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ABSTRACT A robust control method, based on a model predictive control, is developed for the trajectory
tracking of a surface vessel with sensor failures. The kinematic model of a surface vessel is first obtained. The
Lyapunov stability theory and linearmatrix inequalities are then adopted to produce a closed-loop system that
can have a fault-tolerant capability against sensor failures and to subsequently obtain the simulated results
of a fault-tolerant controller through solving the linear matrix inequalities. The asymptotic tracking position,
heading angle, and the velocities of the surface vessel can be obtained using the inputs of incomplete state
information in the simulation. The feasibility and effectiveness of the proposed control method have been
verified through simulation results.

INDEX TERMS Fault-tolerant control, predictive control, surface vessel, trajectory tracking.

I. INTRODUCTION
The objective of motion control of a surface vessel is to steer
the vessel along a desired reference trajectory. After receiving
the values of state variables from sensors on a surface vessel,
a control system attempts to control actuators like rudders
to reduce the difference between the desired trajectory and
the actual trajectory. The purpose of fault-tolerant control is
that the vessel has to stabilize with its component failures that
cannot be artificially eliminated when the vessel cannot sail
along the scheduled route [1]. The researches of fault-tolerant
control for kinds of systems such as surface vessel [1]–[3],
flexible spacecraft [4], [5], switched system [6], Markovian
jump system [7] and some other unspecific systems [8], [9]
have recently attracted increasing attention in control areas.
A control system possessing redundant capabilities is known
as a fault-tolerant control system. The fault-tolerant control
system can remain stable and maintain good trajectory con-
trol of vessels when some components fail.

According to the different forms of redundancy, the design
of a fault-tolerant controller has been classified into two
types: hardware redundancy and software redundancy [10].
The purpose of hardware redundancy is to offer extra backups
to those important or easily damaged components of the
control system. Based on different backup modes of fault
tolerance, hardware redundancy can be classified into static
hardware redundancy and dynamic hardware redundancy.
Static hardware redundancy analyzes multiple control results

that all come from identical components and eventually con-
firm the correct structure decided by the results in the major-
ity. The process of logical judgment is increased, and the fault
diagnosis is thus no longer required in this way. In dynamic
hardware redundancy, the backups remain off and start auto-
matically to replace the faulty part once component failures
appear. Usually, hardware redundancy has been rather effec-
tively applied to the system with hardware failures. However,
when the large cost and increased burden on the system are
considered, only some crucial components of the system can
be applied to hardware redundancy. Software redundancy
can be divided into analytical redundancy, functional redun-
dancy, parameter redundancy and etc. Software redundancy
is achieved through the estimation methods or software algo-
rithm such that the fault tolerance control of the control sys-
tem can be achieved. Themain idea of software redundancy is
to fulfill the fault-tolerant control by taking advantage of the
functional redundancy of the system components to extract
and separate the compensation information, which underlies
the whole control system. The extensive application, good
performance, and low cost are the major merits of software
redundancy. Software redundancy has been extensively used
in various control systems [11]. The hot research topics
in the area of controlling surface vessels are to make the
vessel sail in the state of stability when component failures
appear. For the stabilization problem of nonlinear Markovian
jump systems which are common in practical systems, with
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the employed sliding mode observer design scheme used to
eliminate the effects of actuator and sensor faults, the stabi-
lization of the overall close loop system can be guaranteed
based on the proposed fault tolerant control [7]. A difficult
problem of velocity-free uncertain attenuation control for
a class of nonlinear systems with external disturbance and
multiple actuator faults has been addressed in [9], and a
velocity-free controller is synthesized using the reconstructed
state obtained from the only available output measurement.
Damiano et al. [12] adopts a passive fault-tolerant control
design based on software redundancy. This control requires
no additional redundancies and has a rapid processing speed.

Due to changes in the water environment and the inter-
ference of sea wind and waves, real-time control of a sur-
face vessel against the changes in the external environment
is required. Different from the typical disturbance observer
design scheme such as the nonlinear observer designed in [3],
in addition to the advantages like rolling optimization and a
strong anti-interference ability, the model predictive control
(MPC) algorithm can also have soft constraints of input in
the form of linear matrix inequalities (LMIs) to achieve the
upper bound of the performance index at the cost of minimum
input [13], [14]. Control accuracy is thus greatly improved,
and the complex degree of manipulation is reduced. There-
fore, one relatively accurate control can be obtained with a
small cost of input through the above algorithm [15].

Based on the motion model of a surface vessel in four
degrees of freedom under the SF coordinate system, this
paper has established an uncertain failure model, with input
constraints, of trajectory tracking of a surface vessel with
additional heading error ψ̄ and cross-track error e. Based
on rolling constraint optimization, Lyapunov stability theory,
and LMIs, the MPC is implemented to achieve the fault-
tolerant control results after solving various LMIs under the
sufficient conditions for the control system to have a fault-
tolerant capability against sensor failures [16]. From the fault
diagnosis diagram in [17], the sensor output can be regraded
as the component input, thus sensor failures can absolutely
lead to component failures.

The control system can give appropriate orders to the sen-
sor device (like a gyroscope and GPS) and the actuator device
(like a rudder and propeller) to reduce the heading error and
the cross-track error. Consequently, the robust fault -tolerant
control for asymptotic trajectory tracking of the surface vessel
with incompletable state feedback is fulfilled.
Notation:The symbols used in this paper are illustrated

as follows: Rn is n-dimensional real space; I is the identity
matrix with corresponding dimensions; symbol * denotes
symmetrical structure. If H and R are symmetrical matrices,

then there will be
[
H + S + ∗ ∗

T R

]
=

[
H + S + ST T T

T R

]
.

II. MODEL DESCRIPTION
A. MATHEMATICAL MODEL OF A SURFACE VESSEL
Figure 1 shows the Serret-Frenet SF coordinate frame
used for trajectory tracking control. The origin of the

FIGURE 1. Illustration of the coordinates in the earth frame (inertial
frame) (E), the surface vessel body-fixed frame (B) and the Serret-Frenet
frame (SF).

SF coordinate frame SF is defined by the point that is located
on the curve � and closest to the origin of the body-fixed
coordinate frame B [18]. Based on the SF equations, the error
dynamics equations can be obtained as follows:

˙̄ψ = ψ̇ − ψ̇SF =
k

1− ek

(
u sin ψ̄ − v cos ψ̄

)
+ r (1)

ė = u sin ψ̄ + v cos ψ̄ (2)

where e is defined as the cross-track error, the distance
between SF and the origin B, and ˙̄ψ = ψ̇ − ψSF is defined
as the heading error.

Figure 1 shows the earth-fixed coordinate frame, SF coor-
dinate frame SF, and the ship body-fixed coordinate frame B.
u, v and r are the surge, sway and yaw velocity, respectively.
ψ is the heading angle of the vessel and ψSF is the tangential
direction of the path, as is shown in the Figure 1. k is the
curvature of the given path. T and N are the tangential and
normal direction of the curve � at the origin {SF}. The con-
trol objective of trajectory tracking is to drive e and ψ̄ to zero.
Generally, the cross-track errors e and ψ̄ cannot be eliminated
simultaneously. In this circumstance, the primary objective
is to maintain a small or near-zero cross-track error e, while
maintaining a certain small but necessary heading error ψ̄ to
offset the disturbances.

For most trajectory tracking problems for surface vessels in
the high seas, the trajectory is the straight line or route path
consisting of piecewise lines with k = 0. If the desired trajec-
tory has a non-zero curvature, the curve can be approximated
as some piecewise lines. Thus, the heading error dynamics (1)
can be simplified as follows:

˙̄ψ = r (3)

Usually, three degrees of freedom (3-DoF) consisting of the
surge, sway, and yaw are adopted to control the maneuver-
ability of surface vessels. In this paper, to solve the trajectory-
tracking problem with roll constraints, a 4-DoF model is
proposed, including common 3-DoF (surge, sway, and yaw)
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and an additional DoF, namely the roll which has wave-
resistant characteristics.

The nonlinear equations of motion (surge u, sway v, roll p
and yaw r) are given by the following::(

m′ + m′x
)
u̇′ −

(
m′ + m′y

)
v′r ′ = X ′ (4)(

m′ + m′y
)
v̇′ +

(
m′ + m′x

)
u′r ′ + m′yα

′
yṙ
′
− m′yl

′
yṗ
′
= Y ′

(5)(
I ′x + J

′
x
)
ṗ′ − m′x l

′
xu
′r ′ +W ′GM ′ϕ′ = K ′ (6)(

I ′x + J
′
z
)
ṙ ′ + m′yα

′
yv̇
′
= N ′ − Y ′x ′G (7)

where m′ denotes the mass of the vessel; m′x and m′y denote
the added mass in the x and y directions respectively. I ′X and
I ′Z denote the moment of inertia, and J ′X and J ′Z denote the
added moment of inertia about the x and z axes, respectively.
In addition, α′y denotes the x-coordinate of the center of m

′
y;

l ′X and l ′Y denote the z-coordinate of the center of m′x and m
′
y,

respectively. W ′ is the displacement of the vessel. GM ′ is
the metacentric height, and x ′G is the location of the center
of gravity in the x-axis.

The movements of the surface vessels can be considered
as the motion of a rigid body in the fluid, and are consisted
of the movements of high frequency and low frequency.
As the movements of high frequency can only result to the
slight movements of the surface vessels without the position
changes, the motions of low frequency are mainly consid-
ered [18]. After linearizing the curve around the equilibrium
working point, assuming the surge speed to be constant, and
neglecting the surge dynamics, the following dynamic equa-
tions that include surge, sway, roll, and yaw is established:

v̇ = a11v+ a12r + a13p+ a14ϕ + b1δ (8)

ṙ = va21v+ a22r + a23p+ a24ϕ + b2δ (9)

ψ̇ = r (10)

ṗ = a31v+ a32r + a33p+ a34ϕ + b3δ (11)

ϕ̇ = p (12)

When combined with formula (3), the following dynamic
equations can be obtained:
v̇
ṙ
˙̄ψ

ṗ
ϕ̇

=

a11 a12 0 a13 a14
a21 a22 0 a23 a24
0 1 0 0 0
a31 a32 0 a33 a34
0 0 0 1 0



v
r
ψ̄

p
ϕ

+

b1
b2
0
b3
0

 δ
(13)

where a11, a12, a21, a22, a31, a32, a33, a34, b1, b2 and b3
are constant parameters, v is the sway velocity, r is the yaw
velocity, ψ̄ is the heading error, p is the roll velocity, ϕ is the
heading angle and δ is the rudder angle.

B. THE TRAJECTORY-TRACKING MODEL OF
A SURFACE VESSEL
For most trajectory-tracking problems for surface vessels,
the trajectory is the way-point path consisting of some

piecewise lines with the curvature k being zero. If the
non-zero curvature exists in the trajectory, it is feasible
to make some piecewise lines approximately equal to the
curve [19], [20]. According to the trajectory-tracking and
heading error equation (2) under the SF coordinate frame,
the v cos ψ̄ is neglected under the condition of surge velocity
u� 0, sway velocity v near zero, and max(v cos ψ̄) = v. The
error increment of trajectory tracking is mainly influenced
by the surge velocity component along the heading error
direction. Formula (2) can be transformed into the following:

ė = u sin ψ̄ (14)

The heading error ψ̄ error changes in a small range. Based
on the Taylor expansion of the sine function sin ψ̄ = ψ̄ −

ψ̄3/3! + o(ψ̄3) and the assumption of ψ̄ being a rather small
radian value, the above-mentioned sine function turns into
sin ψ̄ ≈ ψ̄ , and formula (14) can be converted into the
following:

ė = uψ̄ (15)

When the error dynamic equation (13)is considered,
the designmodel of the trajectory tracking controller is shown
as follows:

v̇
ṙ
˙̄ψ

ṗ
ϕ̇

ė

=

a11 a12 0 a13 a14
a21 a22 0 a23 a24
0 1 0 0 0
a31 a32 0 a33 a34
0
0

0
0

0
u

1
0

0
0

0
0
0
0
0
0




v
r
ψ̄

p
ϕ

e

+

b1
b2
0
b3
0
0

 δ
(16)

For ease of calculation, the formula (16) can be described by
the following state equation:

ẋ = Ax + Bu (17)

where the state vector xT (t) =
[
v(t), r(t), ψ̄(t), p(t),

ϕ(t), e(t)], x̄(t) ∈ R6, A is the state matrix of the system,
B is the control input matrix of the system, u(t) = δ (t)
is the control input rudder angle and the input constraint is
|δ (t)| ≤ 10.

C. FAILURE SYSTEM FOR TRAJECTORY TRACKING
OF SURFACE VESSELS
When themodel (17) for trajectory tracking of surface vessels
and the description of an uncertain system are combined, it is
feasible to describe the uncertain model of a surface vessel as
follows:

ẋ(t) = (A+1A)x(t)+ (B+1B)u(t) (18)

where A and B are constant matrices belonging to the nominal
model of the system, and 1A and 1B are the variables
parameters belonging to the uncertain model of the system.

The variables are expressed as below to emphasize the
range of parameter perturbations:

[1A 1B] = DG[Ea Eb] (19)
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where D, Ea and Eb are the known constant matrices and
are decided by the percentage of the nominal model, G is
the time-varying function matrix satisfying the condition
GTG ≤ I , and I is the identity matrix with the appropriate
dimension. The above description can then be expressed as
follows:

[A B] = [A B]+ DG[Ea Eb] (20)

The uncertain system of underactuated surface vessels can be
described as:

ẋ(t) = [A B][x(t) u(t)]T (21)

After discretization, the above formula can be expressed as

x(k + 1)− x(k)
T

= Āx(k)+ B̄u(k) (22)

where T is the sampling time. The discrete system description
of the underactuated surface vessel with parameter perturba-
tions is obtained as follows:

x(k + 1) = (T Ā+ I )x(k)+ T B̄u(k) (23)

According to the system description (23), a state feedback is
introduced:

u(t) = Kx(t) (24)

Then the closed-loop system is

x(k + 1) = (T Ā+ I )x(k)+ T B̄Kx(k) (25)

When the possible sensor failures are considered, a switching
matrix F is introduced between the feedback gain matrix K
and the state x(t). The form of the switching matrix can be
expressed as

F = diag(f1, f2, . . . , fn)

fi equals 1 if the i-th, the senor, is working; otherwise fi
equals 0.

The state feedback controller with sensor failures is

u(t) = KFx(t) (26)

Then the closed-loop failure system is

x(k + 1) = (T Ā+ I )x(k)+ T B̄KFx(k) (27)

The fault-tolerant controller design under the sensor failures
aims to confirm the feedback gain matrix K , which can
make the system (17) asymptotically stable if all probabilities
F ∈ � of sensor failures occur. � is a set consisting of all
probable results of switching matrix F with sensor failures.
When the uncertainty of the parameters is considered, the tra-
jectory tracking model with sensor failures of surface vessels
is obtained as

x(k + 1) = (Â+ B̂KF)x(k) (28)

where, [A B] = [A B] + DG[Ea Eb], Â = T Ā + I , and
B̂ = T B̄.

III. ROBUST FAULT-TOLERANT CONTROL BASED ON MPC
A. THE ROLLING OPTIMIZATION OF THE
OBJECTIVE FUNCTION
According to the mathematical description of the fault (with
parameter perturbations) of surface vessels, a set of control
inputs to the MPC algorithm was found when the objective
function is minimum and the control inputs satisfy the feasi-
bility requirements.

Based on the equation (28), a discrete system with param-
eter perturbations of surface vessels can be obtained as

x(k + 1) = Âx(k)+ B̂u(k) (29)

The objective function of the infinite time domain of predic-
tive control is

min
u(k+b|k),b=0,1,...,∞

J∞(k)

J∞(k) =
∞∑
b=0

[xT(k + b|k)Wx(k + b|k)

+ uT(k + b|k)Ru(k + b|k)]

(30)

Theminimum of the objective function represents the optimal
performance of the system. x(k) ∈ R6 is the system state
vector, Ā and B̄ are state matrix and input matrix with param-
eter perturbations respectively and u(k) ∈ R1 is the control
input, and Ā and B̄ are the state matrix and input matrix with
parameter perturbations, respectively. W > 0 is the state
weighting matrix, R > 0 is the input weighting matrix of the
system, and x(k+b|k) is the state predictive value at time k+b
based on the model (29). u(k + b|k) represents the value of
control input sequence {u(k|k), u(k + 1|k), · · · , u(k + b|k)}
which enables the rolling optimization of the objective func-
tion (30) at time k + b. According to the characteristics
of predictive control, the input u(k + b|k) is applied to the
system control. When the minimum of the objective function
to the next moment is re-computed, a new input sequence is
obtained, namely the rolling optimization.

According to the discrete uncertain mathematical descrip-
tion of surface vessels, a state feedback is introduced to the
system with sensor failures

u(k) = KFx(k) (31)

Then, the formula (31) is substituted into the formula (29)
and the closed-loop fault system of the surface vessels can be
obtained as

x(k + 1) = (Â+ B̂KF)x(k) (32)

The Lyapunov function of the system (29) at time k can be
expressed in the form of V (x(k|k)) = xT(k|k)Px(k|k) and
P > 0. The following formula is then

V (x(k + b+ 1|k))− V (x(k + b|k))

≤ −(x(k + b|k)TWx(k + b|k)

− u(k + b|k)TRu(k + b|k)) (33)

The necessary stability condition x (∞|k) = 0 can derive the
formulaV (x (∞|k)) = 0. The equation (33) is added up from
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b = 0 to b = ∞, and the formula (34) can be obtained:

−V (x (k|k)) ≤ −J∞0 (k) (34)

The upper bound of the objective function in the infinite time
domain can be expressed as follows:

J∞0 (k) ≤ V (x(k|k)) (35)

Then the minimization of the objective function can be trans-
formed into minimization of the Lyapunov function, which is

min
u(k+b|k),b=0,1,...,∞

V (x(k|k)) (36)

Therefore, the objective of the predictive control is minimiz-
ing V (x(k|k)) by a set of control sequences, u(k + b|k) =
KFx(k + b|k), of which the first item, u(k|k) = KFx(k|k),
is added into the control system as inputs. Based on the
current state x(k + 1|k + 1), the future state x(k + 1+ b|k +
1 + b) is re-predicted, and the minimum K which satisfies
the condition V (x(k + 1|k + 1)) can be calculated to the next
moment [21], [22].

B. FEASIBILITY ANALYSIS
The superiority of MPC lies in the optimization of the online
solution. Predictive control cannot be conducted if the fea-
sible solutions are not available. Feasibility depends on the
hardware conditions.

The feasibility problem can be solved by relaxing con-
straints. Due to the structural limitation of the actuator,
the input rudder angle is strictly constrained δ ∈ [−10◦, 10◦].
When the control input sequence obtained by the predictive
control algorithm satisfies the input constraints, the feasibility
requirements are achieved.

C. THE DESIGN OF ROBUST MPC-BASED FAULT-
TOLERANT CONTROLLER
Theorem 1: Considering the input constraints, the failure
system (21) with parameter perturbations and the parameter
perturbation term satisfying formula (20), x(k|k) is the state
measurement at time k . A and B are the nominal matrices of
the system after discretizing. The input is strictly constrained
u ∈ [−10◦, 10◦]. According to a certain sensor failure con-
dition F ∈ �, if the matrix Y = KFQ, which satisfies the
following LMIs with Q ≥ 0 and Q ≥ 0 exists, a set of
state feedback sequences u(k) = KFx(k) will be obtained.
YQ−1 = KF can make the closed-loop system (21) with
parameter perturbations asymptotically stable.

min
γ,Q

γ (37)[
1 x(k|k)T

x (k|k) Q

]
≥ 0 (38)

Q ∗ ∗ ∗ ∗

T 1/2(EaQ+EbY ) ε ∗ ∗ ∗

(TA+I )Q+TBY 0 Q−εTDDT ∗ ∗
W 1/2Q 0 0 γ I ∗
R1/2Y 0 0 0 γ I

 ≥ 0 (39)

[
u2maxIY
(Y )TQ

]
≥ 0 (40)

Proof : First, the problem of minimizing the objective
function is solved. According to formula (35), the min-
imization of the objective function is equivalent to the
minimization of the Lyapunov function. According to the
condition V (x(k|k)) = xT(k|k)Px(k|k), the formula (36) is
equivalent to

min
γ,P

γ (41)

x(k|k)TPx (k|k) ≤ γ (42)

We define the matrix Q = γP−1 > 0. When the Schur
complement is combined, the above formula is equivalent to

min
γ,Q

γ (43)[
1 x(k|k)T

x (k|k) Q

]
≥ 0 (44)

The problem of minimizing the objective function has been
solved.

According to the requirement of Lyapunov stability,
the state feedback (31) with sensor failures is substituted into
the equation (33)

V (x(k + b+ 1|k))− V (x(k + b|k))

≤ −(x(k + b|k)TWx(k + b|k)

− x(k + b|k)T (KF)TR(KF)x(k + b|k) (45)

The closed loop system (28) of surface vessels is

V (x(k + b+ 1|k)) = V ((Â+ B̂KF)x(k + b|k)) (46)

which is equivalent to

V (x(k + b+ 1|k))

= ((Â+B̂KF)x(k+b|k))TP((Â+B̂KF)x(k+b|k)) (47)

The following formula after transposition is obtained by sub-
stituting formulas (47) and (48) into formula (45):

x(k + b|k))T [(Â+ B̂KF)TP(Â+ B̂KF)− P

+W + (KF)TR(KF)]x(k + b|k)) ≤ 0 (48)

Then

(Â+B̂KF)TP(Â+B̂KF)−P+W+(KF)TR(KF) ≤ 0

(49)

Based on the Schur complement, formula (49) can be
expressed in the form of an LMI:

P ∗ ∗ ∗

Â+B̂KF P−1 ∗ ∗

W
1
2 0 I ∗

R
1
2KF 0 0 I

 ≥ 0 (50)
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The following can be obtained by multiplying the LMI (50)
by a diagonal matrix diag(Q, I , I , I ) on both sides, it is easy
to obtain 

Q ∗ ∗ ∗

ÂQ+ B̂Y Q ∗ ∗

W
1
2Q 0 γ I ∗

R
1
2 Y 0 0 γ I

 ≥ 0 (51)

where Q = γP−1 and Y = KFQ are the positive definite
matrices. The formula Â = T Ā + I and B̂ = T B̄ are substi-
tuted into Â and B̂, respectively. Then the formula [Ā B̄] =
[Ã B̃] + DG[Ea Eb] is obtained and the LMI (51) can be
transformed into

Q ∗ ∗ ∗

(TA+ I )Q+ TBY Q ∗ ∗

W
1
2Q 0 γ I ∗

R
1
2 Y 0 0 γ I



+T


0
D
0
0

G [EaQ+ EbY 0 0 0
]

+T
[
EaQ+ EbY 0 0 0

]TGT


0
D
0
0


T

≥ 0 (52)

Lemma 1 [16]: Considering any given matrices Y , D, F
and H with certain dimensions, where Y is a symmetrical
matrix and FTF ≤ I , if Y + DFH + HTFTDT > 0, there
must be a constant ε > 0 which makes the matrix inequality
Y − εDDT − ε−1HTH > 0 workable.

From the lemma 1, the constant ε > 0 exists and satisfies
the following condition

Q ∗ ∗ ∗

(TA+I )Q+TBY Q ∗ ∗

W
1
2Q 0 γ I ∗

R
1
2 Y 0 0 γ I

− εT


0
D
0
0




0
D
0
0


T

−ε−1T


EaQ+EbY

0
0
0

[EaQ+EbY 0 0 0
]
≥ 0

(53)

It is equivalent to
2 ∗ ∗ ∗

(T Ã+ I )Q+ T B̃Y γ−1Q− εT 2DDT ∗ ∗

W
1
2Q 0 I ∗

R
1
2 Y 0 0 I

 ≥ 0

(54)

where 2 = γQ− ε−1(EaQ+ EbY )T (EaQ+ EbY ).

According to the Schur complement, the formula (53) is
equivalent to

Q ∗ ∗ ∗ ∗

T 1/2(EaQ+EbY ) ε ∗ ∗ ∗

(TA+I )Q+TBY 0 Q−εTDDT ∗ ∗

W 1/2Q 0 0 γ I ∗

R1/2Y 0 0 0 γ I

 ≥ 0

(55)

Formula (39) has thus been proved.
Now consider the feasibility of predictive control. Predic-

tive control that satisfies the input constraints is an effective
method of solving the problem of input constraints. Accord-
ing to the matrix, equation (42) can be transformed into the
following state transition condition:

xT(k + b|k)Q−1x(k + b|k) ≤ 1 (56)

umax = δmax represents the maximum of the control input,
which is the rudder angle of the surface vessel. Then, there is

‖u(k + b|k)‖2 ≤ umax (57)

max
b≥0
‖u(k + b|k)‖22 = max

b≥0

∥∥∥YQ−1x(k + b|k)∥∥∥2
2

≤ (Q
−1/2Y TYQ

−1/2) ≤ u2max (58)

According to the Schur complement, the formula (58) can be
expressed in the form of an LMI:[

u2maxIY
Y TQ

]
≥ 0 (59)

The LMI (40) has been proved and the problem of control
input has been solved.

IV. SIMULATION ANALYSES
The mathematical description of trajectory tracking with
parameter perturbations is given as follows

ẋ = Âx + B̂u − 10◦ ≤ u(t) ≤ 10◦

where, u(t) = δ(t) is the control input, the rudder angle
input. The state vector can be shown as x(t) ∈ R6, xT (t) =
[v(t), r(t), ψ̄(t), p(t), ϕ(t), e(t)], Â = T Ā + I , B̂ = T B̄,
[A B] = [A B]+ DG[Ea Eb]ąč

In [20], a surface vessel, whose model parameters are as
follows, is introduced:

A =


1.0683 −0.8373 0 0.0276 −0.0351 0
−0.0003 0.9680 0 0.003 0 0

0 0.3 1 0 0 0
0.0006 −0.0917 0 0.9941 −0.0135 0

0
0

0
0

0
s

0.3
0

1
0

0
0


B = [−0.0171 0.0009 0 0.0009 0 0 ]T
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Ea =


−0.11 −1.39 0 −0.04 −0.06 0
0.002 −0.05 0 0.005 −0.0002 0
0 0.5 0.003 0 0 0

0.002 −0.15 0 0.01 −0.224 0
0 0 0 0.5 0 0
0 0 0.5s 0 0 0


Eb =

[
−0.0057 0.0004 0 0.0003 0 0

]T
D = 0.1 ∗ diag(1, 1, 1, 1, 1, 1)

G = sin(3.14 ∗
k
180

) ∗ diag(1, 1, 1, 1, 1, 1)

The weighting matrix of the state vectors is
W = diag(1, 10, 1, 1, 1, 1) and the weighting matrix of the
control input is R = 1. The initial values of the state variables
are set as follows:

xT (0) = (v (0) , r (0) , ψ̄ (0) , p (0) , ϕ (0) , e (0))

= (0, 0, 5/57.3, 0, 0, 50)

where the sampling time is T = 0.2, the initial input of
the rudder angle is δ(0) = 0◦ and the input constraint is
|δ(t)| ≤ 10◦. The following fault matrices simulate sensor
failures in which the sensor cannot deliver status information
such as sway velocity v, yaw angular velocity r , trajectory
error ψ̄ , roll angular velocity p, roll angle ϕ and cross-track
error e, respectively. Suppose that, in the initial situation,
the trajectory error is 5◦, the cross-track error is 50m, and
the surge velocity is s = 5m/s.

F1 = diag(0, 1, 1, 1, 1, 1), F2 = diag(1, 0, 1, 1, 1, 1),

F3 = diag(1, 1, 0, 1, 1, 1), F4 = diag(1, 1, 1, 0, 1, 1),

F5 = diag(1, 1, 1, 1, 0, 1), F6 = diag(1, 1, 1, 1, 1, 0).

From Fig.2, the state feedback control makes all these
state variables converge gradually, the cross-track error e
and the heading error ψ̄ converge to zero, resulting in an
asymptotic trajectory tracking control of the surface ves-
sel. The yaw angle error ψ̄ is small enough to satisfy
sin ψ̄ ≈ ψ̄ . Therefore, the expression (15) of cross-track error
e is workable. The control method is feasible and effective so
that the roll angle ϕ, which is produced by the acceleration
during the whole control process, is small enough. Fig.3

FIGURE 2. Control results when the sensor is failure-free.

FIGURE 3. The trajectory tracking result when the sensor is failure-free.

FIGURE 4. Control results when the sensor cannot feedback sway
velocity.

FIGURE 5. The trajectory tracking result when the sensor cannot
feedback sway velocity.

shows that the path tracking of the experimental vessel. The
asymptotic trajectory tracking has been fulfilled in a normal
working condition. Fig.4 and Fig.6 show the control results in
the condition that the sensor cannot deliver the sway velocity
and yaw angular velocity, respectively.

The simulation results of path tracking shown in the Fig.5
and Fig.7 correspond to Fig.4 and Fig.6, respectively. More-
over, the fault-tolerant control of path tracking is fulfilled in
the conditions above. Fig.8 shows the control result when
there is no feedback information of regarding the heading
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FIGURE 6. Control results when the sensor cannot feedback yaw angular
velocity.

FIGURE 7. The trajectory tracking result when the sensor cannot
feedback yaw velocity.

FIGURE 8. Control results when the sensor cannot feedback heading
angle.

angle. Fig.9 shows the path tracking with no heading angle
information. Fig.8 and Fig.9 illustrate that the heading angle
sensor is critical for a surface vessel. If the heading angle sen-
sor does not work, it is unable to obtain effective deviation so
that the control results cannot converge to zero. Fig. 10 and 11
show the control result and the simulation result of path
tracking when there is no feedback information regarding the
cross-track error. Fig.10 shows that the control system cannot
track the path effectively when the valid cross-track error is
unavailable. However, the convergence of ψ̄ is achieved, and

FIGURE 9. The trajectory tracking result when the sensor cannot
feedback heading angle.

FIGURE 10. Control results when the sensor cannot feedback cross-track
error.

FIGURE 11. The trajectory tracking result when the sensor cannot
feedback cross-track error.

asymptotic course tracking is fulfilled. Moreover, the inputs
of Fig.2 to Fig.11 satisfy the constraints showing that MPC is
an effective way of solving the constraint problem.
Remark: Due to the space limitations in this paper, the anal-

yses of fault scenarios of roll angular velocity and the roll
angle are not given.

V. CONCLUSION
Based on the motion characteristics of a surface vessel and its
mechanical parameters, and the hydrodynamic analysis and
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moment analysis in 4-DoF of surface vessels, this paper has
analyzed a kinematic model of a surface vessel including the
heading error under the SF frame. Furthermore, considering
the uncertainty of the model, a mathematical description with
parameter perturbations is established. The constraints of the
control input are given at the same time. Given the parameter
uncertainty of surface vessel model, after considering the pos-
sibilities of sensor failure, the LMI method has been applied
to the mathematical model with parameter perturbations to
develop the robust fault-tolerant control of trajectory tracking
of surface vessels based on the MPC. In this paper, to achieve
control constraints, the problem of input constraints has been
transformed into the feasibility problem through solving a
model predictive problem in term of LMIs. The algorithm
has been proved effective by means of a series of simula-
tion experiments using the data from a real vessel. With the
effectiveness analyses of fault-tolerant control with various
possible sensor failures, the effectiveness of the developed
algorithm has been verified through simulation results.
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