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ABSTRACT Both Wisconsin diagnostic breast cancer (WDBC) database and the Wisconsin breast cancer
database (WBCD) are structured datasets described by cytological features. In this paper, we were seeking to
identify ways improve the classification performance for each of the datasets based on convolutional neural
networks (CNN). However, CNN is designed for unstructured data, especially for image data, which has been
proven to be successful in the field of image recognition. A typical CNN may not keep its performance for
structured data. In order to take advantage of CNN to improve the classification performance for structured
data, we proposed fully-connected layer first CNN (FCLF-CNN), in which the fully-connected layers are
embedded before the first convolutional layer. We used the fully-connected layer as an encoder or an
approximator to transfer raw samples into representations with more locality. In order to get a better
performance, we trained four kinds of FCLF-CNNs and made an ensemble FCLF-CNN by integrating them.
We then applied it to the WDBC and WBCD datasets and obtained the results by a fivefold cross validation.
The results showed that the FCLF-CNN can achieve a better classification performance than pure multi-layer
perceptrons and pure CNN for both datasets. The ensemble FCLF-CNN can achieve an accuracy of 99.28%,
a sensitivity of 98.65%, and a specificity of 99.57% for WDBC, and an accuracy of 98.71%, a sensitivity
of 97.60%, and a specificity of 99.43% for WBCD. The results for both datasets are competitive compared
to the results of other research.

INDEX TERMS Breast cancer, structured data, classification, fully-connected layer first, convolutional
neural networks.

I. INTRODUCTION
It is a significant challenge to identify ways that can suc-
cessfully fight against breast cancer, which has become a
major threat to the health of women. Fine needle aspiration
cytology (FNAC) is a diagnostic tool used for breast cancer
detection, with a correct classification rate running at about
90%. Improved classification systems are in demand, and
machine learning can help to achieve this [1]. Many machine
learning methods have been used in classification of the
datasets obtained via FNA biopsy [2], [3], including weighted
Naive Bayesian [2], multilayer perceptrons [4], radial basis
function networks [5], fuzzy classifiers [6], clustering algo-
rithms [7] and kernel-based methods [8].

Convolutional neural networks (CNN) have recently made
great success in the field of image recognition [9]–[11],
object detection [11], [12] and image segmentation [13], [14].
In this paper, we were seeking ways to improve the breast

cancer classification performance based on CNN. The Wis-
consin Diagnostic Breast Cancer (WDBC) database and
the Wisconsin Breast Cancer Database (WBCD) are two
datasets used for the development of breast cancer auto-
mated diagnostic systems. However, they are both structured
datasets.More specifically, each of these samples is described
by the existence of cytological features. CNN has been
specifically designed for image data. The local connection
and multi-layer architecture in CNN can extract multi-level
local features in image data, making the CNN outperform
other models in the field of image recognition. By breaking
down the local structure of the image data, CNN can still
work but the performance is inadequate. We illustrate this
by empirically exploring the MNIST dataset in Section 2.
In order to get better results for both the WBCD and WDBC
datasets, we proposed the fully-connected layer first CNN
(FCLF-CNN), in which the fully-connected layers are
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FIGURE 1. The architecture of a MLP with 2 hidden layers.

embedded before the first convolutional layer. We used
these layers as an encoder by setting a softmax loss or an
approximator by setting a mean square error (MSE)
loss, which can transfer raw samples into representa-
tions with more locality. Our experiments demonstrate
that the FCLF-CNN can achieve a better classification
performance than pure multi-layered perceptrons (MLP) and
pure CNNs.

The remainder of this paper is organized as fol-
lows. In Section II, we briefly discuss MLP and CNNs.
In Subsection C of Section II, we focus on the FCLF-
CNN. The performance evaluation methods are explained in
Section III. Section IV presents the data, the experiments and
the results. We analyze some additional data and provide a
discussion about these findings in Section V. The conclu-
sion and suggestions for future research are summarized in
Section VI.

II. METHOD
A. MLP
A MLP with 2 hidden layers is shown in Fig. 1. As shown in
the figure, the layers in a MLP are composed of many neu-
rons. Each neuron in one layer is connected to every neuron in
the next layer through a weighted connection. The first layer
in the figure is referred to as the input layer. The second and
third layers are called hidden layers because they have no
connection with the outside world. The last layer is known
as the output layer.

1) FULLY-CONNECTED LAYERS
All layers in a MLP are fully-connected. We used
y = fc(x,w, b) to denote the function operated by the fully-
connected layer, where x represents the input to the fully-
connected layer, w denotes the weight matrix, b is the bias
and y denotes the output. The data x has M features and the
element xi denote feature i. Note thatw has dimensionM×K ,
whereK represents the dimension of y. It operates on a vector
x, generating the element i′ in y as follows

yi′ =
∑
i

wii′xi + bi′ (1)

2) ACTIVATION FUNCTION
We used the Rectified Linear Unit (ReLU) as the activation
function in this paper. It works in an element-wise manner as

follows
yi = max{0, xi} (2)

3) LOSS FUNCTION
We use {(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))} to represent
the m training examples, where y(i) denotes the label for
sample i. The neural network can be trained using gradient
descent. In this article, cross-entropy loss function is used
for supervised training. The cross-entropy loss function for
a single example can be defined as

J (w, b; x(i), y(i)) = −
k∑
j=1

1{y(i) = j} log
ehj(x,w,b)∑k
l=1 e

hl (x,w,b)

(3)

where hj(x,w, b) denotes the jth neurons in the output layer
corresponding to class j and 1{·} is the indicator function.
Another loss function used in this article is the MSE loss
function, as defined in Equation 6.

B. CNN
A CNN includes at least one convolutional layer. Different
from the fully-connected layer in MLP, the convolutional
layer is locally connected. Fig. 2 shows a typical 2 dimen-
sional (2D) CNN used to recognize images. In the 2D CNN,
the convolutional layers and pooling layers are operated in 2D
space.

However, WDBC and WBCD datasets are both structured
datasets, which have 30 and 9 features, respectively. Each
sample in these datasets is a vector and the position of each
feature is insignificant. So, we changed the convolutional
layer and the pooling layer to operate in 1D space, which will
be explained in the next section. In this case, all of the latent
features are organized in the form of vectors. The architecture
of a 1D CNN is presented in Fig. 3. We introduce the 1D con-
volutional layers and the 1D pooling in this subsection. The
2D convolutional layers and 2D pooling layers do not need to
be explained because they have been explained extensively in
previous research.

1) 1D CONVOLUTIONAL LAYERS
We used y = conv1d(x,w, b) to denote the 1D convolutional
function operated by the convolutional layer, where x repre-
sents the input to the convolutional function, w denotes the
filters, and y denotes the output of the convolutional layer.
The data x has M × K dimensions, where M represents the
number of latent features, and K is the number of channels.
Note that w has the dimensionMf ×K ×K ′, whereMf is the
filter size. It operates on a latent vector x with K channels,
generating y including K ′ feature vectors as follows

yi′k ′ =
∑
ik

wikk ′xi+i′,k+bk ′ (4)

2) 1D POOLING
The pooling layer is another important operator in a CNN
to introduce non-linearity. A pooling operator runs on indi-
vidual feature channels, coalescing nearby feature values
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FIGURE 2. A typical 2D CNN for image data.

FIGURE 3. A 1D CNN for structured data.

into one, by the application of a suitable operator. Common
choices include max-pooling or average-pooling. We used
max-pooling in this paper, which is defined as

yik = max{xi′k : i ≤ i
′ < i+ p} (5)

C. FCLF-CNN
The 2D CNN is more suitable than MLP to extract features
of image data. The image data has an explicit local structure
(or locality). In more detail, in some local regions, the pixel
intensity does not significantly change, with any great change
occurring at the boundary between adjacent local regions.
Each element of the feature map in a 2D CNN can represent
a local region in raw samples, which we call a local feature.
Therefore, a 2D CNN can extract local features in the image
data, which results in the 2DCNNgetting better classification
performance than the MLP for image data. To confirm these
results, we used the MNIST dataset to perform a comparative
experiment. Specifically, we first used a 2D CNN and a
MLP with 2 hidden layers to classify the MNIST dataset
and achieved an error rate of 0.7% and 1.6%, respectively.
It is therefore evident that the 2D CNN performed much
better than theMLP.We then randomly disrupted the position
of each pixel to destroy the local structure of the image.
For the disrupted data, both of the networks that are same
to previous ones achieved an error rate of 2.6% and 1.7%,
respectively. It was therefore determined that disrupting the
local structure in the MNIST data has a negative influence

on the performance of 2D CNN, but it has little effect on the
performance of the MLP. This is because when you randomly
disrupt the pixel position, it does not result in the image data
losing its overall pattern.

To improve the classification performance of the disrupted
data, we forced them to approximate some image data (the
MNIST dataset) by the network shown in Fig.5. In this
network, the input layer is first connected to one or several
fully-connected layers followed by a typical CNN. Therefore,
we call it fully-connected layer first CNN (FCLF-CNN).
We used the fully-connected layer as an approximator, and
let c represent the data that has an explicit local structure.
We then set up a MSE loss function for the fully-connected
layer as follows

J (w, b; c) =
1
2

n∑
j=1

(hj(x,w, b)− cj)2 (6)

where cj denotes the jth member in c, hj(x,w, b) is the output
of the fully-connected layer, and n is the number of the
member. For the MNIST data, n = 28 × 28. In this case,
note that for the FCLF-CNN, fully-connected layers exist
both in front and behind the convolutional layers. However,
they are slightly different. The fully-connected layer before
the convolutional layer, operates on the nodes only in one
channel, while the fully-connected layer behind the convo-
lutional layer operates on all nodes, in all channels. For the
disrupted MNIST dataset, the FCLF-CNN can achieve an
error rate of 0.9%, which is better than the typical 2D CNN
and MLP. It reveals that the FCLF-CNN has a positive effect
for the disrupted image data. Structured data is similar to
disrupted image data, which seems to have no local struc-
ture at all. Therefore, we believe that the FCLF-CNN can
also improve the classification performance for structured
data.

We also adopted an additional method, to use the fully-
connected layer as an encoder. We expect that the encoder
can transfer the raw data into representations with better local
structure, which we found can be achieved by adding a soft-
max loss to the fully-connected layer (see Fig. 10 and Fig. 11).
Therefore, we think that the FCLF-CNN that uses the fully-
connected layer as an encoder, should also have better perfor-
mance outcomes than MLP and 1D CNN.

Therefore, we used two architectures for FCLF-CNN,
including 1D FCLF-CNN and 2D FCLF-CNN. Note that,
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FIGURE 4. The classification error rate of a CNN and a MLP for the raw input and the disrupted
input.

FIGURE 5. The architecture of the 2D FCLF-CNN.

there is a reshaping layer in the 2D FCLF-CNN, which is
used to transform a 1D representation into a map (can also be
seen as a 2D representation). In fact, FCLF-CNN is a stacking
method, which stacks a approximator or an encoder with a
CNN. We expect that this stacking method can provide a bet-
ter performance than pure MLP and pure CNN, particularly
for structured data.

III. PERFORMANCE EVALUATION
A. SENSITIVITY, SPECIFICITY AND ACCURACY
Data in both of the datasets WDBC and WBCD are divided
into two classes benign (the negative class) and malignant
(the positive class). Sensitivity, specificity, and accuracy are
calculated using the True positive (TP), true negative (TN),
false negative (FN), and false positive (FP) according to (7),
(8), and (9). TP is the number of positive cases that are
classified as positive. FP is the number of negative cases that
are classified as positive. TN is the number of negative cases
classified as negative and FN is the number of positive cases
classified as negative.

Sensitivity =
TP

TP+ FN
(7)

Specificity =
TN

TN + FP
(8)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

B. CROSS VALIDATION
We used a 5-fold cross validation to confirm sensitivity,
specificity and accuracy. Specifically, the dataset was ran-
domly divided into 5 subsets. One of the subsets was used
as the validation set and the other 4 subsets were used as the
training set. We sought to identify the value of TP, TN, FP,
and FN and calculate sensitivity, specificity, and accuracy,
according to (7), (8), and (9). All of the 5 subsets took
turns as the validation set, which lead to 5 results for each
model. We averaged them out to identify the result through
a cross validation. We ran the cross validation 10 times and
averaged these 10 results to confirm the final result for each
model.

IV. EXPERIMENTS
A. DATA
The WBCD [15] and WDBC [16] datasets are from the
University of California Irvine (UCI), Machine Learning
Repository. The WDBC dataset consists of 569 Fine Needle
Aspirate biopsy samples of human breast tissues, including
357 (62.7%) benign samples and 212 (37.3%) malignant
samples. There are 30 features computed for each cell sample,
which are the mean value, the extreme value, and standard
error of 10 important attributes. The 10 attributes are tabu-
lated in Table 1.

The WBCD dataset consists of 699 instances taken
from human breast tissue. Each record in the database has

VOLUME 6, 2018 23725



K. Liu et al.: Breast Cancer Classification Based on FCLF-CNNs

TABLE 1. Description of features in WDBC dataset.

TABLE 2. Description of features in WBCD dataset.

9 attributes, with these shown in Table 2. The measurements
are assigned as an integer value between 1 and 10, with one
being the closest to benign, and 10 being the most anaplastic.
The label on each sample is either benign or malignant. There
are 16 missing values in this dataset, which all belong to the
6th attribute. We filled these values with the linear regression
method. The class has a distribution of 458 (65.5%) benign
samples and 241 (34.5%) malignant samples.

B. DATA PREPROCESSING
Firstly, all of the data was preprocessed according to the
following equation:

x̂ij =
xij − mean(xi·)

std(xi·)
(10)

whereby, xij is the value of feature i of sample j. mean(xi·)
and std(xi·) denote the mean and the standard deviation of
feature i, respectively. We augmented the dataset during a
cross validation. Specifically, a value randomly generated
from the normal distribution N (0, 0.01) is added to each
feature of the training sample. We augmented the training set
7 times, with the validation set remaining unchanged.

C. SETUP
We conducted experiments on 7 models, including MLP1,
MLP2, CNN, 1D FCLF-CNN training simultaneously
(1D_FCLF-CNN_ST), 1D FCLF-CNN training in step-wise
(1D_FCLF-CNN_SW), 2D FCLF-CNN training simultane-
ously (2D_FCLF-CNN_ST), and 2D FCLF-CNN training in

TABLE 3. The Architecture for each network.

FIGURE 6. The architecture of the 1D FCLF-CNN.

step-wise (2D_FCLF-CNN_SW). The architectures of them
are shown in Table 3. Note that, only 2 kinds of architectures
are used for FCLF-CNN, including 1D FCLF-CNN and 2D
FCLF-CNN. In the 1D FCLF-CNN, the fully-connected lay-
ers before the convolutional layers are seen as an encoder,
while they are seen as an approximator in the 2D FCLF-CNN.
Moreover, we used two different training methods for each
of them. This is because there are two loss functions for each
architecture (see Fig. 5 and Fig. 6), one is set for the layer
before the CNN layer and one is set for the last layer. Simul-
taneous training refers to the entire FCLF-CNN as a multi-
objective model, with all of the parameters trained at the same
time. In contrast, step-wise training goes through three stages:
the first stage is training the fully-connected layers before
CNN; the second stage is training the subsequent CNN; and
the third stage is training the FCLF-CNN as a whole, with
this stage seen as fine-tuning.

Using different architectures and training methods can
reduce the correlation between these 4 FCLF-CNNs, so that
we can expect their ensemble models to achieve better results
than any single network. A MLPn represents a MLP with
n hidden layers (n = 1, 2 or 3). Each FCLF-CNN in this
study has 2 fully-connected layers before the CNN. All of
the activation functions used ReLU except for the fully-
connected layer before the convolutional layers. And in this
layer, linear activation functions was used to make the output
approach c as well as possible.
For the convolutional layers in CNN and FCLF-CNN,

we used the variants of Inception [17], that is, a bank of filters
with different filter sizes. We used this because the Inception
module has proved to be more effective than conventional
CNN layers. The Inception module used in this study is
shown in Fig. 7. For the WBCD dataset, the number of filters
in each branch in the Inception module is 6, so the number of
channels after the concatenation is 18. For theWDBCdataset,
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TABLE 4. Results for WBCD dataset.

TABLE 5. Results for WDBC dataset.

FIGURE 7. The Inception module in the 1D FCLF-CNN (a) and
2D FCLF-CNN (b).

we halved the number of channels because the WDBC data
set had fewer features. We used keras [18] to build all of the
FCLF-CNNs in this paper. We initialized the learning process
with a learning rate of 1 × 10−3 and completed the learning
process in 200 epochs (for themodel training simultaneously)
using a batch size of 16. The momentumwas fixed to 0.9 with
weight decay parameters set to 5 × 10−4 throughout the

learning process. All of the pooling sizes and pooling strides
were set to 2, while all the convolutional strides were set to 1.
We completed the 3 stages in model training in step-wise
in 200, 100, and 100 epochs, respectively.

In order to compare the classification performance
between these models, we trained 100 architectures for each
model. Specifically, for MLP1 and MLP2, we changed the
number of hidden nodes from one to 100. The two hidden
layers in MLP2 were set to be the same number. For CNN,
we changed the number of nodes in the last fully-connected
layer from 1 to 100. For 1D FCLF-CNN and 2D FCLF-CNN,
the number of nodes in the first fully-connected layer was
changed from 1 to 100. For each model, we calculated the
maximum, mean, and standard deviation of the classification
accuracy. These can be viewed in Table 4 and Table 5. The
sensitivity and the specificity corresponding to the maximum
accuracy are also shown in these tables. We observed that
FCLF-CNN achieves a higher accuracy than pure MLP and
pure CNN. Additionally, we ensembled the 4 FCLF-CNN
models. The ensemble method used in this paper was used
to add and then average the output of the last softmax layer
of the 4 FCLF-CNNmodels. The results demonstrate that this
ensemble method achieved better results. This is due to 1) the
better performance of any single FCLF-CNN, and 2) the low
correlation between the 4 FCLF-CNNs.

The results in Table 4 and Table 5 reveal that for structured
data, pure CNN does not always work better than MLP.
However, the performance of FCLF-CNN as proposed in
this paper is better than MLP and CNN for both datasets.
The accuracy of MLP1, CNN, and ensemble FCLF-CNN are
shown in Fig. 8 and Fig.9, respectively. MLP1 is preferred,
because the results shown in Table 4 and Table 5 reveal
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FIGURE 8. The comparison of the accuracy on WBCD dataset: Ensemble
FCLF-CNN vs. MLP_1 (a) and Ensemble FCLF-CNN vs. CNN (b).

that its performance is better than MLP2, for both datasets.
We observed that the accuracy curve of the ensemble FCLF-
CNN is above that of the other 2 models. These results reveal
that it is not accidental that the performance of FCLF-CNN
is better than pure MLP and pure CNN.

Many methods have been applied to classify breast cancer
data in WDBC and WBCD datasets. But a fair comparison is
difficult, due to the lack of standard training sets and testing
sets. Some researchers like to randomly pick the training
data and the testing data with a certain proportion. Different
researchers used different samples and data dividingmethods.
We chose to use the 5-fold cross validation method to obtain
key measurements such as accuracy, sensitivity, and speci-
ficity. This is because the cross validation method provides
every sample with the opportunity to be a testing sample.
However, we still compared the best accuracy obtained in
our experiments with the previous algorithms that have been
applied to the same dataset, as shown in Table 6 and Table 7.
We also show how the data is divided to get the accuracy in
both of these tables. Our results were found to be better than
previously used methods. It should be noted that there is a
large contingency for methods that randomly splits data into
training sets and testing sets.

FIGURE 9. The comparison of the accuracy on WDBC dataset: Ensemble
FCLF-CNN vs. MLP_1 (a) and Ensemble FCLF-CNN vs. CNN (b).

V. DISCUSSION
A. THE PERFORMANCE ON OTHER DATASETS
In order to test FCLF-CNN on other structured datasets,
we chose 5 datasets from the UCI Machine Learning Reposi-
tory, including Cardiotocography (CD), Diabetic Retinopa-
thy Debrecen (DRD), Sensorless Drive Diagnosis (SDD),
Thoracic Surgery (TS), and Yeast Data (YD). For the FCLF-
CNN, we used the same experimental procedure and param-
eter settings as used for WDBC. Note that, we did not use
the MNIST data as the approximation object in this section,
because the Sensorless Drive Diagnosis dataset has more than
10 categories. Therefore, we painted these images by hand
(See Fig. 13 (a)). The results are shown in Table 8.
For a comparison, we also ranMLPswith 1, 2, and 3 hidden

layers. This is because these 5 datasets have a larger data
volume than WBCD and WDBC. We observed that an MLP
with 3 hidden layers is no longer performing better than an
MLP with two hidden layers. FCLF-CNN is superior to pure
MLP and pure CNN, both in terms of average and maximum
accuracy.

We also used other non-neural network models to clas-
sify these data sets, including Radial Basis Function-Support
Vector Classifier (RBF-SVC) [30], linear-SVC [31], Random
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TABLE 6. The classification accuracy comparison on WBCD dataset.

TABLE 7. The classification accuracy comparison on WDBC dataset.

TABLE 8. Accuracy for some other 5 datasets in UCI Machine Learning
Repository.

Forest Classifier (RFC) [32], Gradient Boosting Classifier
(GBC) [33], Adaboost [34], and Xgboost [35]. We compared
them with the ensemble FCLF-CNN. The results are shown

TABLE 9. Results for some other 5 datasets with other models and
ensemble of FCLF-CNN.

FIGURE 10. The representations of 1D FCLF-CNN for WBCD, including the
raw data (a), the representation output by the fully-connected layer
before the convolutional layer in 1D_FCLF-CNN_ST (b), and the
representation output by the fully-connected layer before the
convolutional layer in 1D_FCLF-CNN_SW (c).

FIGURE 11. The representations of 1D FCLF-CNN for Cardiotocography,
including the raw data (a), the representation output by the
fully-connected layer before the convolutional layer in 1D_FCLF-CNN_ST
(b), and the representation output by the fully-connected layer before the
convolutional layer in 1D_FCLF-CNN_SW (c).

in Table 9. The ensemble FCLF-CNN seems not only more
competitive than any single FCLF-CNN, but also better than
other non-neural network models. For the completion of the
non-neural network, we used the scikit-learn library [36].

B. THE LOCAL STRUCTURE IN THE REPRESENTATION
In this section, we wanted to observe what the representa-
tion obtained by the fully-connected layer before the con-
volutional layer in FCLF-CNN, that is, whether it can give
representations with more locality than raw data.

Firstly, for 1D FCLF-CNN, Fig. 10 and Fig. 11 show their
observations on WBCD and Cardiotocography, respectively.
Note that one row corresponds to one sample. The corre-
sponding raw samples are also shown.We observed that there
is a certain pattern in the raw data, but it is not obvious.
After encoding the raw data through the fully-connected
layer, a representation of a stronger pattern is obtained.
Note that, this representation also obtained a better locality.
However, compared to the representation of Cardiotocogra-
phy, the representation of WBCD has a stronger pattern and
locality, indicating that the locality of the representation is
also directly related to the raw data.

For 2D FCLF-CNN, Fig. 12 and Fig. 13 show the
observations on WBCD and Cardiotocography, respectively.
We observed that:
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FIGURE 12. The 2D FCLF-CNN for WBCD. The raw data and the number
corresponding to each category are shown in (a). Note that, one row
corresponds to one sample. The output of the reshaped layer in each
training method is shown in (b), including 2D_FCLF-CNN_ST (left),
2D_FCLF-CNN_SW before fine tuning (middle) and 2D FCLF-CNN after fine
tuning (right).

FIGURE 13. The 2D FCLF-CNN for Cardiotocography. The raw data and the
number corresponding to each category are shown in (a). Note that, one
row corresponds to one sample. The output of the reshape layer in each
training method is shown in (b), including 2D_FCLF-CNN_ST (left),
2D_FCLF-CNN_SW before fine-tuning (middle) and 2D_FCLF-CNN after
fine tuning (right).

1) The fully-connected layer really make the raw data
approximate the image data through the MSE loss function,
and takes the image data as the approximation target.

2) However, the effect of the approximation has a great
relationship with the raw data. The WBCD’s raw data

provided a better approximation than Cardiotocography. Note
that, the accuracy of WBCD is higher than Cardiotocography
for the same model, meaning that the separability of WBCD
is higher than Cardiotocography.

3) The effect of the approximation of one category depends
largely on the number of samples belonging to it. For
the category with a relatively large number of samples,
the parameters can be adequately trained to approximate the
corresponding image. On the contrary, for the category with a
relatively small number of samples, the parameters cannot be
adequately trained to approximate the corresponding image.

4) For some samples in the Cardiotocography dataset,
the output of the reshape layer are mixed with multiple num-
bers. This makes the samples between some categories output
more similar in approximation, and the subsequent CNN
cannot make the correct classification. Even so, the model
achieved a better performance than pure MLP and pure CNN.

5) Fine tuning seems to undermine the approximation of
the image data, but results in the data of each category having
its own (different from other categories) features.

VI. CONCLUSION
In this study, FCLF-CNN is proposed to improve the clas-
sification performance of the datasets WBCD and WDBC.
The model embeds fully-connected layers before the con-
volutional layer. By disrupting the MNIST data, we found
that the local structure results in the CNN getting a better
performance for image data. We utilized two ways to transfer
the structured data into representations with a better local
structure. One way is to use the fully-connected layer as
an encoder by using the softmax loss to the fully-connected
layers before the convolutional layer. The architecture of this
way corresponds to 1D FCLF-CNN (Fig.6). Another way is
to use the fully-connected layer as an approximator by using
the MSE loss, to make the raw data approximate the image
data. The architecture of this way corresponds to 2D FCLF-
CNN (Fig.5). Both of these methods are stacking methods.
For each architecture, we took two kinds of training methods,
including training simultaneously and training step-wise. The
results demonstrate that FCLF-CNN can achieve a better
performance than pure MLP and pure CNN. We ensembled
4 FCLF-CNN models, with its resulting performance better
than any single FCLF-CNN network. Our results are obtained
by a 5 fold cross validation. Although it is difficult to have
a fair comparison with other researchers about these two
datasets, the results of our experiments are still competitive
compared to the results of other studies.

In terms of the complexity of the model, it is true that
FCLF-CNN is more complex than the traditional CNN
and MLP. But we do not think it is very bad. On the
one hand, because of the rapid development of hardware,
the computational complexity of this level can not be the
main contradiction. Second, in the medical field, in addition
to structured data, the proportion of image data is constantly
rising. Combining structured data with unstructured data for
joint diagnosis is an effective way to increase diagnostic
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performance. In fact, the results in this paper reveal that the
CNN does not only work for unstructured data, but also for
structured data, as long as slight changes are made to the
CNN. Therefore, it is possible to combine the structured
data and the unstructured data in the same CNN network.
In the medical field, a patient may be required to undertake
a number of examinations and tests, including CT scans and
blood tests. So, the data used to describe a patient may contain
structured data and unstructured data. Integrating these data
together in a unified network may lead to more comprehen-
sive and accurate results.
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