakness
of that system is in the high cost of the computation on the
voter side. It is explained by the number of exponentiations
required being equal to the square of the number of candi-
dates. It follows that the computation time can be expressed
as tE ×nc2, where tE and nc denote the computation time of a
single encryption and the number of candidates, respectively
(see Table 3). Moreover, the number of the proofs that have
to be generated before submission of the vote is equal to nc2,
because the verification is performed based on these proofs.
Creating all the required proofs significantly increases the
computation time of the system proposed in [20]. Further-
more, it increases the size of each submission, which is made
up of nc2 ciphertexts plus nc2 proofs.
In addition to all the details mentioned above, to facili-

tate the comparison of the security assumptions and results
of previous publications and the present paper, we include
Table 1 with a brief outline of the results of experiments in
the previous papers, and Table 2 with a summary of security
assumptions used in the previous papers.

The present paper is an improved and extended version
of the brief conference publication [20]. The authors have
managed not only to expand the text by adding details and

20508 VOLUME 6, 2018

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

TABLE 1. Comparison of the outcomes of experiments in previous papers.

TABLE 2. Security assumptions in previous papers.

TABLE 3. Notations used in the rest of this paper.

explanations, but also to improve the system proposed in [20]
as follows.
• The new data structure of a binary matrix is introduced

in the present paper. It was never considered previously.
The paper [20] also used matrices, but they were differ-
ent and had larger dimension.

• This innovation has significantly improved the running
time of the system. The running time of our new algo-
rithm has improved to O(nv log nv), as compared to
O(n2v) in [20], where nv denotes the number of voters
(see Table 3).

• In the present paper, several aspects of the election sys-
tem are adjusted to handle more general situation. The

new system proposed in the present paper has become
applicable in a broader class of settings and can be used
for elections with less strict requirements.

All algorithms have been improved, so that the present
paper contains new ‘‘ballot generation algorithm’’, ‘‘verifi-
cation algorithm’’ and ‘‘tallying algorithm’’. Here are further
details on improvements made in the present paper.
(1) Improved ballot generation. In [20], a voter ranks all

candidates to different positions and the ballot is con-
verted to a square matrix with dimensions nc×nc. In the
present paper, a voter assigns arbitrary points to different
candidates, and then each point is converted to its binary
representation. This representation is stored in a new
binary matrix, which is not square.

(2) Improved verification algorithm. In [20], the verification
relied on the fact that the voters were not allowed to rank
candidates to the same position in the ranked list. The
system proposed in the present paper allows the voters
to assign the same rank to different candidates. This is
why a new verification procedure has been included in
this paper.

(3) Improved tallying algorithm. In [20], the tallying was
based only on the additive homomorphic property. In the
present paper, the tallying process uses both the additive
and multiplicative homomorphic properties of the cryp-
tosystem.

(4) Improved performance. In [20], the square matrix had
dimensions nc × nc. In the present paper, a new binary
square matrix is introduced to encode ballots. The num-
ber of rows of this matrix is nc, but the number of
columns never exceeds 2 log(nc). This is why the run-
ning time of the main algorithm in the present paper has
improved to O(nc log nc).

III. PRELIMINARIES ON CRYPTOGRAPHY
Following [5], in this section we introduce prerequisites for
the underlying cryptographic algorithms, which are used as
building blocks in our system.

A. ELGAMAL CRYPTOSYSTEM
ElGamal cryptosystem is very well known (cf. [2] and [5]).
We assume that the cyclic group (G, q, g) is defined and
there are n users in the system. Each i-th user has its own
public key yi and secret key xi. The distributed ElGamal
cryptosystem consists of the following algorithms.
Key Generation: A common public key

PK =
n∏
i=1

yi = gx1+···+xn

is used in the distributed ElGamal cryptosystem.
Encryption: To encrypt a plaintext message m ∈ G:
• Randomly choose an integer r from Z∗q;
• Computes c1 = gr ;
• Computes c2 = gm · PK r .

The encrypted message is E(m) = (c1, c2).

VOLUME 6, 2018 20509

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

Decryption: A common decryption key is not computed.
Each user computes and broadcasts a partially decrypted
value, and the final plaintext is revealed by combining all par-
tially decrypted values. For the ciphertext (c1, c2), decryption
proceeds as follows:
• Each i-th user computes c1xi ;
• All users broadcast commitment of computed values
H (c1xi);

• Each i-th user broadcasts c1xi and checks if each cxi1
matches with H (cxi1);

• Each user computes
c2∏n

i=1 c1
xi
=

c2
cx1+···+xn1

= gm.

Finally,m can be revealed by computing a discrete logarithm.
Homomorphism. ElGamal encryption has an inherited

homomorphic property [5], which allows multiplication and
exponentiation to be performed on a set of ciphertexts without
decrypting them, such as

E(m1)× E(m2) = (gr1 , gm1 · pkr1)× (gr2 , gm2 · pkr2)

= (gr1+r2 , gm1+m2 · pkr1+r2)

= E(m1 + m2)

E(m1)m2 = (gr1 , gm1 · pkr1)m2

= (gr1·m2 , gm1·m2 · pkr1·m2)

= E(m1 · m2)

B. PROOF OF PARTIAL KNOWLEDGE
Given a cyclic group G of a prime order q with a generator g.
The secret key is x, and public key is y = gx . The verifier can
confirm that the ciphertext is either E(m1) or E(m2), but the
verifier will never know which one is the true one [32], [33].
The ElGamal encryption algorithm (cf. Section III-A) is used
in this protocol.

Prover
• generates a random number r ∈ Zq
• computes E(m1) = (c1, c2) = {gr , gm1 · yr }
• generates random numbers t, v2, s2 ∈ Zq
• computes T0 = gt

• computes T1 = yt

• computes T2 = (gm2·v2 · ys2)/c2v2
• computes v = hash(c1‖c2‖T0‖T1‖T2)
• computes v1 = v⊕ v2, where⊕ denotes XOR.
• computes s1 = r · v1 + t
• sends c1, c2,T0,T1,T2, v1, v2, s1, s2 to
Verifier

Verifier
• verifies v1 ⊕ v2 = hash(c1‖c2‖T0‖T1‖T2)
• verifies gs1 = T0 · c1v1
• verifies ys1 = T1 · (c2/gm1)v1
• verifies ys2 = T2 · (c2/gm2)v2

If all verification tests return true, the ciphertext can be
considered as encryption value of m1 or m2. Therefore the
verifier can only confirm that the ciphertext is either E(m1)
orE(m2), but cannot determine the exact value of the plaintext
with certainty.

C. PROOF OF ZERO KNOWLEDGE
This subsection contains prerequisites on the zero knowl-
edge proof algorithm of [34] and [35]. Suppose that plain-
text message is m. In the zero knowledge proof algorithm
of [34] and [35] the prover computes E(m) and proofs. The
verifier can use the proofs only to verify that the ciphertext is
encrypted from m, but cannot decrypt E(m).
Further, suppose that the ElGamal cryptosystem is used,

where G is a cyclic group G of a prime order q with a
generator g, the secret key is x and the public key is y. Then
E(m) = (c1, c2) = (gr , gm · yr) (cf. Section III-A). To
verify that the ciphertext (c1, c2) is a correct encryption form,
the algorithm proposes verifying that c1 and

c2
gm

have the

same exponentiation. This zero knowledge proof is correct,
because

c1 = gr (1)

and
c2
gm
=
gm · yr

gm
= yr (2)

Indeed, if the ciphertext (c1, c2) is E(m), then (1) and (2)
have the same exponent r . Otherwise, if (c1, c2) is different
from E(m), then it is obvious that (1) and (2) have different
exponents.

Prover
• generates random number r ∈ Zq
• computes E(m) = (c1, c2) = (gr , gm · yr)
• generates random number t ∈ Zq
• computes T1 = gt

• computes T2 = yt

• computes v = Hash(E(m)‖T1‖T2)
• computes s = r · v+ t
• sends c1, c2,T1,T2, v, s to Verifier

Verifier
• verifies if gs = c1v · T1
• verifies if ys = (c2/gm)v · T2

If both verifications are passed, the verifier believes the
prover’s statement.

IV. PROPOSED E-VOTING SYSTEM
A. OVERVIEW AND NOTATION
This section contains an overview of our ranked choice
e-voting system with illustrations and examples. In the
present paper, we consider a general security assumption that
there is more than one authority, and that at least one of them
is honest all the time. This assumption is the same as in [20].
It is less restrictive than the diverse security assumptions
imposed in other related works, as detailed in Section II
(see Table 2). In particular, our system does not require a
centralized, trusted server as in [26] and [27], or a trusted third
party as in [29] and [30].

The basic idea of our voting system is to encrypt each ballot
using the common public key of the distributed ElGamal
cryptosystem. Since the exponential ElGamal satisfies the

20510 VOLUME 6, 2018

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

additive homomorphic property, the encrypted ballots can
be directly tallied. This procedure is also known as homo-
morphic tallying [36]. Finally, the tallied result can only be
decrypted by collaboration of all authorities.

Our e-voting system consists of the following stages: ini-
tialization, registration, ballot casting, verification of voters,
verification of ballots, tallying and result revealing.

B. ENTITIES
Here we list all entities that are involved in our e-voting
system.
Voters: Each authorized voter can cast a ballot ranking

all the candidates by assigning different points to different
candidates according to their own preferences.
Candidates: Each candidate can be treated as a contestant

in the election, and can receive different points from different
submitted ballots. The candidate who received the largest
total number of points is the winner of the election.
Authorities: There are multiple authorities in the election,

who take responsibility for auditing the voting process by
computing the common encryption key, verifying the identifi-
cation of voters for each submission, verifying the eligibility
of each ballot before tallying, revealing the winner of the
election.
Public Bulletin Board: An insert-only bulletin board,

which displays all information about the election, such as
public keys, all submitted ballots and final tallied result. The
content of the board can be viewed by all entities. However,
no one is able to modify or delete existing data on it.

C. INITIALIZATION OF ELECTION
At the beginning of an election, all authorities have to gener-
ate a common encryption key (PK) that can be used by voters
in order to encrypt each cast ballot before submission. Each
authority (Ai) owns a key pair (public key pkAi and secret key
skAi), and (PK) is computed using the public keys (pkAi) of
all tallying authorities (cf. Section III-A). Finally, the PK is
posted on the public bulletin board, which can be used by all
voters.

During the common key generation, each Ai has to broad-
cast their pkAi . In order to prevent adversaries from replacing
any public key of an authority, hash values of pkAi must
be broadcast as a commitment before broadcasting the pkAi .
In cryptography, the key commitment is designed such that
any party cannot change the value or statement after all parties
have committed to it. In our system, PK is computed using all
pkAi , where a commitment means eachAi agreed to contribute
their public key, which cannot be changed later. If any Ai
modifies the value, the other authorities can identify this.
The common key generation only commences when all the
broadcast keys are authorized.

Note that the total available points for a ballot (P) must
be confirmed before the election starts, the value is decided
based on the number of candidates (nc). For example, when
there are 3 candidates, the value of P could be 5 or 8, as long
as P is greater than nc. Once the value of P is confirmed,

all voters have to agree and use it when casting their ballots.
More explanations are given in Section IV-E.

D. REGISTRATION OF THE VOTERS
In order to register with our e-voting system, each voter (Vi)
must present their valid ID (e.g. driver licence). Once a voter’s
identity has been verified, he/she generates a signature key
pair, which consists of a public key (pkVi) and a private key
(skVi). The pkVi is uploaded to the public bulletin board, and
the skVi is kept secret by the voter Vi.

Once a voter has completed the registration, their identity
and the corresponding public key can be found on the public
bulletin board. Our system requires each voter to sign their
ballot using Digital Signature Algorithm (DSA), where the
skVi of voter is used to sign the voter’s submission and pub-
lished pkVi can be used to verify their signature SigVi .

E. BALLOT CASTING
Our e-voting system allows voters to rank all candidates
based on their personal preferences. Each voter can assign
different numbers of points to candidates, and the winner is
the candidate who receives the largest total number of points.

Voters are allowed to assign any points to any candidate.
The only restriction is that the total number of assigned points
must be equal to the total available points (P). To illustrate,
here we look at an example where there are 3 candidates and
P = 6. Then all options Fig. 1(a), Fig. 1(b) or Fig. 1(c) are
acceptable, because 2+2+2 = 6 for Fig. 1(a), 0+0+6 = 6
for Fig. 1(b), and 1+ 3+ 2 = 6 for Fig. 1(c).
After that, all assigned points are converted into binary, and

the content of the cast ballot is treated as a matrix. The size of
the matrix is nc × LP, where we use nc to denote the number
of candidates, and we use LP to denote the number of bits of
P (binary). For example, the ballot illustrated in Fig. 1(c) is
converted to its binary version in Fig. 2(b), where P = 6 and
LP = 3.
Once the ballot (Bi) is converted into its binary version,

such as (b) of Fig. 2, the content must be encrypted (using
PK) before submission. In our system, each binary bit of Bi
is encrypted individually, as in Fig. 2(c), where B(i)j,k denotes

the binary bit (0 or 1) on position (j, k) of the ballot, and C (i)
j,k

denotes the encrypted value of B(i)j,k , where j ∈ [1, nc] and
k ∈ [1,LP].

Once the encrypted ballot (E(Bi) = C (i)
1,1, · · · ,C

(i)
nc,LP)

is ready, there are two types of proofs to be computed
and sent with the encrypted ballot. The voter (prover) must
convince everyone (authorities and other voters) that each
C (i)
j,k is either E(1) or E(0) (cf. Algorithm 1) and that the

number of total number of assigned points is equal to P
(cf. Algorithm 2). To this end, our system uses proof of partial
knowledge (cf. Section III-B) and proof of zero knowledge
(cf. Section III-C) to generate proofs for each C (i)

j,k and the
total number of assigned points, respectively, This allows
authorities and other voters to verify E(Bi) without revealing
the content of Bi.

VOLUME 6, 2018 20511

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

FIGURE 2. (a) is a ballot Bi cast by a voter Vi , (b) is a binary version of Bi , (c) is the encrypted version E(Bi).

Algorithm 1 Generating Proofs for Each Element in an
Encrypted Ballot
Input : Vi, E(Bi), PK
Output: PPKs(i)

1 set PPKs = {}
2 for j← 1 to nc do
3 for k ← 1 to LP do
4 PPK of C (i)

j,k : prove C
(i)
j,k = (c1, c2) is either

E(0) or E(1) F cf. Section III-B
PPK{(C (i)

j,k ,T0,T1,T2, v1, v2, s1, s2) :

v1 ⊕ v2 = H (C (i)
j,k‖T0‖T1‖T2), g

s1 = T0 · c1v1 ,
PK s1 = T1 · (c2/g1)v1 , PK s2 = T2 · (c2/g0)v2 }

PPKs(i) = PPKs(i) ∪ PPK
5 end
6 end
7 return PPKs(i)

Algorithm 2 Generating Proofs for The Total Number of
Assigned Points of an Encrypted Ballot
Input : Vi, E(Bi), PK , P
Output: PZK(i)

1 set PZK = {}
2 set PBi = E(0)
3 for j← 1 to nc do
4 set t = 1
5 for k← LP to 1 do
6 PBi = PBi × (C (i)

j,k)
t

7 t = t × 2
8 end
9 end
10 generates proof of PBi : prove PBi = (c1, c2) is E(P) F

cf. Section III-C
11 PZK(i)

{(PBi ,T1,T2, s) : v = hash(PBi‖T1‖T2), g
s
=

c1v · T1,PK s
= (c2/gP)v · T2}.

12 return PZK(i)

Remark 1: The exponential ElGamal encryption is used,
where E(m) = (gr , gm · yr). For the convenience of readers,
more details are given in Section III-A.
Remark 2: The proof of partial knowledge and the proof

of zero knowledge in Algorithms 1 and 2 are denoted by
PPK {a, b, · · · : α, β, . . . } and PZK{a, b, · · · : α, β, . . . },
respectively. Here a, b, . . . are the proofs generated by the
prover, and α, β, . . . are the conditions satisfied by a, b,
The algorithm PPK verifies that a ciphertext E(m) is the
encryption of one of the multiple values m1,m2, . . . without

decrypting it. Likewise, PZK verifies (without decryption)
that the ciphertext E(m) is the encryption of m. Both PPK
and PZK never reveal the content of the ciphertext. The
algorithms PPK and PZK are well-known. For the readers’
convenience, more details on PPK and PZK are included in
Sections III-B and III-C, respectively.

When the ballot has been cast, a digital signature (SigVi) of
the voter (Vi) is generated and sent with E(Bi) and all proofs
to the server. In this case, DSA is used, whichmeans that SigVi
is generated by using skVi and can be verified by using pkVi ,
as explained in the next subsection.

To summarize, each submission consists of the following:
encrypted contents of a cast ballot (E(Bi)), proofs of each
ciphertext (PPKs(i)), proofs of total number of assigned points
for the ballot (PZK(i)) and a digital signature (SigVi).

F. VERIFICATION OF EACH SUBMISSION
The contents of each submission are posted on the public
bulletin board, including all encrypted values, all proofs and
the digital signature. However, to prevent tallying any invalid
ballot to the final result, the verification of each submission is
a necessary and crucial step. It consists of the following three
verifications: (1) verifying whether the sender of the sub-
mission is authorized, (2) verifying whether each encrypted
element of the cast ballot (E(Bi)) is either E(1) or E(0), and
(3) verifying whether the total number of assigned points of
the E(Bi) is equal to P.

In our system, each ballot is tallied to the final result only
if its submission has been validated in the following three
verification steps.
(1) Verify the Sender of Each Submission: In order to pre-

vent unauthorized people impersonating authorized voters,
we require each voter to sign their submission by using their
private key (skVi) based on the DSA algorithm. This means
that the signature can be verified by using the voter’s public
key (pkVi).

Since the pkVi of every authorized voter is posted on
the public bulletin board once he/she is successfully reg-
istered, it follows that anyone can verify whether a sub-
sequent submission is sent by an authorized voter or not.
To this end it suffices to verify its signature. For example,
if VerifySignature(SigVi , pkVi) is true, then the identification
of the sender holds true and the sender is an authorized user;
otherwise, the submission is discarded.
(2) Verify Each Encrypted Element of the Cast Ballot: Each

ballot is treated as a binary matrix during ballot casting, as in

20512 VOLUME 6, 2018

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

FIGURE 3. An illustration of tallying two encrypted ballots.

Fig. 2(b). It means that each element of a valid submitted
ballot must be either E(1) or E(0), as in Fig.2(c).

Our system generates proofs for each voter submission
based on the well-known proof of partial knowledge protocol
(cf. Section III-B). This proof can be used to verify each
encrypted element of the ballot without decryption. The ver-
ification of each element consists of two statements, both of
which have to be confirmed as true. If either of these two
statements is not true, then the whole ballot E(Bi) cannot
be counted in the final result. Only if all elements of the
E(Bi) are confirmed as valid, then E(Bi) is considered as
valid.
(3) Verify the Total Number of Assigned Points of the Cast

Ballot: The total available points (P) of a ballot has been
confirmed before the election. It is necessary to verify that the
total number of assigned points for each ballot are equal to P
in order to prevent a voter assigning more points to their bal-
lot. In our system, we require each voter to generate proof for
the total number of assigned points for their ballot based on
zero knowledge proof procedure explained in Section III-C.

In this case, anyone is able to compute the total assigned
points of any submitted ballot according to lines 1 to 8 of
Algorithm 2. Then the self-computed value can be verified
by using the voter-generated proof without decrypting any-
thing. For convenience of the readers, more details on zero
knowledge proof procedure are given in Section III-C.

G. TALLYING ALL VALID BALLOTS
In our system, each cast ballot is encrypted by using ElGamal
encryption algorithm, which allows all encrypted ballots to be
tallied directly without decrypting the contents of any ballot
(cf. Section III-A).

The tallying is performed on each row of the binary ballot
matrix, because each row denotes the received points of a
particular candidate. In this case, we use PCi to denote the
final tallied result for CandidateCi, where i ∈ [1, nc]. In order
to tallyPCi forCi, the assigned points of each encrypted ballot
are converted to decimal values by doing the exponentiation
computation (cf. Section III-A). Once all encrypted ballots
are converted as encrypted decimal ballots, the final result can
be tallied based on different rows of all ballots. An illustration

of tallying two encrypted ballots E(B1) and E(B2) is shown
in Fig. 3 where there are 3 candidates C1, C2 and C3.
The procedure of tallying all valid encrypted ballots is

described in Algorithm 3.

Algorithm 3 Tally All Valid Encrypted Ballots.
Input : all encrypted ballots E(B1), · · · ,E(Bnv)
Output: PC1 , · · · ,PCnc

1 for j← 1 to nc do
2 set PCj = E(0)
3 end
4 for i← 1 to nv do
5 for j← 1 to nc do
6 set t = 1
7 for k← LP to 1 do
8 PCj = PCj × (C (i)

j,k)
t

F cf. Section III-A
9 t = t × 2

10 end
11 end
12 end
13 return PC1 , · · · ,PCnc

H. RESULT REVEALING
Since the final tallied results (PC1 , · · · ,PCnc) for all candi-
dates remain stored as ciphertexts, all of them have to be
decrypted before publication. According to the distributed
ElGamal cryptosystem (cf. Section III-A), the decryption
procedure can only be done by collaboration of all authorities
(A1, · · · ,Ana), which requires each Ai to compute a partially
decrypted value (cf. Section III-A), such as c

skAi
1 and broad-

cast it to the others. In order to prevent a compromised Ai
from any bad actions, such as somehow computing the value
incorrectly, our system requires each Ai has to generate proof
of zero knowledge (cf. Section III-C) in order to prove that the
broadcast value is computed correctly, such as the exponent
of the broadcast value (e.g. c

skAi
1) must be the same as the

exponent of its public key (e.g. pkAi = gskAi).
After decryption, the tallied result of each candidate must

be revealed (cf. Section III-A) and published on the bulletin
board.

VOLUME 6, 2018 20513

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

V. SECURITY ANALYSIS
This section is devoted to a theoretical security analysis of
our system. Note that none of the previous related papers
provided a formal security model. They only included a
description and an informal security discussion of their sys-
tems: see Section II. Our system relies on the ElGamal cryp-
tosystem and several basic cryptographic protocols, which are
presented in Section III and have reliable published proofs
of their security. This is why here we include brief self-
contained proofs of several theorems, which demonstrate that
our proposed system fulfils all the security requirements.

A. ELIGIBILITY OF VOTER
Theorem 1: If the digital signature algorithm (DSA) is

unforgettable, no one is able to submit a ballot by imperson-
ating another voter.

Proof: In order to prevent adversaries from casting bal-
lots by impersonating authenticated voters, we use a digital
signature algorithm (DSA), which requires each voter Vi to
have a key pair (public key pkVi and private key skVi). The key
pair is generated only if a voter is successfully verified during
the registration. Then the pkVi of each verified voter is posted
on the public bulletin board, and the voter is responsible for
keeping their private key secret.

Once the election starts, each authorized voter signs their
cast ballot by using their skVi , and submits the encrypted
ballotE(BVi ,PK) (which indicates the cast ballotBVi by voter
Vi is encrypted using the common public key PK) along with
their signature SigVi to the public bulletin board, such as

{E(BV1 ,PK), corresponding proofs, SigV1}

on the bulletin board. Others are able to verify the eligi-
bility of each submission by verifying the SigVi using the
corresponding pkVi of Vi, where all pkVi of the successfully
registered voters should be published on the public bulletin
board.

In our protocols, no skVi of voters is ever transferred. This
means that only the voters themselves know their private
keys. Therefore, no one is able to fake a voter’s signature
without the private key, and an adversary cannot submit a
ballot by impersonating an authorized voter. �

B. MULTIPLE-VOTING DETECTION
Theorem 2: Only one submission from each voter can be

stored on the server.
Proof: In our voting system, only the content of a

submitted ballot is encrypted, the identification of the voter
is in plaintext and can be viewed by everyone. For instance,
in the extended previous example

V1→ {E(BV1 ,PK), corresponding proofs, SigV1}

where the Vi is not encrypted.
Everyone is able to see the voter has submitted their ballot

(e.g. voter’s name or ID Vi is plaintext), but no one is able to
discover how he/she voted.

Thus, multiple-voting detection is achieved by our system,
because it is clear that it can always detect whether a voter
has previously submitted a ballot: the voter id Vi for each
submission is done on plaintext in the public bulletin board.

Furthermore, according to the requirements in the real-
life case, our system can keep the first submission of each
voter or replace the previous submission for each voter before
the deadline. �

C. PRIVACY OF VOTERS
Since each ballot contains voting preferences of a voter,
which can be treated as sensitive information, that must be
protected all the time.
Theorem 3: If the ElGamal cryptosystem is semantically

secure and at least one of authorities is honest, then the con-
tents of ballots will not be revealed during ballot submission.

Proof: Every cast ballot is encrypted before sub-
mission. We use the distributed ElGamal cryptosystem
(cf. Section III-A), which inherits the homomorphic property
from the standard ElGamal system and is semantically secure
as long as at least one of authorities is honest.

In our system, no one can reveal the contents of the ballots
because of the following three reasons. First, all the submitted
ballots remain in encrypted form as ciphertexts E(BVi ,PK)
all the time. The homomorphic property makes it possible
to add all E(BVi ,PK) without decrypting them. Second,
there is no relationship between the ciphertexts E(BVi ,PK)
and the corresponding plaintexts BVi , since the cryptosystem
employed is probabilistic. It applies random numbers so that
the ciphertext E(BVi ,PK) can take on different values even
when the encryption E(BVi ,PK) is computed with the same
BVi and PK . Third, the decryption must be done via collabo-
ration of all authorities Ai as in the expression

D(E(BVi ,PK), skAi , · · · , skAna),

where BVi cannot be correctly computed if any of the skAi
is missing. As mentioned above, we assume that at least
one of the authorities is honest and will not help others to
do the decryption. Thus, the contents of each ballot remain
secure. �
Theorem 4: If the partial knowledge proof protocol

(cf. Section III-B) and the zero knowledge protocol
(cf. Section III-C) o not reveal knowledge, contents of ballots
will not be revealed during ballot verification.

Proof: In order to prevent counting invalid ballots to the
final result, each encrypted ballot has to be verified before
tallying. In our system, each encrypted ballot will be verified
from 2 aspect: verify each encrypted element of the ballot,
and verify the total number of assigned points of the ballot.
Neither of the verification algorithms will reveal the voter’s
privacy, the analysis is shown as follows:
Verifying Each Element of a Ballot: For an encrypted

ballot, each element in the ballot is encrypted individually.
We also require the voter to generate proofs of each element,
which is computed based on proofs of partial knowledge
(cf. Section III-B).

20514 VOLUME 6, 2018

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

The proof of each encrypted element PPK {...} is generated
based on the proof of partial knowledge, which consists of
T0,T1,T2, v1, v2, s1 and s2, where v2 and s2 are random
values, and T0,T1,T2, v1, s1 are computed by using random
values t, v2, s2. Furthermore, the proof of partial knowledge
is given in [26], which will not reveal the content of the
original plaintext.

By usingPPK {· · · }, everyone can verify any element with-
out decryption. The verifier(s) could only know if an element
is either E(0) or E(1), but cannot determine the exactly value
of the element is 0 or 1, and so the content of the ballot did
not be revealed.

Only if all elements of a ballot are verified as valid, can
the ballot be regarded as valid. In this case, we assume/assert
the proof of zero knowledge is secure and will not reveal the
information of the content. Thus, our protocol is secure and
will not revealing voter privacy.
Verifying the Total Number of Assigned Points of a Bal-

lot: The total number of assigned points of a ballot can be
computed according to lines 1 through to 8 of Algorithm 2.
We also require each voter to generate the proof for the total
assigned points in order to convince the verifier(s) that the
total number of assigned points is equal to the total available
points.

According to the proof of knowledge PZK {...}
(cf. Section III-C), the self-computed total assigned points
by verifier(s) can be verified by using voter-generated proofs
without decrypting the self computed value.

The PZK {...} consists of T1,T2, v and s, where all of these
elements are generated by using another random number t ,
which is unrelated to PZK {...} and PPK {...}. This means that
nobody can derive any useful information from PZK {...}. The
usability of PZK {...} is proved in [20].

Moreover, even if the total number of assigned points of
the ballot is decrypted, the voting preferences of the voter will
not be disclosed and the voters’ privacy will not be revealed
because the total number of assigned points of each ballot
should equal the total available points (public information),
otherwise the ballot will be considered invalid and be dis-
carded. �

None of the steps ‘‘verify each element of the ballot’’ and
‘‘verify the total assigned points of the ballot’’ require decryp-
tion. It follows that no one is able to reveal the content from
the ciphertext without decryption because of the assumption
that the ElGamal cryptosystem is secure. Furthermore, the
decryption needs the collaboration of all authorities, and
we assume that an honest authority will never commit bad
actions. This means that decryption will never be executed
in cases where it is not required. To sum up, the contents
of the ballot and the privacy of voters remain secure in our
verification protocols.

D. INTEGRITY OF BALLOTS
Theorem 5: Integrity of ballots is secured after

submission.

Proof: We require voters to sign their ballots by using
their private keys based onDSA, andwe assume that all voters
do not share their private keys with anyone else, to ensure that
nobody can fake anyone else’s signature.

The integrity of ballots can be protected in the following
aspects: 1) Voters are able to save all contents (the cipher-
texts) of the submissions as original receipts. Once the signa-
ture is verified, all contents are posted to the public bulletin
board: voters can easily detect if their submissions are mod-
ified by comparing the original receipts and the published
contents. 2) Once all contents of the submissions are posted
on the public bulletin board, everyone can verify the integrity
of any ballot by verifying the signature of the submission,
because the signature is computed based on the content of
the ballot (cf. Section IV-E). �

E. CORRECTNESS OF TALLIED RESULT
Theorem 6: Invalid ballots will be detected and discarded

before tallying.
Proof: To prevent any invalid ballot from being tallied

in the final result, each ballot has to undergo two verifications
to check the total number of assigned points of a ballot and
each element in the ballot.
Verifying Each Element in a Cast Ballot: In our protocol,

the verifiers are able to verify that any element of a submit-
ted ballot is either E(0) or E(1), which is used and proved
in [26] and [27] . Once the ballot is verified as consisting
only of 0s or 1s in plaintext, it follows that the voter did
not assign negative points to any candidate because the value
(decimal) of a binary that contains only occurrences of the
digits 1 and/or 0 must be greater than or equal to 0. Once
all elements are verified as valid, all candidates of the ballot
receive non-negative points.
Verifying the Total Number of Assigned Points in a Cast

Ballot:An honest voter can assign any point to any candidate
according to their personal preferences, but the sum of all
assigned points PBi should be equal to the total available
points P for a ballot, which is confirmed before the election
begins.

In our system, the total number of assigned points of
a ballot can be computed according to lines 1 to 8 of
Algorithm 2, and verified by using voter-generated proof
(cf. Section IV-F). Once the total assigned points is verified
as valid, it follows that the voter did not assign excess points
to the ballot, which is used and proved in [20]. �
To sum up, a ballot can be considered as valid and con-

tribute to the final result if and only if 1) the voter did not
assign negative points to any candidate and 2) the voter did
not assign excess points for the ballot. Otherwise, the ballot
will be discarded.

F. END-TO-END VOTER VERIFIABLE
Theorem 7: Voters are able to verify the integrity and eligi-

bility of their ballots and the correctness of final tallied result.
Proof: In our system, all contents (encrypted ballot, all

proofs and signature) of each submission are be posted on the

VOLUME 6, 2018 20515

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

public bulletin board, where they can be accessed by anyone.
We assume that the bulletin board is secure, and it is ‘‘append-
only’’. Voters can use the contents published on the public
bulletin board to verify the following. First, they can verify
the integrity of their own submission, because in the ElGamal
cryptosystem each ciphertext (gr , gm · yr) can be verified,
since g and y are public values, m is the voting message and
each r is known to the corresponding voter. Thus, each voter
can verify that the ciphertext is a correct encryption of the
ballot. Second, all participants can verify the eligibility of
submissions of other voters, because the ‘‘verification of each
submission uses only encrypted submissions available to all
users as part of our system (see Section IV-F).

Furthermore, the final tallied result (ciphertext) can also be
computed by anyone, because all encrypted ballots have to
be tallied based on additive and multiplicative homomorphic
property of ElGamal cryptosystem (cf. Section III-A), which
is also a publicly accessible algorithm. The final decryption is
performed by the collaboration of all authorities, where each
authority computes the partial decryption value by using their
secret keys. In our system,we require that each authorityAi be
able to convince other users that the computed value (gr)skAi is
the partial decryption of ciphertext (gr , gm ·yr) using proof of
zero knowledge, where the value has the same exponentiation
as gskAi , the public key of the authority. �

VI. PERFORMANCE ANALYSIS
The analysis of performance of each processing step is pre-
sented in a separate subsection below. All tests were per-
formed using a 1024-bit key (p and q are 1024-bit). All
tests were performed on a laptop with the following spec-
ifications: 2.8GHz quad-core Intel Core i7 (Turbo Boost
up to 4.0GHz) with 6MB shared L3 cache and with 16GB
of 1600MHz DDR3L onboard memory. We used a high per-
forming implementation from libgmp via the gmpy2 python
module (https://gmpy2.readthedocs.io/en/latest/). We use t
to denote The computation time of one exponentiation is
denoted by t . For the computer used in our experiments,
we have t = 0.00012 seconds.
ElGamal encryption requires two exponentiations, and

ElGamal decryption requires one exponentiation
(cf. Section III-A), where the division can be avoided by using
an alternative method [18]. In this case, we use tE and tD to
denote the computation time of encryption and decryption,
respectively, where tE = 2t and tD = t , approximately.

A. PERFORMANCE OF THE VOTER SIDE
On the client-side, each voter should cast a ballot and submit
it to the server. In order to prevent the voting preferences of
each ballot being revealed after submission, we require each
voter to encrypt their cast ballots, where every element in the
ballot must be encrypted.

In this case, we set P = 2nc, so that the total available
points P is equal to twice the number of candidates nc. For
example, if there are 10 candidates (nc = 10) in the election,
each voter has 20 available points (P = 2nc = 20) for

their cast ballot. Since all elements in the cast ballot have
to be encrypted, the larger the number of candidates partic-
ipating, the more encryption processing time is required and
the larger the submission grows. Therefore, the performance
of the voter side can be summarized in two aspects: total
computation time and total submission size.
Total Computation Time: We use the well-known Digital

Signature Algorithm (DSA) to sign each ballot before sub-
mission. The processing time of signing is approximately
equal to the time of one exponentiation, that is t . Thus,
according to Section IV-E, the total computation time for a
voter can be presented as the total computation time of E(Bi),
PPKs(i), PZK(i) and SigVi , which can be expressed as

2t × nc × LP + 5t × nc × LP + 2t + t.

In this experiment, we test the total time spent for encrypt-
ing one ballot in five rounds on the laptop, according to
different numbers of candidates (nc =3, 5, 10, 15, 20) and
different total available points (P = 2nc = 6, 10, 20, 30, 40).
Hence the numbers of bits (LP) for each available points are
LP = 3, 4, 5, 6, 6, respectively. The result is shown in Fig. 4.

The computation time presented in Fig. 4 does not include
the thinking time of the voters. It represents only the com-
putation time of the algorithm converting all plaintext ballots
cast by the voters to ciphertext ballots and tallying them.

FIGURE 4. Estimate total time spent casting a ballot when the number of
candidates (nc) is 3, 5, 10, 15, 20, and the total available points (P) is 6,
10, 20, 30, 40. The performance of the system considered in [20] is also
shown.

From the results in Fig. 4, we can see that the time cost for
casting a ballot is approximately 0.1 seconds even if there are
20 candidates in the election.
Total Submission Size: In our system, the size of a cipher-

text that is encrypted by ElGamal is 2048-bit (cf. Section III-
A), and the size of proofs for each ciphertext is 7168-bit (cf.
Section III-B). Furthermore, the size of proof of total number
of assigned points is 5120-bit (cf. Section III-C) and the size
of digital signature is 2048-bit. Thus, according to Section IV-
E, the total submission size for a voter can be summarized as
the total size of E(Bi), PPKs(i), PZK(i) and SigVi :

2048× nc × LP + 7168× nc × LP + 5120+ 2048.

20516 VOLUME 6, 2018

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

In this experiment, we test the total submission size (includ-
ing all encrypted elements, all proofs and a digital signature)
for one cast ballot in five rounds on the laptop, according to
different numbers of candidates (nc = 3, 5, 10, 15, 20) and
different total available points (LP = 3, 4, 5, 6, 6). The result
is shown in Fig. 5.

FIGURE 5. Estimate total size of one submission (including all encrypted
values and all proofs) when nc is 3, 5, 10, 15, 20, and P is 6, 10, 20, 30, 40.
The performance of the system considered in [20] is also shown.

From these results, we found that the size of one submis-
sion is less than 150KB even for a 20-candidate ballot includ-
ing all encrypted values and all proofs. It may be hard for the
voters to compare too many candidates, and so much larger
numbers of candidates seldom occur in elections. According
to the Speedtest Global Index [36], in December 2017 the
global average internet speed was equal to 21.25Mbps down-
load with 8.88 Mbps upload for mobile internet connections,
and 40.71 Mbps download with 20.22 Mbps upload for fixed
broadband connections, respectively. The Speedtest Global
Index [36] evaluates and ranks the mobile and fixed internet
connection speeds from around the world on a monthly basis.
This demonstrates that the submission size of a cast ballot
in our system is small enough to be submitted over the
internet without delays for the voters. Note that the internet
connection speed is rapidly increasing in the whole world.

Besides, in implementing practical applications the run-
ning time of our system can be improved further fine-tuning
the system, for example, if the secure method for handling
the encryption proposed in [37] is applied. Other efficient
applications of encryption have been developed, for example,
in [38]–[41].

B. PERFORMANCE OF THE SERVER SIDE
The performance of the server can be summarized from two
aspects: verification of senders and verification of ballots.
The verification of each sender is equivalent to verifying the
digital signature of each submission, which does not cost
much computation time. Therefore, we concentrate on the
performance of ballot verification, which has two parts: the
time of verifying each element of each ballot and time of
verifying the total assigned points of each ballot. The total

computation time on the server side is equal to

6t × nc × LP × nv + 4t × nv

Our experiments determined the total time spent on verifying
all submitted ballots in five rounds according to different
numbers of voters (nv = 1000, 2000, 4000, 7000, 10000).
In this experiment, we assume that the number of candidates
is 10 (nc = 10), and the total available points for a ballot is
20 (P = 20). Thus, the result is shown in Fig. 6.

FIGURE 6. Estimate of the total time required for the verification of all
ballots for 1000, 2000, 4000, 7000, 10000 voters, in the case
of 10 candidates in the election. The performance of the system
considered in [20] is also shown.

The results presented in Figures 4, 5, and 6 clearly demon-
strate that our system has achieved a substantial improvement
in the running time in comparison to [20]. It is easy to see this,
because all the experimental results of [20] are also included
as line graphs in Figures 4, 5, and 6.

The results of other previous papers are discussed and
presented in Section II. First of all, note that a few of the
previous papers did not include any experimental results,
while the others included only the outcome of just one exper-
iment with a fixed number of voters. These papers used
different computers, some of which are no longer available
for researchers. Keeping these circumstances in mind and
comparing previous outcomes presented in Section II with
the new results in Fig. 6, it is easily seen that our system
has achieved substantial improvement in running time. For
example, the experiment with 500 voters in [26] took more
than 3 hours of computing time as compared to less than
2minutes for our systemwith 1000 voters in Fig. 6. Likewise,
the example in [29] took 2 hours for 10,000 voters, and the
experiment in [30] with 10,000 voters took approximately
65 minutes of computing time, as compared to approximately
6 minutes for our system with 10,000 voters in Fig. 6.

From the results in Fig. 6, we found that the time spent of
verifying 10, 000 ballots took approximately 6 minutes using
the same laptop (the specifications of which are provided
in the beginning of this section). Furthermore, in our proto-
cols, all verifications can be done by an individual without
collaboration with others. Thus, all submitted ballots can be

VOLUME 6, 2018 20517

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

divided into multiple groups for simultaneous verification by
different authorities. This can significantly reduce the time
spent. For example, if there are 10 authorities in the election,
then in practice the total verification time is approximately
10 times faster than the corresponding result presented in
our diagrams, because in practice all authorities can work
in parallel at the same time. Moreover, in the case of actual
elections, it is natural to expect that cloud computing services
will be available or multicore super computers can be used
to execute the algorithms in parallel. This means that the
running time will be further reduced.

VII. CONCLUSIONS
In this paper, we propose a secure voter verifiable e-voting
system, which allows the voters to cast their ballots by assign-
ing arbitrary numbers of points to different candidates. This
means that the voters can assign equal points to different can-
didates, and they are also allowed to assign different points
to different candidates. Our system incorporates the dis-
tributed ElGamal cryptosystem. Each cast ballot is encrypted
before submission and remains encrypted at all times. The
additive homomorphic property of the exponential ElGamal
cryptosystem enables effective processing of the ciphertexts
during these procedures. Furthermore, the eligibility of voters
and their submissions can be verified by anyone without
the contents of the ballots being revealed. The security and
performance analysis not only confirm the feasibility of our
online voting system for practical elections, but also demon-
strate that it has achieved significant improvements over other
systems considered previously.

It is a limitation of our system is that we have to assume that
at least one authority is honest, since otherwise the system is
not secure. In future work, we plan to address this issue and
potentially could consider further generalizations.

ACKNOWLEDGMENT
The authors are grateful to the anonymous reviewers for
comments and suggestions of improvements that have helped
to revise this article.

REFERENCES
[1] W. Lu, A. L. Varna, and M. Wu, ‘‘Confidentiality-preserving image

search: A comparative study between homomorphic encryption and
distance-preserving randomization,’’ IEEE Access, vol. 2, pp. 125–141,
2014.

[2] A. Ara, M. Al-Rodhaan, Y. Tian, and A. Al-Dhelaan, ‘‘A secure privacy-
preserving data aggregation scheme based on bilinear ElGamal cryp-
tosystem for remote health monitoring systems,’’ IEEE Access, vol. 5,
pp. 12601–12617, 2017.

[3] L. Chen, M. Lim, and Z. Fan, ‘‘A public key compression scheme for fully
homomorphic encryption based on quadratic parameters with correction,’’
IEEE Access, vol. 5, pp. 17692–17700, 2017.

[4] Z. Li, C. Ma, and D. Wang, ‘‘Towards multi-hop homomorphic identity-
based proxy re-encryption via branching program,’’ IEEE Access, vol. 5,
pp. 16214–16228, 2017.

[5] X. Yi, R. Paulet, and E. Bertino, Homomorphic Encryption and Applica-
tions. New York, NY, USA: Springer, 2014.

[6] C. Esposito, A. Castiglione, B. Martini, and K.-K. R. Choo, ‘‘Cloud manu-
facturing: Security, privacy, and forensic concerns,’’ IEEE Cloud Comput.,
vol. 3, no. 4, pp. 16–22, Jul./Aug. 2016.

[7] O. Hasan, L. Brunie, and E. Bertino, ‘‘Preserving privacy of feedback
providers in decentralized reputation systems,’’ Comput. Secur., vol. 31,
no. 7, pp. 816–826, 2012.

[8] A. Mehmood, I. Natgunanathan, Y. Xiang, G. Hua, and S. Guo, ‘‘Pro-
tection of big data privacy,’’ IEEE Access, vol. 4, pp. 1821–1834,
2016.

[9] R. Mendes and J. P. Vilela, ‘‘Privacy-preserving data mining: Methods,
metrics, and applications,’’ IEEE Access, vol. 5, pp. 10562–10582, 2017.

[10] M.Mukherjee et al., ‘‘Security and privacy in fog computing: Challenges,’’
IEEE Access, vol. 5, pp. 19293–19304, 2017.

[11] J. K. Liu, K. Liang, W. Susilo, J. Liu, and Y. Xiang, ‘‘Two-factor data
security protection mechanism for cloud storage system,’’ IEEE Trans.
Comput., vol. 65, no. 6, pp. 1992–2004, Jun. 2016.

[12] R. Neisse, G. Steri, D. Geneiatakis, and I. N. Fovino, ‘‘A privacy
enforcing framework for Android applications,’’ Comput. Secur., vol. 62,
pp. 257–277, Sep. 2016.

[13] V. D. Nguyen, Y.-W. Chow, and W. Susilo, ‘‘On the security of text-based
3D CAPTCHAs,’’ Comput. Secur., vol. 45, pp. 84–99, Sep. 2014.

[14] B. Rashidi, C. Fung, and E. Bertino, ‘‘Android resource usage risk assess-
ment using hidden Markov model and online learning,’’ Comput. Secur.,
vol. 65, pp. 90–107, Mar. 2017.

[15] M. Gregory. (2016). Electronic Voting May be Faster but Carries
Security Risks. [Online]. Available: http://www.theaustralian.com.au/
business/technology/opinion/electronic-voting-may-be-faster-but-carries-
security-risks/news-story/f0b6b44844214605e3860ef1887b2bb9

[16] J. Lavelle and D. Kozaki. (2016). Electronic Voting has Advantages
but Remains Vulnerable to Security, Software Problems. [Online].
Available: http://www.abc.net.au/news/2016-07-11/electronic-voting-has-
support-but-security-fears-remain/7587366

[17] S. J. Brams and P. C. Fishburn, ‘‘Going from theory to practice: The mixed
success of approval voting,’’ in Handbook on Approval Voting (Studies in
Choice and Welfare). Springer-Verlag, 2005, pp. 19–37. [Online]. Avail-
able: https://link.springer.com/article/10.1007/s00355-005-0013-y

[18] T. ElGamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[19] K. E. Lauter, ‘‘Practical applications of homomorphic encryption,’’ in
Proc. ACM Workshop Cloud Comput. Secur., 2012, pp. 57–58.

[20] X. Yang et al., ‘‘A verifiable ranked choice Internet voting
system,’’ in Proc. Int. Conf. Web Inf. Syst. Eng. (WISE), 2017,
pp. 490–501.

[21] J. Dreier, P. Lafourcade, and Y. Lakhnech, ‘‘Defining privacy for weighted
votes, single and multi-voter coercion,’’ in Proc. Eur. Symp. Res. Comput.
Secur. (ESORICS), 2012, pp. 451–468.

[22] A. O. Santin, R. G. Costa, and C. A. Maziero, ‘‘A three-ballot-based secure
electronic voting system,’’ IEEE Security Privacy, vol. 6, no. 3, pp. 14–21,
May 2008.

[23] R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung, ‘‘Multi-authority
secret-ballot elections with linear work,’’ in Advances in Cryptology—
EUROCRYPT. Zaragoza, Spain: Springer, 1996, pp. 72–83. [Online].
Available: http://www.springer.com/us/book/9783540611868

[24] M. Hirt and K. Sako, ‘‘Efficient receipt-free voting based on
homomorphic encryption,’’ in Advances in Cryptology—EUROCRYPT.
Bruges, Belgium: Springer, 2000, pp. 539–556. [Online]. Available:
http://www.springer.com/us/book/9783540675174

[25] X. Yi and E. Okamoto, ‘‘Practical remote end-to-end voting scheme,’’
in Electronic Government and the Information Systems Perspective.
Toulouse, France: Springer, 2011, pp. 386–400. [Online]. Available:
http://www.springer.com/us/book/9783642229602

[26] B. Adida, ‘‘Helios:Web-based open-audit voting,’’ inProc. USENIX Secur.
Symp., vol. 17. 2008, pp. 335–348.

[27] B. Adida, O. De Marneffe, O. Pereira, and J. J. Quisquater, ‘‘Electing a
University president using open-audit voting: Analysis of real-world use
of Helios,’’ in Proc. EVT/WOTE, vol. 9. 2009, pp. 1–5. [Online]. Available:
https://www.usenix.org/legacy/event/evtwote09/tech/

[28] A. A. Philip, S. A. Simon, and A. Oluremi, ‘‘A receipt-free multi-authority
e-voting system,’’ Int. J. Comput. Appl., vol. 30, no. 6, pp. 15–23, 2011.

[29] A. Essex, J. Clark, and U. Hengartner, ‘‘Cobra: Toward concurrent ballot
authorization for Internet voting,’’ in Proc. EVT/WOTE, 2012, p. 3.

[30] G. Tsoukalas, K. Papadimitriou, P. Louridas, and P. Tsanakas, ‘‘From
Helios to Zeus,’’ USENIX J. Election Technol. Syst., vol. 1, pp. 1–17,
Aug. 2013.

[31] D. A. López-García, ‘‘A flexible e-voting scheme for debate tools,’’ Com-
put. Secur., vol. 56, pp. 50–62, Feb. 2016.

20518 VOLUME 6, 2018

X. Yang et al.: Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption

[32] R. Cramer, I. Damgård, and B. Schoenmakers, ‘‘Proofs of
partial knowledge and simplified design of witness hiding
protocols,’’ in Advances in Cryptology—CRYPTO. Santa Barbara,
CA, USA: Springer, 1994, pp. 174–187. [Online]. Available:
http://www.springer.com/us/book/9783540583332#otherversion=
9783540486589

[33] B. Adida. (2012). Helios v4. [Online]. Available: http://documentation.
heliosvoting.org/verification-specs/helios-v4

[34] C. P. Schnorr, ‘‘Efficient signature generation by smart cards,’’
J. Cryptol., vol. 4, no. 3, pp. 161–174, 1991.

[35] D. Chaum and T. P. Pedersen, ‘‘Wallet databases with
observers,’’ in Advances in Cryptology—CRYPTO. Santa Barbara,
CA, USA: Springer, 1992, pp. 89–105. [Online]. Available:
http://www.springer.com/us/book/9783540573401#otherversion=
9783540480716

[36] V. Mateu, J. M. Miret, and F. Sebé, ‘‘A hybrid approach to vector-based
homomorphic tallying remote voting,’’ Int. J. Info. Secur., vol. 15, no. 2,
pp. 211–221, 2016.

[37] Y. Kim et al., ‘‘On-demand bootstrapping mechanism for isolated crypto-
graphic operations on commodity accelerators,’’ Comput. Secur., vol. 62,
pp. 33–48, Sep. 2016.

[38] K. Bagheri, M.-R. Sadeghi, and T. Eghlidos, ‘‘An efficient public key
encryption scheme based on QC-MDPC lattices,’’ IEEE Access, vol. 5,
pp. 25527–25541, 2017.

[39] A. Banerjee, M. Hasan, M. A. Rahman, and R. Chapagain, ‘‘CLOAK:
A stream cipher based encryption protocol for mobile cloud computing,’’
IEEE Access, vol. 5, pp. 17678–17691, 2017.

[40] R. R. Parmar, S. Roy, D. Bhattacharyya, S. K. Bandyopadhyay, and
T.-H. Kim, ‘‘Large-scale encryption in the Hadoop environment: Chal-
lenges and solutions,’’ IEEE Access, vol. 5, pp. 7156–7163, 2017.

[41] R. Xu, K.Morozov, Y. Yang, J. Zhou, and T. Takagi, ‘‘Efficient outsourcing
of secure k-nearest neighbour query over encrypted database,’’ Comput.
Secur., vol. 69, pp. 65–83, Aug. 2017.

XUECHAO YANG received the bachelor’s degree
in information technology from RMIT University
in 2013 and the bachelor’s degree (Hons.) in com-
puter science in 2014. He is currently pursuing the
Ph.D. degree in cyber security with RMIT Univer-
sity. His research interests include cryptosystems,
homomorphism, and blockchain technology.

XUN YI is currently a Full Professor with the
School of Science, RMITUniversity, Australia. He
has published over 160 research papers in interna-
tional journals, such as the IEEE TRANSACTIONS ON

COMPUTERS, the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS,
the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, the IEEETRANSACTIONSON INFORMATION

FORENSICS AND SECURITY, the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,
the IEEE TRANSACTIONONVEHICULAR TECHNOLOGIES, the IEEE COMMUNICATION

LETTERS, and the IEEE ELECTRONIC LETTERS, and conference proceedings.
His research interests include applied cryptography, computer and net-
work security, mobile and wireless communication security, and privacy-
preserving data mining. He was a member of the program committees of
over 40 international conferences. Recently, he has led several Discovery
Projects of the Australian Research Council (ARC) and has been a member
of the ARC College of Experts. Since 2014, he has been an Associate Editor
of the IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING.

SURYA NEPAL received the B.E. degree from
the National Institute of Technology, Surat, India,
the M.E. degree from the Asian Institute of Tech-
nology, Bangkok, Thailand, and the Ph.D. degree
from RMITUniversity, Australia. He is currently a
Principal Research Scientist with CSIRO Data61.
At CSIRO, he undertook research in the area of
multimedia databases, Web services and service-
oriented architectures, social networks, security,
privacy, and trust in collaborative environment and

cloud systems, and big data. He has authored or co-authored over 150 publi-
cations to his credit. Many of his works are published in top international
journals and conferences, such as VLDB, ICDE, ICWS, SCC, CoopIS,
ICSOC, the International Journal of Web Services Research, the IEEE
TRANSACTIONS ON SERVICE COMPUTING, the ACM Computing Survey, and
the ACM Transaction on Internet Technology. His main research interest
includes the development and implementation of technologies in the area
of distributed systems and social networks, with a specific focus on security,
privacy, and trust.

ANDREI KELAREV was an Associate Professor
with the University of Wisconsin and the Uni-
versity of Nebraska, USA, and a Senior Lecturer
with the University of Tasmania, Australia. He
is currently a Research Fellow with the School
of Science, RMIT University, Australia. He is an
author of two books and 198 journal articles. He
is involved in the cyber security applications of
machine learning and data mining. He was a Chief
Investigator of a large Discovery Grant from the
Australian Research Council.

FENGLING HAN received the B.E. degree
from the Department of Automatic Control,
Harbin Engineering University, China, the
M.Eng. degree from the Department of Con-
trol Engineering, Harbin Institute of Technology,
China, and the Ph.D. degree from the School
of Electrical and Computer Engineering, RMIT
University, Australia. She is currently a Lecturer
with the School of Science, RMIT University.
Her research interests include observers, network
security, and complex systems.

VOLUME 6, 2018 20519

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES ON CRYPTOGRAPHY
	ELGAMAL CRYPTOSYSTEM
	PROOF OF PARTIAL KNOWLEDGE
	PROOF OF ZERO KNOWLEDGE

	PROPOSED E-VOTING SYSTEM
	OVERVIEW AND NOTATION
	ENTITIES
	INITIALIZATION OF ELECTION
	REGISTRATION OF THE VOTERS
	BALLOT CASTING
	VERIFICATION OF EACH SUBMISSION
	TALLYING ALL VALID BALLOTS
	RESULT REVEALING

	SECURITY ANALYSIS
	ELIGIBILITY OF VOTER
	MULTIPLE-VOTING DETECTION
	PRIVACY OF VOTERS
	INTEGRITY OF BALLOTS
	CORRECTNESS OF TALLIED RESULT
	END-TO-END VOTER VERIFIABLE

	PERFORMANCE ANALYSIS
	PERFORMANCE OF THE VOTER SIDE
	PERFORMANCE OF THE SERVER SIDE

	CONCLUSIONS
	REFERENCES
	Biographies
	XUECHAO YANG
	XUN YI
	SURYA NEPAL
	ANDREI KELAREV
	FENGLING HAN

